Properties

Label 150.2.l.a.17.4
Level 150
Weight 2
Character 150.17
Analytic conductor 1.198
Analytic rank 0
Dimension 80
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.l (of order \(20\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{20})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 17.4
Character \(\chi\) = 150.17
Dual form 150.2.l.a.53.4

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-0.891007 - 0.453990i) q^{2}\) \(+(0.983013 + 1.42607i) q^{3}\) \(+(0.587785 + 0.809017i) q^{4}\) \(+(1.04600 - 1.97633i) q^{5}\) \(+(-0.228447 - 1.71692i) q^{6}\) \(+(0.462249 + 0.462249i) q^{7}\) \(+(-0.156434 - 0.987688i) q^{8}\) \(+(-1.06737 + 2.80370i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-0.891007 - 0.453990i) q^{2}\) \(+(0.983013 + 1.42607i) q^{3}\) \(+(0.587785 + 0.809017i) q^{4}\) \(+(1.04600 - 1.97633i) q^{5}\) \(+(-0.228447 - 1.71692i) q^{6}\) \(+(0.462249 + 0.462249i) q^{7}\) \(+(-0.156434 - 0.987688i) q^{8}\) \(+(-1.06737 + 2.80370i) q^{9}\) \(+(-1.82923 + 1.28605i) q^{10}\) \(+(2.73512 - 0.888693i) q^{11}\) \(+(-0.575917 + 1.63350i) q^{12}\) \(+(1.97121 + 3.86872i) q^{13}\) \(+(-0.202010 - 0.621723i) q^{14}\) \(+(3.84663 - 0.451083i) q^{15}\) \(+(-0.309017 + 0.951057i) q^{16}\) \(+(-5.75574 + 0.911620i) q^{17}\) \(+(2.22389 - 2.01354i) q^{18}\) \(+(4.28299 - 5.89503i) q^{19}\) \(+(2.21371 - 0.315425i) q^{20}\) \(+(-0.204804 + 1.11360i) q^{21}\) \(+(-2.84047 - 0.449885i) q^{22}\) \(+(-0.316926 + 0.622003i) q^{23}\) \(+(1.25474 - 1.19400i) q^{24}\) \(+(-2.81176 - 4.13449i) q^{25}\) \(-4.34197i q^{26}\) \(+(-5.04752 + 1.23392i) q^{27}\) \(+(-0.102264 + 0.645670i) q^{28}\) \(+(-2.60237 + 1.89073i) q^{29}\) \(+(-3.63216 - 1.34441i) q^{30}\) \(+(-4.82678 - 3.50686i) q^{31}\) \(+(0.707107 - 0.707107i) q^{32}\) \(+(3.95600 + 3.02688i) q^{33}\) \(+(5.54227 + 1.80079i) q^{34}\) \(+(1.39707 - 0.430043i) q^{35}\) \(+(-2.89562 + 0.784450i) q^{36}\) \(+(-1.93977 + 0.988365i) q^{37}\) \(+(-6.49246 + 3.30807i) q^{38}\) \(+(-3.57936 + 6.61410i) q^{39}\) \(+(-2.11563 - 0.723957i) q^{40}\) \(+(-6.34331 - 2.06107i) q^{41}\) \(+(0.688045 - 0.899243i) q^{42}\) \(+(-5.08751 + 5.08751i) q^{43}\) \(+(2.32663 + 1.69040i) q^{44}\) \(+(4.42456 + 5.04215i) q^{45}\) \(+(0.564767 - 0.410327i) q^{46}\) \(+(0.474965 - 2.99881i) q^{47}\) \(+(-1.66004 + 0.494220i) q^{48}\) \(-6.57265i q^{49}\) \(+(0.628281 + 4.96037i) q^{50}\) \(+(-6.95800 - 7.31198i) q^{51}\) \(+(-1.97121 + 3.86872i) q^{52}\) \(+(-2.23241 - 0.353579i) q^{53}\) \(+(5.05756 + 1.19210i) q^{54}\) \(+(1.10458 - 6.33507i) q^{55}\) \(+(0.384246 - 0.528869i) q^{56}\) \(+(12.6170 + 0.312969i) q^{57}\) \(+(3.17710 - 0.503203i) q^{58}\) \(+(2.66341 - 8.19714i) q^{59}\) \(+(2.62592 + 2.84685i) q^{60}\) \(+(2.77903 + 8.55298i) q^{61}\) \(+(2.70861 + 5.31594i) q^{62}\) \(+(-1.78940 + 0.802614i) q^{63}\) \(+(-0.951057 + 0.309017i) q^{64}\) \(+(9.70777 + 0.150921i) q^{65}\) \(+(-2.15064 - 4.49296i) q^{66}\) \(+(-2.22497 - 14.0479i) q^{67}\) \(+(-4.12066 - 4.12066i) q^{68}\) \(+(-1.19856 + 0.159477i) q^{69}\) \(+(-1.44003 - 0.251084i) q^{70}\) \(+(7.15246 + 9.84451i) q^{71}\) \(+(2.93615 + 0.615636i) q^{72}\) \(+(0.498794 + 0.254148i) q^{73}\) \(+2.17706 q^{74}\) \(+(3.13209 - 8.07404i) q^{75}\) \(+7.28665 q^{76}\) \(+(1.67510 + 0.853507i) q^{77}\) \(+(6.19197 - 4.26821i) q^{78}\) \(+(6.00067 + 8.25922i) q^{79}\) \(+(1.55637 + 1.60553i) q^{80}\) \(+(-6.72143 - 5.98518i) q^{81}\) \(+(4.71623 + 4.71623i) q^{82}\) \(+(0.742236 + 4.68629i) q^{83}\) \(+(-1.02130 + 0.488866i) q^{84}\) \(+(-4.21885 + 12.3288i) q^{85}\) \(+(6.84269 - 2.22332i) q^{86}\) \(+(-5.25448 - 1.85256i) q^{87}\) \(+(-1.30562 - 2.56242i) q^{88}\) \(+(1.78693 + 5.49959i) q^{89}\) \(+(-1.65322 - 6.50130i) q^{90}\) \(+(-0.877122 + 2.69950i) q^{91}\) \(+(-0.689496 + 0.109205i) q^{92}\) \(+(0.256256 - 10.3306i) q^{93}\) \(+(-1.78463 + 2.45633i) q^{94}\) \(+(-7.17051 - 14.6308i) q^{95}\) \(+(1.70348 + 0.313291i) q^{96}\) \(+(5.26300 + 0.833578i) q^{97}\) \(+(-2.98392 + 5.85628i) q^{98}\) \(+(-0.427760 + 8.61700i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut -\mathstrut 4q^{10} \) \(\mathstrut -\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 8q^{15} \) \(\mathstrut +\mathstrut 20q^{16} \) \(\mathstrut -\mathstrut 8q^{18} \) \(\mathstrut -\mathstrut 40q^{19} \) \(\mathstrut -\mathstrut 36q^{22} \) \(\mathstrut -\mathstrut 104q^{25} \) \(\mathstrut +\mathstrut 4q^{27} \) \(\mathstrut -\mathstrut 16q^{28} \) \(\mathstrut +\mathstrut 12q^{30} \) \(\mathstrut +\mathstrut 4q^{33} \) \(\mathstrut -\mathstrut 40q^{34} \) \(\mathstrut -\mathstrut 24q^{37} \) \(\mathstrut -\mathstrut 40q^{39} \) \(\mathstrut -\mathstrut 8q^{40} \) \(\mathstrut -\mathstrut 4q^{42} \) \(\mathstrut -\mathstrut 24q^{43} \) \(\mathstrut -\mathstrut 72q^{45} \) \(\mathstrut -\mathstrut 4q^{48} \) \(\mathstrut -\mathstrut 12q^{55} \) \(\mathstrut -\mathstrut 64q^{57} \) \(\mathstrut +\mathstrut 20q^{58} \) \(\mathstrut +\mathstrut 24q^{60} \) \(\mathstrut +\mathstrut 64q^{63} \) \(\mathstrut +\mathstrut 96q^{67} \) \(\mathstrut +\mathstrut 140q^{69} \) \(\mathstrut +\mathstrut 76q^{70} \) \(\mathstrut +\mathstrut 8q^{72} \) \(\mathstrut +\mathstrut 100q^{73} \) \(\mathstrut +\mathstrut 132q^{75} \) \(\mathstrut +\mathstrut 100q^{78} \) \(\mathstrut +\mathstrut 80q^{79} \) \(\mathstrut -\mathstrut 40q^{81} \) \(\mathstrut +\mathstrut 96q^{82} \) \(\mathstrut +\mathstrut 60q^{84} \) \(\mathstrut +\mathstrut 32q^{85} \) \(\mathstrut +\mathstrut 80q^{87} \) \(\mathstrut +\mathstrut 4q^{88} \) \(\mathstrut +\mathstrut 52q^{90} \) \(\mathstrut +\mathstrut 12q^{93} \) \(\mathstrut -\mathstrut 32q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{13}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.891007 0.453990i −0.630037 0.321020i
\(3\) 0.983013 + 1.42607i 0.567543 + 0.823344i
\(4\) 0.587785 + 0.809017i 0.293893 + 0.404508i
\(5\) 1.04600 1.97633i 0.467786 0.883842i
\(6\) −0.228447 1.71692i −0.0932630 0.700929i
\(7\) 0.462249 + 0.462249i 0.174714 + 0.174714i 0.789047 0.614333i \(-0.210575\pi\)
−0.614333 + 0.789047i \(0.710575\pi\)
\(8\) −0.156434 0.987688i −0.0553079 0.349201i
\(9\) −1.06737 + 2.80370i −0.355791 + 0.934566i
\(10\) −1.82923 + 1.28605i −0.578453 + 0.406684i
\(11\) 2.73512 0.888693i 0.824669 0.267951i 0.133871 0.990999i \(-0.457259\pi\)
0.690798 + 0.723048i \(0.257259\pi\)
\(12\) −0.575917 + 1.63350i −0.166253 + 0.471551i
\(13\) 1.97121 + 3.86872i 0.546716 + 1.07299i 0.984741 + 0.174028i \(0.0556783\pi\)
−0.438025 + 0.898963i \(0.644322\pi\)
\(14\) −0.202010 0.621723i −0.0539895 0.166163i
\(15\) 3.84663 0.451083i 0.993194 0.116469i
\(16\) −0.309017 + 0.951057i −0.0772542 + 0.237764i
\(17\) −5.75574 + 0.911620i −1.39597 + 0.221100i −0.808668 0.588266i \(-0.799811\pi\)
−0.587305 + 0.809366i \(0.699811\pi\)
\(18\) 2.22389 2.01354i 0.524175 0.474595i
\(19\) 4.28299 5.89503i 0.982585 1.35241i 0.0471595 0.998887i \(-0.484983\pi\)
0.935425 0.353525i \(-0.115017\pi\)
\(20\) 2.21371 0.315425i 0.495000 0.0705312i
\(21\) −0.204804 + 1.11360i −0.0446920 + 0.243007i
\(22\) −2.84047 0.449885i −0.605589 0.0959159i
\(23\) −0.316926 + 0.622003i −0.0660837 + 0.129697i −0.921685 0.387938i \(-0.873187\pi\)
0.855602 + 0.517635i \(0.173187\pi\)
\(24\) 1.25474 1.19400i 0.256123 0.243724i
\(25\) −2.81176 4.13449i −0.562353 0.826898i
\(26\) 4.34197i 0.851530i
\(27\) −5.04752 + 1.23392i −0.971395 + 0.237468i
\(28\) −0.102264 + 0.645670i −0.0193261 + 0.122020i
\(29\) −2.60237 + 1.89073i −0.483247 + 0.351100i −0.802582 0.596542i \(-0.796541\pi\)
0.319334 + 0.947642i \(0.396541\pi\)
\(30\) −3.63216 1.34441i −0.663138 0.245455i
\(31\) −4.82678 3.50686i −0.866915 0.629850i 0.0628427 0.998023i \(-0.479983\pi\)
−0.929757 + 0.368173i \(0.879983\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 3.95600 + 3.02688i 0.688651 + 0.526912i
\(34\) 5.54227 + 1.80079i 0.950491 + 0.308833i
\(35\) 1.39707 0.430043i 0.236148 0.0726906i
\(36\) −2.89562 + 0.784450i −0.482604 + 0.130742i
\(37\) −1.93977 + 0.988365i −0.318897 + 0.162486i −0.606110 0.795380i \(-0.707271\pi\)
0.287213 + 0.957867i \(0.407271\pi\)
\(38\) −6.49246 + 3.30807i −1.05322 + 0.536640i
\(39\) −3.57936 + 6.61410i −0.573156 + 1.05910i
\(40\) −2.11563 0.723957i −0.334510 0.114468i
\(41\) −6.34331 2.06107i −0.990659 0.321884i −0.231532 0.972827i \(-0.574374\pi\)
−0.759127 + 0.650943i \(0.774374\pi\)
\(42\) 0.688045 0.899243i 0.106168 0.138756i
\(43\) −5.08751 + 5.08751i −0.775838 + 0.775838i −0.979120 0.203282i \(-0.934839\pi\)
0.203282 + 0.979120i \(0.434839\pi\)
\(44\) 2.32663 + 1.69040i 0.350753 + 0.254837i
\(45\) 4.42456 + 5.04215i 0.659574 + 0.751639i
\(46\) 0.564767 0.410327i 0.0832703 0.0604994i
\(47\) 0.474965 2.99881i 0.0692808 0.437422i −0.928528 0.371262i \(-0.878925\pi\)
0.997809 0.0661599i \(-0.0210747\pi\)
\(48\) −1.66004 + 0.494220i −0.239607 + 0.0713345i
\(49\) 6.57265i 0.938950i
\(50\) 0.628281 + 4.96037i 0.0888524 + 0.701502i
\(51\) −6.95800 7.31198i −0.974315 1.02388i
\(52\) −1.97121 + 3.86872i −0.273358 + 0.536495i
\(53\) −2.23241 0.353579i −0.306645 0.0485679i 0.00121543 0.999999i \(-0.499613\pi\)
−0.307861 + 0.951431i \(0.599613\pi\)
\(54\) 5.05756 + 1.19210i 0.688247 + 0.162224i
\(55\) 1.10458 6.33507i 0.148942 0.854220i
\(56\) 0.384246 0.528869i 0.0513470 0.0706731i
\(57\) 12.6170 + 0.312969i 1.67116 + 0.0414538i
\(58\) 3.17710 0.503203i 0.417174 0.0660738i
\(59\) 2.66341 8.19714i 0.346747 1.06718i −0.613895 0.789388i \(-0.710398\pi\)
0.960642 0.277790i \(-0.0896018\pi\)
\(60\) 2.62592 + 2.84685i 0.339005 + 0.367526i
\(61\) 2.77903 + 8.55298i 0.355818 + 1.09510i 0.955533 + 0.294883i \(0.0952806\pi\)
−0.599715 + 0.800214i \(0.704719\pi\)
\(62\) 2.70861 + 5.31594i 0.343994 + 0.675126i
\(63\) −1.78940 + 0.802614i −0.225443 + 0.101120i
\(64\) −0.951057 + 0.309017i −0.118882 + 0.0386271i
\(65\) 9.70777 + 0.150921i 1.20410 + 0.0187195i
\(66\) −2.15064 4.49296i −0.264726 0.553045i
\(67\) −2.22497 14.0479i −0.271823 1.71622i −0.624964 0.780654i \(-0.714886\pi\)
0.353141 0.935570i \(-0.385114\pi\)
\(68\) −4.12066 4.12066i −0.499703 0.499703i
\(69\) −1.19856 + 0.159477i −0.144290 + 0.0191987i
\(70\) −1.44003 0.251084i −0.172117 0.0300103i
\(71\) 7.15246 + 9.84451i 0.848840 + 1.16833i 0.984117 + 0.177521i \(0.0568077\pi\)
−0.135277 + 0.990808i \(0.543192\pi\)
\(72\) 2.93615 + 0.615636i 0.346029 + 0.0725534i
\(73\) 0.498794 + 0.254148i 0.0583794 + 0.0297458i 0.482937 0.875655i \(-0.339570\pi\)
−0.424557 + 0.905401i \(0.639570\pi\)
\(74\) 2.17706 0.253078
\(75\) 3.13209 8.07404i 0.361662 0.932309i
\(76\) 7.28665 0.835837
\(77\) 1.67510 + 0.853507i 0.190896 + 0.0972661i
\(78\) 6.19197 4.26821i 0.701102 0.483280i
\(79\) 6.00067 + 8.25922i 0.675128 + 0.929234i 0.999863 0.0165708i \(-0.00527490\pi\)
−0.324734 + 0.945805i \(0.605275\pi\)
\(80\) 1.55637 + 1.60553i 0.174007 + 0.179503i
\(81\) −6.72143 5.98518i −0.746826 0.665019i
\(82\) 4.71623 + 4.71623i 0.520820 + 0.520820i
\(83\) 0.742236 + 4.68629i 0.0814709 + 0.514387i 0.994349 + 0.106156i \(0.0338543\pi\)
−0.912879 + 0.408231i \(0.866146\pi\)
\(84\) −1.02130 + 0.488866i −0.111433 + 0.0533396i
\(85\) −4.21885 + 12.3288i −0.457599 + 1.33725i
\(86\) 6.84269 2.22332i 0.737866 0.239747i
\(87\) −5.25448 1.85256i −0.563340 0.198615i
\(88\) −1.30562 2.56242i −0.139179 0.273155i
\(89\) 1.78693 + 5.49959i 0.189414 + 0.582956i 0.999996 0.00266864i \(-0.000849456\pi\)
−0.810583 + 0.585624i \(0.800849\pi\)
\(90\) −1.65322 6.50130i −0.174265 0.685297i
\(91\) −0.877122 + 2.69950i −0.0919473 + 0.282985i
\(92\) −0.689496 + 0.109205i −0.0718849 + 0.0113854i
\(93\) 0.256256 10.3306i 0.0265725 1.07124i
\(94\) −1.78463 + 2.45633i −0.184070 + 0.253351i
\(95\) −7.17051 14.6308i −0.735679 1.50109i
\(96\) 1.70348 + 0.313291i 0.173861 + 0.0319752i
\(97\) 5.26300 + 0.833578i 0.534377 + 0.0846370i 0.417790 0.908544i \(-0.362805\pi\)
0.116587 + 0.993181i \(0.462805\pi\)
\(98\) −2.98392 + 5.85628i −0.301422 + 0.591573i
\(99\) −0.427760 + 8.61700i −0.0429915 + 0.866042i
\(100\) 1.69216 4.70495i 0.169216 0.470495i
\(101\) 12.5590i 1.24967i 0.780758 + 0.624833i \(0.214833\pi\)
−0.780758 + 0.624833i \(0.785167\pi\)
\(102\) 2.88006 + 9.67389i 0.285168 + 0.957858i
\(103\) −0.958193 + 6.04979i −0.0944135 + 0.596104i 0.894437 + 0.447194i \(0.147576\pi\)
−0.988851 + 0.148910i \(0.952424\pi\)
\(104\) 3.51273 2.55215i 0.344451 0.250258i
\(105\) 1.98661 + 1.56958i 0.193873 + 0.153176i
\(106\) 1.82857 + 1.32854i 0.177607 + 0.129039i
\(107\) −0.411529 + 0.411529i −0.0397840 + 0.0397840i −0.726719 0.686935i \(-0.758956\pi\)
0.686935 + 0.726719i \(0.258956\pi\)
\(108\) −3.96512 3.35825i −0.381544 0.323148i
\(109\) −11.0499 3.59033i −1.05839 0.343891i −0.272433 0.962175i \(-0.587828\pi\)
−0.785955 + 0.618284i \(0.787828\pi\)
\(110\) −3.86025 + 5.14312i −0.368061 + 0.490377i
\(111\) −3.31630 1.79469i −0.314770 0.170344i
\(112\) −0.582467 + 0.296782i −0.0550380 + 0.0280433i
\(113\) 12.6233 6.43189i 1.18750 0.605061i 0.255249 0.966875i \(-0.417842\pi\)
0.932250 + 0.361814i \(0.117842\pi\)
\(114\) −11.0997 6.00684i −1.03958 0.562592i
\(115\) 0.897778 + 1.27697i 0.0837182 + 0.119078i
\(116\) −3.05927 0.994016i −0.284046 0.0922921i
\(117\) −12.9507 + 1.39732i −1.19730 + 0.129182i
\(118\) −6.09455 + 6.09455i −0.561048 + 0.561048i
\(119\) −3.08198 2.23919i −0.282525 0.205266i
\(120\) −1.04727 3.72870i −0.0956026 0.340382i
\(121\) −2.20810 + 1.60428i −0.200736 + 0.145844i
\(122\) 1.40684 8.88241i 0.127369 0.804176i
\(123\) −3.29632 11.0721i −0.297219 0.998336i
\(124\) 5.96622i 0.535783i
\(125\) −11.1122 + 1.23229i −0.993907 + 0.110220i
\(126\) 1.95874 + 0.0972348i 0.174499 + 0.00866236i
\(127\) 6.58036 12.9147i 0.583912 1.14599i −0.390369 0.920658i \(-0.627653\pi\)
0.974282 0.225334i \(-0.0723474\pi\)
\(128\) 0.987688 + 0.156434i 0.0873001 + 0.0138270i
\(129\) −12.2563 2.25408i −1.07910 0.198460i
\(130\) −8.58117 4.54171i −0.752618 0.398334i
\(131\) −3.23088 + 4.44693i −0.282283 + 0.388530i −0.926489 0.376323i \(-0.877188\pi\)
0.644205 + 0.764853i \(0.277188\pi\)
\(132\) −0.123522 + 4.97962i −0.0107512 + 0.433421i
\(133\) 4.70477 0.745163i 0.407956 0.0646138i
\(134\) −4.39515 + 13.5269i −0.379683 + 1.16854i
\(135\) −2.84108 + 11.2662i −0.244521 + 0.969644i
\(136\) 1.80079 + 5.54227i 0.154417 + 0.475246i
\(137\) 9.55034 + 18.7436i 0.815941 + 1.60137i 0.798858 + 0.601520i \(0.205438\pi\)
0.0170834 + 0.999854i \(0.494562\pi\)
\(138\) 1.14033 + 0.402042i 0.0970713 + 0.0342241i
\(139\) 11.0917 3.60392i 0.940788 0.305681i 0.201821 0.979422i \(-0.435314\pi\)
0.738967 + 0.673742i \(0.235314\pi\)
\(140\) 1.16909 + 0.877479i 0.0988061 + 0.0741605i
\(141\) 4.74342 2.27053i 0.399468 0.191214i
\(142\) −1.90357 12.0187i −0.159744 1.00858i
\(143\) 8.82961 + 8.82961i 0.738369 + 0.738369i
\(144\) −2.33664 1.88152i −0.194720 0.156793i
\(145\) 1.01463 + 7.12084i 0.0842603 + 0.591354i
\(146\) −0.329048 0.452896i −0.0272322 0.0374819i
\(147\) 9.37309 6.46100i 0.773079 0.532894i
\(148\) −1.93977 0.988365i −0.159449 0.0812431i
\(149\) −10.0289 −0.821602 −0.410801 0.911725i \(-0.634751\pi\)
−0.410801 + 0.911725i \(0.634751\pi\)
\(150\) −6.45624 + 5.77208i −0.527150 + 0.471288i
\(151\) 17.9175 1.45811 0.729054 0.684456i \(-0.239960\pi\)
0.729054 + 0.684456i \(0.239960\pi\)
\(152\) −6.49246 3.30807i −0.526608 0.268320i
\(153\) 3.58761 17.1104i 0.290041 1.38329i
\(154\) −1.10504 1.52096i −0.0890469 0.122562i
\(155\) −11.9795 + 5.87113i −0.962218 + 0.471580i
\(156\) −7.45481 + 0.991909i −0.596863 + 0.0794163i
\(157\) −6.42991 6.42991i −0.513163 0.513163i 0.402331 0.915494i \(-0.368200\pi\)
−0.915494 + 0.402331i \(0.868200\pi\)
\(158\) −1.59703 10.0833i −0.127053 0.802181i
\(159\) −1.69026 3.53116i −0.134046 0.280039i
\(160\) −0.657842 2.13711i −0.0520070 0.168953i
\(161\) −0.434019 + 0.141021i −0.0342055 + 0.0111140i
\(162\) 3.27163 + 8.38430i 0.257043 + 0.658733i
\(163\) −4.21139 8.26532i −0.329862 0.647390i 0.665198 0.746667i \(-0.268347\pi\)
−0.995060 + 0.0992767i \(0.968347\pi\)
\(164\) −2.06107 6.34331i −0.160942 0.495329i
\(165\) 10.1201 4.65223i 0.787848 0.362176i
\(166\) 1.46619 4.51248i 0.113799 0.350237i
\(167\) −5.01819 + 0.794803i −0.388319 + 0.0615037i −0.347542 0.937665i \(-0.612983\pi\)
−0.0407774 + 0.999168i \(0.512983\pi\)
\(168\) 1.13193 + 0.0280779i 0.0873299 + 0.00216626i
\(169\) −3.44013 + 4.73493i −0.264625 + 0.364226i
\(170\) 9.35618 9.06972i 0.717586 0.695616i
\(171\) 11.9563 + 18.3004i 0.914323 + 1.39947i
\(172\) −7.10625 1.12552i −0.541846 0.0858200i
\(173\) 8.65954 16.9953i 0.658373 1.29213i −0.284404 0.958705i \(-0.591796\pi\)
0.942777 0.333425i \(-0.108204\pi\)
\(174\) 3.84073 + 4.03612i 0.291165 + 0.305978i
\(175\) 0.611428 3.21090i 0.0462196 0.242721i
\(176\) 2.87587i 0.216777i
\(177\) 14.3079 4.25967i 1.07545 0.320177i
\(178\) 0.904600 5.71142i 0.0678026 0.428089i
\(179\) 3.24712 2.35917i 0.242701 0.176332i −0.459785 0.888030i \(-0.652073\pi\)
0.702486 + 0.711698i \(0.252073\pi\)
\(180\) −1.47849 + 6.54324i −0.110200 + 0.487705i
\(181\) 3.30770 + 2.40319i 0.245860 + 0.178628i 0.703890 0.710309i \(-0.251445\pi\)
−0.458030 + 0.888937i \(0.651445\pi\)
\(182\) 2.00707 2.00707i 0.148774 0.148774i
\(183\) −9.46535 + 12.3708i −0.699699 + 0.914475i
\(184\) 0.663923 + 0.215722i 0.0489451 + 0.0159032i
\(185\) −0.0756718 + 4.86747i −0.00556350 + 0.357863i
\(186\) −4.91833 + 9.08832i −0.360629 + 0.666388i
\(187\) −14.9325 + 7.60848i −1.09197 + 0.556387i
\(188\) 2.70527 1.37840i 0.197302 0.100530i
\(189\) −2.90359 1.76283i −0.211205 0.128227i
\(190\) −0.253275 + 16.2915i −0.0183745 + 1.18191i
\(191\) −11.5725 3.76012i −0.837354 0.272073i −0.141214 0.989979i \(-0.545101\pi\)
−0.696140 + 0.717906i \(0.745101\pi\)
\(192\) −1.37558 1.05251i −0.0992741 0.0759583i
\(193\) −9.01719 + 9.01719i −0.649071 + 0.649071i −0.952769 0.303697i \(-0.901779\pi\)
0.303697 + 0.952769i \(0.401779\pi\)
\(194\) −4.31093 3.13208i −0.309507 0.224870i
\(195\) 9.32763 + 13.9923i 0.667966 + 1.00201i
\(196\) 5.31739 3.86331i 0.379813 0.275951i
\(197\) 0.0641446 0.404993i 0.00457012 0.0288546i −0.985298 0.170845i \(-0.945350\pi\)
0.989868 + 0.141990i \(0.0453502\pi\)
\(198\) 4.29318 7.48361i 0.305103 0.531837i
\(199\) 10.9949i 0.779406i 0.920941 + 0.389703i \(0.127422\pi\)
−0.920941 + 0.389703i \(0.872578\pi\)
\(200\) −3.64373 + 3.42392i −0.257651 + 0.242108i
\(201\) 17.8462 16.9822i 1.25877 1.19783i
\(202\) 5.70166 11.1901i 0.401168 0.787336i
\(203\) −2.07693 0.328953i −0.145772 0.0230880i
\(204\) 1.82570 9.92702i 0.127825 0.695030i
\(205\) −10.7085 + 10.3806i −0.747911 + 0.725012i
\(206\) 3.60030 4.95539i 0.250845 0.345259i
\(207\) −1.40563 1.55247i −0.0976980 0.107904i
\(208\) −4.28851 + 0.679234i −0.297355 + 0.0470964i
\(209\) 6.47560 19.9298i 0.447927 1.37858i
\(210\) −1.05751 2.30041i −0.0729748 0.158744i
\(211\) 6.64735 + 20.4585i 0.457623 + 1.40842i 0.868028 + 0.496515i \(0.165387\pi\)
−0.410406 + 0.911903i \(0.634613\pi\)
\(212\) −1.02613 2.01389i −0.0704747 0.138314i
\(213\) −7.00804 + 19.8772i −0.480183 + 1.36196i
\(214\) 0.553505 0.179845i 0.0378368 0.0122939i
\(215\) 4.73306 + 15.3761i 0.322792 + 1.04864i
\(216\) 2.00833 + 4.79235i 0.136650 + 0.326078i
\(217\) −0.610130 3.85221i −0.0414184 0.261505i
\(218\) 8.21555 + 8.21555i 0.556427 + 0.556427i
\(219\) 0.127887 + 0.961148i 0.00864179 + 0.0649484i
\(220\) 5.77444 2.83003i 0.389312 0.190801i
\(221\) −14.8726 20.4704i −1.00044 1.37699i
\(222\) 2.14008 + 3.10465i 0.143633 + 0.208370i
\(223\) 5.65554 + 2.88164i 0.378723 + 0.192969i 0.632981 0.774167i \(-0.281831\pi\)
−0.254258 + 0.967137i \(0.581831\pi\)
\(224\) 0.653718 0.0436784
\(225\) 14.5930 3.47030i 0.972870 0.231353i
\(226\) −14.1675 −0.942405
\(227\) 12.5844 + 6.41208i 0.835257 + 0.425584i 0.818660 0.574278i \(-0.194717\pi\)
0.0165960 + 0.999862i \(0.494717\pi\)
\(228\) 7.16287 + 10.3913i 0.474373 + 0.688181i
\(229\) −8.94288 12.3088i −0.590962 0.813389i 0.403882 0.914811i \(-0.367661\pi\)
−0.994844 + 0.101422i \(0.967661\pi\)
\(230\) −0.220195 1.54537i −0.0145192 0.101899i
\(231\) 0.429482 + 3.22783i 0.0282579 + 0.212375i
\(232\) 2.27455 + 2.27455i 0.149332 + 0.149332i
\(233\) −1.18798 7.50060i −0.0778271 0.491381i −0.995556 0.0941731i \(-0.969979\pi\)
0.917729 0.397208i \(-0.130021\pi\)
\(234\) 12.1736 + 4.63450i 0.795811 + 0.302967i
\(235\) −5.42983 4.07545i −0.354203 0.265853i
\(236\) 8.19714 2.66341i 0.533589 0.173373i
\(237\) −5.87951 + 16.6763i −0.381915 + 1.08324i
\(238\) 1.72949 + 3.39432i 0.112106 + 0.220021i
\(239\) −3.85885 11.8763i −0.249608 0.768215i −0.994844 0.101414i \(-0.967663\pi\)
0.745236 0.666801i \(-0.232337\pi\)
\(240\) −0.759667 + 3.79775i −0.0490363 + 0.245144i
\(241\) 7.01360 21.5856i 0.451786 1.39045i −0.423082 0.906092i \(-0.639052\pi\)
0.874868 0.484362i \(-0.160948\pi\)
\(242\) 2.69576 0.426966i 0.173290 0.0274464i
\(243\) 1.92805 15.4688i 0.123684 0.992322i
\(244\) −5.28603 + 7.27560i −0.338403 + 0.465772i
\(245\) −12.9897 6.87500i −0.829884 0.439228i
\(246\) −2.08958 + 11.3618i −0.133226 + 0.724402i
\(247\) 31.2489 + 4.94934i 1.98832 + 0.314919i
\(248\) −2.70861 + 5.31594i −0.171997 + 0.337563i
\(249\) −5.95337 + 5.66517i −0.377279 + 0.359015i
\(250\) 10.4605 + 3.94686i 0.661581 + 0.249621i
\(251\) 8.40399i 0.530455i −0.964186 0.265228i \(-0.914553\pi\)
0.964186 0.265228i \(-0.0854471\pi\)
\(252\) −1.70111 0.975888i −0.107160 0.0614751i
\(253\) −0.314061 + 1.98290i −0.0197448 + 0.124664i
\(254\) −11.7263 + 8.51964i −0.735773 + 0.534570i
\(255\) −21.7290 + 6.10298i −1.36072 + 0.382183i
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) 21.2293 21.2293i 1.32425 1.32425i 0.413942 0.910303i \(-0.364152\pi\)
0.910303 0.413942i \(-0.135848\pi\)
\(258\) 9.89707 + 7.57262i 0.616165 + 0.471451i
\(259\) −1.35353 0.439788i −0.0841042 0.0273271i
\(260\) 5.58398 + 7.94246i 0.346304 + 0.492570i
\(261\) −2.52334 9.31436i −0.156191 0.576545i
\(262\) 4.89760 2.49545i 0.302575 0.154169i
\(263\) 3.75527 1.91341i 0.231560 0.117986i −0.334361 0.942445i \(-0.608521\pi\)
0.565921 + 0.824459i \(0.308521\pi\)
\(264\) 2.37076 4.38080i 0.145910 0.269620i
\(265\) −3.03390 + 4.04214i −0.186371 + 0.248307i
\(266\) −4.53028 1.47198i −0.277769 0.0902527i
\(267\) −6.08625 + 7.95446i −0.372473 + 0.486805i
\(268\) 10.0572 10.0572i 0.614340 0.614340i
\(269\) 16.4085 + 11.9215i 1.00044 + 0.726865i 0.962183 0.272402i \(-0.0878182\pi\)
0.0382610 + 0.999268i \(0.487818\pi\)
\(270\) 7.64619 8.74847i 0.465332 0.532415i
\(271\) −5.48031 + 3.98168i −0.332905 + 0.241870i −0.741662 0.670773i \(-0.765962\pi\)
0.408757 + 0.912643i \(0.365962\pi\)
\(272\) 0.911620 5.75574i 0.0552751 0.348993i
\(273\) −4.71191 + 1.40281i −0.285178 + 0.0849017i
\(274\) 21.0364i 1.27086i
\(275\) −11.3648 8.80951i −0.685323 0.531234i
\(276\) −0.833518 0.875921i −0.0501719 0.0527243i
\(277\) −11.1150 + 21.8145i −0.667837 + 1.31070i 0.269742 + 0.962933i \(0.413062\pi\)
−0.937579 + 0.347772i \(0.886938\pi\)
\(278\) −11.5189 1.82442i −0.690861 0.109422i
\(279\) 14.9841 9.78970i 0.897077 0.586094i
\(280\) −0.643299 1.31260i −0.0384444 0.0784426i
\(281\) −11.8968 + 16.3745i −0.709702 + 0.976820i 0.290102 + 0.956996i \(0.406311\pi\)
−0.999803 + 0.0198246i \(0.993689\pi\)
\(282\) −5.25722 0.130408i −0.313063 0.00776566i
\(283\) −8.20158 + 1.29900i −0.487533 + 0.0772177i −0.395362 0.918525i \(-0.629381\pi\)
−0.0921715 + 0.995743i \(0.529381\pi\)
\(284\) −3.76027 + 11.5729i −0.223131 + 0.686726i
\(285\) 13.8159 24.6079i 0.818383 1.45765i
\(286\) −3.85868 11.8758i −0.228168 0.702230i
\(287\) −1.97946 3.88491i −0.116844 0.229319i
\(288\) 1.22777 + 2.73726i 0.0723469 + 0.161295i
\(289\) 16.1295 5.24081i 0.948797 0.308283i
\(290\) 2.32875 6.80535i 0.136749 0.399624i
\(291\) 3.98486 + 8.32485i 0.233596 + 0.488011i
\(292\) 0.0875735 + 0.552918i 0.00512485 + 0.0323571i
\(293\) −1.20804 1.20804i −0.0705747 0.0705747i 0.670938 0.741513i \(-0.265891\pi\)
−0.741513 + 0.670938i \(0.765891\pi\)
\(294\) −11.2847 + 1.50150i −0.658138 + 0.0875694i
\(295\) −13.4143 13.8380i −0.781013 0.805680i
\(296\) 1.27964 + 1.76128i 0.0743778 + 0.102372i
\(297\) −12.7090 + 7.86061i −0.737450 + 0.456119i
\(298\) 8.93584 + 4.55304i 0.517639 + 0.263750i
\(299\) −3.03109 −0.175292
\(300\) 8.37303 2.21189i 0.483417 0.127703i
\(301\) −4.70339 −0.271099
\(302\) −15.9646 8.13439i −0.918661 0.468081i
\(303\) −17.9100 + 12.3456i −1.02891 + 0.709239i
\(304\) 4.28299 + 5.89503i 0.245646 + 0.338103i
\(305\) 19.8104 + 3.45414i 1.13434 + 0.197784i
\(306\) −10.9645 + 13.6167i −0.626801 + 0.778417i
\(307\) 4.52656 + 4.52656i 0.258344 + 0.258344i 0.824380 0.566036i \(-0.191524\pi\)
−0.566036 + 0.824380i \(0.691524\pi\)
\(308\) 0.294098 + 1.85686i 0.0167578 + 0.105805i
\(309\) −9.56936 + 4.58057i −0.544382 + 0.260579i
\(310\) 13.3393 + 0.207378i 0.757620 + 0.0117783i
\(311\) 32.9364 10.7017i 1.86765 0.606838i 0.875274 0.483628i \(-0.160681\pi\)
0.992381 0.123210i \(-0.0393188\pi\)
\(312\) 7.09260 + 2.50062i 0.401540 + 0.141569i
\(313\) −11.8701 23.2965i −0.670940 1.31679i −0.935808 0.352509i \(-0.885329\pi\)
0.264869 0.964285i \(-0.414671\pi\)
\(314\) 2.80998 + 8.64821i 0.158576 + 0.488047i
\(315\) −0.285481 + 4.37597i −0.0160850 + 0.246558i
\(316\) −3.15474 + 9.70929i −0.177468 + 0.546190i
\(317\) −13.4990 + 2.13804i −0.758181 + 0.120084i −0.523544 0.851999i \(-0.675390\pi\)
−0.234638 + 0.972083i \(0.575390\pi\)
\(318\) −0.0970796 + 3.91365i −0.00544396 + 0.219466i
\(319\) −5.43750 + 7.48407i −0.304441 + 0.419028i
\(320\) −0.384087 + 2.20283i −0.0214711 + 0.123142i
\(321\) −0.991408 0.182332i −0.0553350 0.0101768i
\(322\) 0.450736 + 0.0713896i 0.0251185 + 0.00397838i
\(323\) −19.2777 + 37.8347i −1.07264 + 2.10518i
\(324\) 0.891349 8.95575i 0.0495194 0.497542i
\(325\) 10.4526 19.0279i 0.579806 1.05548i
\(326\) 9.27639i 0.513772i
\(327\) −5.74211 19.2873i −0.317540 1.06659i
\(328\) −1.04338 + 6.58764i −0.0576110 + 0.363741i
\(329\) 1.60575 1.16664i 0.0885278 0.0643192i
\(330\) −11.1291 0.449255i −0.612639 0.0247307i
\(331\) −8.55071 6.21245i −0.469989 0.341467i 0.327448 0.944869i \(-0.393811\pi\)
−0.797437 + 0.603402i \(0.793811\pi\)
\(332\) −3.35501 + 3.35501i −0.184130 + 0.184130i
\(333\) −0.700614 6.49349i −0.0383934 0.355841i
\(334\) 4.83207 + 1.57004i 0.264399 + 0.0859085i
\(335\) −30.0906 10.2968i −1.64403 0.562577i
\(336\) −0.995806 0.538901i −0.0543257 0.0293995i
\(337\) −28.0951 + 14.3152i −1.53044 + 0.779796i −0.997784 0.0665380i \(-0.978805\pi\)
−0.532652 + 0.846334i \(0.678805\pi\)
\(338\) 5.21479 2.65707i 0.283647 0.144526i
\(339\) 21.5812 + 11.6791i 1.17213 + 0.634323i
\(340\) −12.4540 + 3.83357i −0.675412 + 0.207904i
\(341\) −16.3183 5.30214i −0.883686 0.287127i
\(342\) −2.34496 21.7338i −0.126801 1.17523i
\(343\) 6.27394 6.27394i 0.338761 0.338761i
\(344\) 5.82074 + 4.22901i 0.313833 + 0.228013i
\(345\) −0.938522 + 2.53557i −0.0505283 + 0.136511i
\(346\) −15.4314 + 11.2116i −0.829598 + 0.602738i
\(347\) −2.04407 + 12.9057i −0.109731 + 0.692816i 0.870083 + 0.492905i \(0.164065\pi\)
−0.979814 + 0.199911i \(0.935935\pi\)
\(348\) −1.58976 5.33987i −0.0852200 0.286247i
\(349\) 30.4326i 1.62902i 0.580151 + 0.814509i \(0.302993\pi\)
−0.580151 + 0.814509i \(0.697007\pi\)
\(350\) −2.00250 + 2.58335i −0.107038 + 0.138086i
\(351\) −14.7234 17.0951i −0.785878 0.912471i
\(352\) 1.30562 2.56242i 0.0695897 0.136577i
\(353\) −2.87776 0.455793i −0.153168 0.0242594i 0.0793796 0.996844i \(-0.474706\pi\)
−0.232547 + 0.972585i \(0.574706\pi\)
\(354\) −14.6823 2.70025i −0.780355 0.143517i
\(355\) 26.9375 3.83825i 1.42969 0.203713i
\(356\) −3.39893 + 4.67823i −0.180143 + 0.247946i
\(357\) 0.163624 6.59628i 0.00865988 0.349112i
\(358\) −3.96424 + 0.627874i −0.209517 + 0.0331842i
\(359\) −2.44510 + 7.52523i −0.129047 + 0.397167i −0.994617 0.103622i \(-0.966957\pi\)
0.865569 + 0.500789i \(0.166957\pi\)
\(360\) 4.28792 5.15885i 0.225993 0.271895i
\(361\) −10.5360 32.4266i −0.554528 1.70666i
\(362\) −1.85616 3.64292i −0.0975577 0.191468i
\(363\) −4.45841 1.57189i −0.234006 0.0825027i
\(364\) −2.69950 + 0.877122i −0.141492 + 0.0459737i
\(365\) 1.02402 0.719943i 0.0535997 0.0376835i
\(366\) 14.0499 6.72527i 0.734401 0.351536i
\(367\) 3.44380 + 21.7433i 0.179765 + 1.13499i 0.898262 + 0.439460i \(0.144830\pi\)
−0.718497 + 0.695530i \(0.755170\pi\)
\(368\) −0.493624 0.493624i −0.0257319 0.0257319i
\(369\) 12.5493 15.5848i 0.653289 0.811312i
\(370\) 2.27721 4.30259i 0.118386 0.223681i
\(371\) −0.868488 1.19537i −0.0450897 0.0620606i
\(372\) 8.50827 5.86487i 0.441133 0.304080i
\(373\) 19.0344 + 9.69853i 0.985566 + 0.502171i 0.871020 0.491247i \(-0.163459\pi\)
0.114545 + 0.993418i \(0.463459\pi\)
\(374\) 16.7591 0.866593
\(375\) −12.6808 14.6355i −0.654833 0.755773i
\(376\) −3.03619 −0.156580
\(377\) −12.4445 6.34081i −0.640926 0.326568i
\(378\) 1.78681 + 2.88890i 0.0919034 + 0.148589i
\(379\) −0.581554 0.800441i −0.0298724 0.0411159i 0.793820 0.608153i \(-0.208089\pi\)
−0.823692 + 0.567038i \(0.808089\pi\)
\(380\) 7.62185 14.4008i 0.390993 0.738747i
\(381\) 24.8859 3.31122i 1.27494 0.169639i
\(382\) 8.60408 + 8.60408i 0.440223 + 0.440223i
\(383\) −1.97847 12.4916i −0.101095 0.638289i −0.985253 0.171102i \(-0.945267\pi\)
0.884158 0.467187i \(-0.154733\pi\)
\(384\) 0.747823 + 1.56229i 0.0381622 + 0.0797254i
\(385\) 3.43897 2.41778i 0.175266 0.123222i
\(386\) 12.1281 3.94066i 0.617304 0.200574i
\(387\) −8.83357 19.6941i −0.449036 1.00111i
\(388\) 2.41914 + 4.74782i 0.122813 + 0.241034i
\(389\) 8.45598 + 26.0248i 0.428735 + 1.31951i 0.899372 + 0.437185i \(0.144024\pi\)
−0.470636 + 0.882327i \(0.655976\pi\)
\(390\) −1.95859 16.7019i −0.0991770 0.845735i
\(391\) 1.25712 3.86900i 0.0635751 0.195664i
\(392\) −6.49173 + 1.02819i −0.327882 + 0.0519314i
\(393\) −9.51764 0.236089i −0.480102 0.0119091i
\(394\) −0.241016 + 0.331731i −0.0121422 + 0.0167123i
\(395\) 22.5996 3.22016i 1.13711 0.162024i
\(396\) −7.22273 + 4.71888i −0.362956 + 0.237133i
\(397\) 3.51235 + 0.556301i 0.176280 + 0.0279199i 0.243950 0.969788i \(-0.421557\pi\)
−0.0676706 + 0.997708i \(0.521557\pi\)
\(398\) 4.99157 9.79650i 0.250205 0.491054i
\(399\) 5.68751 + 5.97685i 0.284732 + 0.299217i
\(400\) 4.80101 1.39652i 0.240051 0.0698259i
\(401\) 16.6499i 0.831458i 0.909489 + 0.415729i \(0.136473\pi\)
−0.909489 + 0.415729i \(0.863527\pi\)
\(402\) −23.6108 + 7.02929i −1.17760 + 0.350589i
\(403\) 4.05246 25.5862i 0.201867 1.27454i
\(404\) −10.1604 + 7.38199i −0.505501 + 0.367268i
\(405\) −18.8593 + 7.02327i −0.937127 + 0.348989i
\(406\) 1.70122 + 1.23601i 0.0844299 + 0.0613419i
\(407\) −4.42716 + 4.42716i −0.219446 + 0.219446i
\(408\) −6.13348 + 8.01618i −0.303653 + 0.396860i
\(409\) −4.09420 1.33029i −0.202445 0.0657784i 0.206039 0.978544i \(-0.433943\pi\)
−0.408484 + 0.912765i \(0.633943\pi\)
\(410\) 14.2540 4.38764i 0.703955 0.216690i
\(411\) −17.3417 + 32.0447i −0.855401 + 1.58065i
\(412\) −5.45760 + 2.78078i −0.268876 + 0.136999i
\(413\) 5.02028 2.55796i 0.247032 0.125869i
\(414\) 0.547617 + 2.02141i 0.0269139 + 0.0993467i
\(415\) 10.0380 + 3.43496i 0.492748 + 0.168616i
\(416\) 4.12946 + 1.34174i 0.202463 + 0.0657843i
\(417\) 16.0428 + 12.2749i 0.785618 + 0.601105i
\(418\) −14.8178 + 14.8178i −0.724761 + 0.724761i
\(419\) 5.84455 + 4.24631i 0.285525 + 0.207446i 0.721324 0.692598i \(-0.243534\pi\)
−0.435799 + 0.900044i \(0.643534\pi\)
\(420\) −0.102121 + 2.52978i −0.00498298 + 0.123441i
\(421\) −11.7630 + 8.54631i −0.573293 + 0.416521i −0.836300 0.548272i \(-0.815286\pi\)
0.263007 + 0.964794i \(0.415286\pi\)
\(422\) 3.36511 21.2464i 0.163811 1.03426i
\(423\) 7.90079 + 4.53251i 0.384150 + 0.220378i
\(424\) 2.26024i 0.109767i
\(425\) 19.9529 + 21.2338i 0.967856 + 1.02999i
\(426\) 15.2683 14.5291i 0.739750 0.703939i
\(427\) −2.66900 + 5.23821i −0.129162 + 0.253495i
\(428\) −0.574824 0.0910432i −0.0277852 0.00440074i
\(429\) −3.91205 + 21.2713i −0.188876 + 1.02699i
\(430\) 2.76344 15.8490i 0.133265 0.764307i
\(431\) 2.43967 3.35792i 0.117515 0.161745i −0.746207 0.665714i \(-0.768127\pi\)
0.863722 + 0.503968i \(0.168127\pi\)
\(432\) 0.386242 5.18178i 0.0185831 0.249308i
\(433\) 28.8682 4.57227i 1.38732 0.219729i 0.582296 0.812977i \(-0.302154\pi\)
0.805020 + 0.593248i \(0.202154\pi\)
\(434\) −1.20524 + 3.70934i −0.0578532 + 0.178054i
\(435\) −9.15745 + 8.44682i −0.439066 + 0.404994i
\(436\) −3.59033 11.0499i −0.171945 0.529194i
\(437\) 2.30933 + 4.53232i 0.110470 + 0.216810i
\(438\) 0.322404 0.914449i 0.0154051 0.0436941i
\(439\) 10.7432 3.49067i 0.512744 0.166601i −0.0412056 0.999151i \(-0.513120\pi\)
0.553950 + 0.832550i \(0.313120\pi\)
\(440\) −6.42987 0.0999616i −0.306532 0.00476548i
\(441\) 18.4277 + 7.01546i 0.877511 + 0.334070i
\(442\) 3.95823 + 24.9913i 0.188274 + 1.18871i
\(443\) 12.3286 + 12.3286i 0.585749 + 0.585749i 0.936477 0.350728i \(-0.114066\pi\)
−0.350728 + 0.936477i \(0.614066\pi\)
\(444\) −0.497343 3.73784i −0.0236028 0.177390i
\(445\) 12.7381 + 2.22102i 0.603846 + 0.105287i
\(446\) −3.73089 5.13513i −0.176663 0.243155i
\(447\) −9.85857 14.3020i −0.466294 0.676461i
\(448\) −0.582467 0.296782i −0.0275190 0.0140216i
\(449\) 11.4060 0.538284 0.269142 0.963101i \(-0.413260\pi\)
0.269142 + 0.963101i \(0.413260\pi\)
\(450\) −14.5780 3.53305i −0.687213 0.166550i
\(451\) −19.1813 −0.903214
\(452\) 12.6233 + 6.43189i 0.593750 + 0.302531i
\(453\) 17.6132 + 25.5517i 0.827538 + 1.20052i
\(454\) −8.30177 11.4264i −0.389621 0.536268i
\(455\) 4.41764 + 4.55717i 0.207102 + 0.213643i
\(456\) −1.66461 12.5106i −0.0779527 0.585862i
\(457\) −4.54539 4.54539i −0.212624 0.212624i 0.592757 0.805381i \(-0.298039\pi\)
−0.805381 + 0.592757i \(0.798039\pi\)
\(458\) 2.38008 + 15.0272i 0.111214 + 0.702176i
\(459\) 27.9273 11.7035i 1.30354 0.546274i
\(460\) −0.505387 + 1.47690i −0.0235638 + 0.0688608i
\(461\) 18.3653 5.96726i 0.855359 0.277923i 0.151670 0.988431i \(-0.451535\pi\)
0.703689 + 0.710508i \(0.251535\pi\)
\(462\) 1.08273 3.07100i 0.0503732 0.142876i
\(463\) 2.03171 + 3.98746i 0.0944216 + 0.185313i 0.933387 0.358873i \(-0.116839\pi\)
−0.838965 + 0.544186i \(0.816839\pi\)
\(464\) −0.994016 3.05927i −0.0461460 0.142023i
\(465\) −20.1487 11.3123i −0.934373 0.524595i
\(466\) −2.34671 + 7.22242i −0.108709 + 0.334572i
\(467\) 1.74215 0.275929i 0.0806170 0.0127685i −0.115996 0.993250i \(-0.537006\pi\)
0.196613 + 0.980481i \(0.437006\pi\)
\(468\) −8.74271 9.65605i −0.404132 0.446351i
\(469\) 5.46513 7.52211i 0.252356 0.347339i
\(470\) 2.98780 + 6.09634i 0.137817 + 0.281203i
\(471\) 2.84884 15.4902i 0.131268 0.713752i
\(472\) −8.51287 1.34831i −0.391837 0.0620609i
\(473\) −9.39370 + 18.4362i −0.431923 + 0.847696i
\(474\) 12.8096 12.1895i 0.588363 0.559881i
\(475\) −36.4157 1.13254i −1.67087 0.0519646i
\(476\) 3.80954i 0.174610i
\(477\) 3.37414 5.88161i 0.154491 0.269300i
\(478\) −1.95347 + 12.3338i −0.0893498 + 0.564133i
\(479\) 13.7743 10.0076i 0.629363 0.457259i −0.226817 0.973937i \(-0.572832\pi\)
0.856179 + 0.516679i \(0.172832\pi\)
\(480\) 2.40101 3.03894i 0.109591 0.138708i
\(481\) −7.64742 5.55617i −0.348692 0.253340i
\(482\) −16.0488 + 16.0488i −0.731005 + 0.731005i
\(483\) −0.627753 0.480317i −0.0285637 0.0218552i
\(484\) −2.59578 0.843419i −0.117990 0.0383372i
\(485\) 7.15253 9.52951i 0.324780 0.432713i
\(486\) −8.74057 + 12.9075i −0.396480 + 0.585494i
\(487\) 25.0891 12.7835i 1.13690 0.579277i 0.218852 0.975758i \(-0.429769\pi\)
0.918043 + 0.396481i \(0.129769\pi\)
\(488\) 8.01294 4.08280i 0.362729 0.184820i
\(489\) 7.64711 14.1307i 0.345814 0.639011i
\(490\) 8.45275 + 12.0229i 0.381856 + 0.543139i
\(491\) 8.69557 + 2.82536i 0.392426 + 0.127507i 0.498582 0.866843i \(-0.333854\pi\)
−0.106156 + 0.994349i \(0.533854\pi\)
\(492\) 7.01997 9.17479i 0.316485 0.413631i
\(493\) 13.2549 13.2549i 0.596972 0.596972i
\(494\) −25.5960 18.5966i −1.15162 0.836701i
\(495\) 16.5826 + 9.85879i 0.745333 + 0.443120i
\(496\) 4.82678 3.50686i 0.216729 0.157463i
\(497\) −1.24440 + 7.85683i −0.0558189 + 0.352427i
\(498\) 7.87642 2.34493i 0.352951 0.105079i
\(499\) 12.9235i 0.578536i −0.957248 0.289268i \(-0.906588\pi\)
0.957248 0.289268i \(-0.0934119\pi\)
\(500\) −7.52855 8.26565i −0.336687 0.369651i
\(501\) −6.06639 6.37500i −0.271026 0.284814i
\(502\) −3.81533 + 7.48801i −0.170287 + 0.334206i
\(503\) −22.2567 3.52512i −0.992379 0.157177i −0.360928 0.932594i \(-0.617540\pi\)
−0.631450 + 0.775416i \(0.717540\pi\)
\(504\) 1.07266 + 1.64181i 0.0477799 + 0.0731320i
\(505\) 24.8207 + 13.1367i 1.10451 + 0.584576i
\(506\) 1.18005 1.62420i 0.0524595 0.0722044i
\(507\) −10.1341 0.251380i −0.450069 0.0111642i
\(508\) 14.3160 2.26744i 0.635171 0.100601i
\(509\) −1.15005 + 3.53949i −0.0509750 + 0.156885i −0.973304 0.229522i \(-0.926284\pi\)
0.922329 + 0.386407i \(0.126284\pi\)
\(510\) 22.1313 + 4.42695i 0.979992 + 0.196029i
\(511\) 0.113087 + 0.348047i 0.00500268 + 0.0153967i
\(512\) 0.453990 + 0.891007i 0.0200637 + 0.0393773i
\(513\) −14.3445 + 35.0401i −0.633324 + 1.54706i
\(514\) −28.5533 + 9.27753i −1.25943 + 0.409214i
\(515\) 10.9541 + 8.22179i 0.482696 + 0.362296i
\(516\) −5.38046 11.2404i −0.236861 0.494832i
\(517\) −1.36594 8.62420i −0.0600739 0.379292i
\(518\) 1.00634 + 1.00634i 0.0442162 + 0.0442162i
\(519\) 32.7490 4.35746i 1.43752 0.191271i
\(520\) −1.36957 9.61186i −0.0600594 0.421508i
\(521\) −25.0327 34.4546i −1.09670 1.50948i −0.839683 0.543077i \(-0.817259\pi\)
−0.257021 0.966406i \(-0.582741\pi\)
\(522\) −1.98032 + 9.44473i −0.0866762 + 0.413385i
\(523\) −19.8847 10.1317i −0.869495 0.443030i −0.0384667 0.999260i \(-0.512247\pi\)
−0.831028 + 0.556230i \(0.812247\pi\)
\(524\) −5.49670 −0.240125
\(525\) 5.18001 2.28441i 0.226074 0.0996998i
\(526\) −4.21464 −0.183767
\(527\) 30.9786 + 15.7844i 1.34945 + 0.687579i
\(528\) −4.10120 + 2.82702i −0.178482 + 0.123030i
\(529\) 13.2326 + 18.2131i 0.575331 + 0.791875i
\(530\) 4.53831 2.22421i 0.197132 0.0966136i
\(531\) 20.1395 + 16.2168i 0.873978 + 0.703750i
\(532\) 3.36825 + 3.36825i 0.146032 + 0.146032i
\(533\) −4.53032 28.6033i −0.196230 1.23895i
\(534\) 9.03414 4.32437i 0.390945 0.187134i
\(535\) 0.382857 + 1.24378i 0.0165524 + 0.0537731i
\(536\) −13.5269 + 4.39515i −0.584272 + 0.189842i
\(537\) 6.55630 + 2.31153i 0.282925 + 0.0997501i
\(538\) −9.20785 18.0714i −0.396979 0.779114i
\(539\) −5.84107 17.9770i −0.251593 0.774323i
\(540\) −10.7845 + 4.32365i −0.464092 + 0.186060i
\(541\) 0.576378 1.77391i 0.0247804 0.0762663i −0.937902 0.346902i \(-0.887234\pi\)
0.962682 + 0.270635i \(0.0872338\pi\)
\(542\) 6.69064 1.05969i 0.287387 0.0455177i
\(543\) −0.175607 + 7.07940i −0.00753604 + 0.303806i
\(544\) −3.42531 + 4.71454i −0.146859 + 0.202134i
\(545\) −18.6539 + 18.0827i −0.799044 + 0.774580i
\(546\) 4.83520 + 0.889254i 0.206928 + 0.0380566i
\(547\) −24.0199 3.80438i −1.02702 0.162663i −0.379878 0.925036i \(-0.624034\pi\)
−0.647138 + 0.762373i \(0.724034\pi\)
\(548\) −9.55034 + 18.7436i −0.407970 + 0.800687i
\(549\) −26.9462 1.33765i −1.15004 0.0570894i
\(550\) 6.12667 + 13.0088i 0.261242 + 0.554699i
\(551\) 23.4390i 0.998535i
\(552\) 0.345010 + 1.15886i 0.0146846 + 0.0493244i
\(553\) −1.04401 + 6.59162i −0.0443958 + 0.280304i
\(554\) 19.8071 14.3907i 0.841524 0.611403i
\(555\) −7.01575 + 4.67687i −0.297802 + 0.198522i
\(556\) 9.43519 + 6.85506i 0.400141 + 0.290720i
\(557\) −18.2820 + 18.2820i −0.774632 + 0.774632i −0.978912 0.204281i \(-0.934515\pi\)
0.204281 + 0.978912i \(0.434515\pi\)
\(558\) −17.7954 + 1.92003i −0.753339 + 0.0812813i
\(559\) −29.7107 9.65360i −1.25663 0.408304i
\(560\) −0.0227224 + 1.46158i −0.000960197 + 0.0617631i
\(561\) −25.5291 13.8156i −1.07784 0.583294i
\(562\) 18.0340 9.18876i 0.760717 0.387604i
\(563\) 0.869364 0.442963i 0.0366393 0.0186687i −0.435575 0.900153i \(-0.643455\pi\)
0.472214 + 0.881484i \(0.343455\pi\)
\(564\) 4.62502 + 2.50292i 0.194748 + 0.105392i
\(565\) 0.492442 31.6756i 0.0207172 1.33260i
\(566\) 7.89740 + 2.56602i 0.331952 + 0.107858i
\(567\) −0.340335 5.87361i −0.0142927 0.246669i
\(568\) 8.60442 8.60442i 0.361033 0.361033i
\(569\) −22.6112 16.4280i −0.947909 0.688696i 0.00240243 0.999997i \(-0.499235\pi\)
−0.950311 + 0.311301i \(0.899235\pi\)
\(570\) −23.4818 + 15.6535i −0.983546 + 0.655655i
\(571\) −4.29121 + 3.11775i −0.179582 + 0.130474i −0.673945 0.738782i \(-0.735401\pi\)
0.494363 + 0.869256i \(0.335401\pi\)
\(572\) −1.95339 + 12.3332i −0.0816753 + 0.515678i
\(573\) −6.01367 20.1994i −0.251224 0.843843i
\(574\) 4.36014i 0.181989i
\(575\) 3.46278 0.438597i 0.144408 0.0182908i
\(576\) 0.148741 2.99631i 0.00619754 0.124846i
\(577\) −3.71857 + 7.29810i −0.154806 + 0.303824i −0.955364 0.295432i \(-0.904537\pi\)
0.800558 + 0.599255i \(0.204537\pi\)
\(578\) −16.7508 2.65307i −0.696742 0.110353i
\(579\) −21.7232 3.99516i −0.902785 0.166033i
\(580\) −5.16450 + 5.00638i −0.214444 + 0.207879i
\(581\) −1.82313 + 2.50933i −0.0756364 + 0.104105i
\(582\) 0.228869 9.22658i 0.00948694 0.382454i
\(583\) −6.42013 + 1.01685i −0.265895 + 0.0421136i
\(584\) 0.172991 0.532411i 0.00715841 0.0220313i
\(585\) −10.7849 + 27.0565i −0.445902 + 1.11865i
\(586\) 0.527935 + 1.62482i 0.0218088 + 0.0671205i
\(587\) −15.9900 31.3821i −0.659978 1.29528i −0.941917 0.335847i \(-0.890977\pi\)
0.281939 0.959432i \(-0.409023\pi\)
\(588\) 10.7364 + 3.78530i 0.442763 + 0.156103i
\(589\) −41.3460 + 13.4341i −1.70363 + 0.553544i
\(590\) 5.66993 + 18.4197i 0.233427 + 0.758329i
\(591\) 0.640605 0.306639i 0.0263510 0.0126134i
\(592\) −0.340567 2.15026i −0.0139972 0.0883750i
\(593\) −2.52481 2.52481i −0.103681 0.103681i 0.653363 0.757045i \(-0.273357\pi\)
−0.757045 + 0.653363i \(0.773357\pi\)
\(594\) 14.8924 1.23410i 0.611043 0.0506357i
\(595\) −7.64913 + 3.74881i −0.313584 + 0.153686i
\(596\) −5.89486 8.11358i −0.241463 0.332345i
\(597\) −15.6795 + 10.8081i −0.641719 + 0.442346i
\(598\) 2.70072 + 1.37608i 0.110441 + 0.0562723i
\(599\) −39.4333 −1.61120 −0.805600 0.592460i \(-0.798157\pi\)
−0.805600 + 0.592460i \(0.798157\pi\)
\(600\) −8.46460 1.83047i −0.345566 0.0747285i
\(601\) 28.0191 1.14292 0.571462 0.820629i \(-0.306376\pi\)
0.571462 + 0.820629i \(0.306376\pi\)
\(602\) 4.19075 + 2.13529i 0.170802 + 0.0870281i
\(603\) 41.7609 + 8.75620i 1.70064 + 0.356580i
\(604\) 10.5317 + 14.4956i 0.428527 + 0.589817i
\(605\) 0.860909 + 6.04201i 0.0350009 + 0.245643i
\(606\) 21.5628 2.86906i 0.875928 0.116548i
\(607\) −3.59236 3.59236i −0.145809 0.145809i 0.630434 0.776243i \(-0.282877\pi\)
−0.776243 + 0.630434i \(0.782877\pi\)
\(608\) −1.13988 7.19694i −0.0462284 0.291875i
\(609\) −1.57254 3.28522i −0.0637224 0.133124i
\(610\) −16.0830 12.0714i −0.651183 0.488756i
\(611\) 12.5378 4.07379i 0.507226 0.164808i
\(612\) 15.9513 7.15480i 0.644795 0.289216i
\(613\) 6.96688 + 13.6733i 0.281390 + 0.552258i 0.987834 0.155510i \(-0.0497021\pi\)
−0.706445 + 0.707768i \(0.749702\pi\)
\(614\) −1.97818 6.08821i −0.0798328 0.245700i
\(615\) −25.3300 5.06679i −1.02141 0.204313i
\(616\) 0.580955 1.78800i 0.0234074 0.0720404i
\(617\) 7.10625 1.12552i 0.286087 0.0453117i −0.0117417 0.999931i \(-0.503738\pi\)
0.297829 + 0.954619i \(0.403738\pi\)
\(618\) 10.6059 + 0.263084i 0.426632 + 0.0105828i
\(619\) −7.42133 + 10.2146i −0.298288 + 0.410559i −0.931684 0.363269i \(-0.881661\pi\)
0.633396 + 0.773828i \(0.281661\pi\)
\(620\) −11.7912 6.24068i −0.473547 0.250632i
\(621\) 0.832190 3.53063i 0.0333946 0.141679i
\(622\) −34.2051 5.41755i −1.37150 0.217224i
\(623\) −1.71618 + 3.36818i −0.0687571 + 0.134943i
\(624\) −5.18430 5.44804i −0.207538 0.218096i
\(625\) −9.18798 + 23.2504i −0.367519 + 0.930016i
\(626\) 26.1462i 1.04501i
\(627\) 34.7870 10.3566i 1.38926 0.413603i
\(628\) 1.42250 8.98132i 0.0567640 0.358394i
\(629\) 10.2638 7.45711i 0.409246 0.297334i
\(630\) 2.24102 3.76942i 0.0892842 0.150177i
\(631\) −2.09574 1.52265i −0.0834301 0.0606155i 0.545288 0.838249i \(-0.316420\pi\)
−0.628718 + 0.777633i \(0.716420\pi\)
\(632\) 7.21882 7.21882i 0.287149 0.287149i
\(633\) −22.6408 + 29.5905i −0.899892 + 1.17612i
\(634\) 12.9984 + 4.22343i 0.516231 + 0.167734i
\(635\) −18.6406 26.5137i −0.739730 1.05217i
\(636\) 1.86326 3.44301i 0.0738829 0.136524i
\(637\) 25.4278 12.9561i 1.00748 0.513339i
\(638\) 8.24255 4.19979i 0.326326 0.166271i
\(639\) −35.2354 + 9.54557i −1.39389 + 0.377617i
\(640\) 1.34229 1.78837i 0.0530586 0.0706914i
\(641\) −3.49095 1.13428i −0.137884 0.0448012i 0.239262 0.970955i \(-0.423095\pi\)
−0.377146 + 0.926154i \(0.623095\pi\)
\(642\) 0.800574 + 0.612549i 0.0315961 + 0.0241754i
\(643\) 9.94703 9.94703i 0.392273 0.392273i −0.483224 0.875497i \(-0.660534\pi\)
0.875497 + 0.483224i \(0.160534\pi\)
\(644\) −0.369198 0.268238i −0.0145485 0.0105701i
\(645\) −17.2749 + 21.8646i −0.680197 + 0.860919i
\(646\) 34.3532 24.9591i 1.35161 0.982001i
\(647\) −0.617590 + 3.89931i −0.0242800 + 0.153298i −0.996850 0.0793138i \(-0.974727\pi\)
0.972570 + 0.232612i \(0.0747271\pi\)
\(648\) −4.86002 + 7.57497i −0.190920 + 0.297573i
\(649\) 24.7871i 0.972979i
\(650\) −17.9518 + 12.2086i −0.704128 + 0.478860i
\(651\) 4.89377 4.65686i 0.191802 0.182517i
\(652\) 4.21139 8.26532i 0.164931 0.323695i
\(653\) 14.3859 + 2.27850i 0.562962 + 0.0891644i 0.431428 0.902147i \(-0.358010\pi\)
0.131534 + 0.991312i \(0.458010\pi\)
\(654\) −3.63999 + 19.7920i −0.142335 + 0.773927i
\(655\) 5.40909 + 11.0368i 0.211351 + 0.431243i
\(656\) 3.92038 5.39594i 0.153065 0.210676i
\(657\) −1.24495 + 1.12720i −0.0485703 + 0.0439761i
\(658\) −1.96038 + 0.310493i −0.0764235 + 0.0121043i
\(659\) 4.21526 12.9732i 0.164203 0.505365i −0.834774 0.550593i \(-0.814402\pi\)
0.998977 + 0.0452283i \(0.0144015\pi\)
\(660\) 9.71218 + 5.45281i 0.378046 + 0.212250i
\(661\) −2.48143 7.63705i −0.0965164 0.297047i 0.891130 0.453749i \(-0.149914\pi\)
−0.987646 + 0.156702i \(0.949914\pi\)
\(662\) 4.79834 + 9.41728i 0.186493 + 0.366013i
\(663\) 14.5723 41.3321i 0.565942 1.60520i
\(664\) 4.51248 1.46619i 0.175118 0.0568994i
\(665\) 3.44851 10.0776i 0.133728 0.390794i
\(666\) −2.32373 + 6.10382i −0.0900428 + 0.236518i
\(667\) −0.351281 2.21790i −0.0136017 0.0858775i
\(668\) −3.59263 3.59263i −0.139003 0.139003i
\(669\) 1.45004 + 10.8979i 0.0560616 + 0.421338i
\(670\) 22.1363 + 22.8354i 0.855198 + 0.882209i
\(671\) 15.2019 + 20.9237i 0.586865 + 0.807750i
\(672\) 0.642614 + 0.932251i 0.0247894 + 0.0359623i
\(673\) −24.0809 12.2698i −0.928251 0.472967i −0.0765912 0.997063i \(-0.524404\pi\)
−0.851660 + 0.524095i \(0.824404\pi\)
\(674\) 31.5318 1.21456
\(675\) 19.2940 + 17.3994i 0.742628 + 0.669704i
\(676\) −5.85270 −0.225104
\(677\) −16.4613 8.38747i −0.632660 0.322357i 0.108086 0.994142i \(-0.465528\pi\)
−0.740746 + 0.671785i \(0.765528\pi\)
\(678\) −13.9268 20.2038i −0.534855 0.775924i
\(679\) 2.04750 + 2.81814i 0.0785757 + 0.108150i
\(680\) 12.8370 + 2.23826i 0.492276 + 0.0858333i
\(681\) 3.22654 + 24.2494i 0.123641 + 0.929241i
\(682\) 12.1326 + 12.1326i 0.464581 + 0.464581i
\(683\) −5.94046 37.5066i −0.227305 1.43515i −0.792338 0.610082i \(-0.791137\pi\)
0.565033 0.825068i \(-0.308863\pi\)
\(684\) −7.77757 + 20.4296i −0.297383 + 0.781144i
\(685\) 47.0332 + 0.731199i 1.79705 + 0.0279377i
\(686\) −8.43843 + 2.74181i −0.322181 + 0.104683i
\(687\) 8.76231 24.8529i 0.334303 0.948198i
\(688\) −3.26638 6.41064i −0.124530 0.244403i
\(689\) −3.03266 9.33356i −0.115535 0.355580i
\(690\) 1.98735 1.83313i 0.0756573 0.0697861i
\(691\) −2.65184 + 8.16151i −0.100881 + 0.310479i −0.988742 0.149633i \(-0.952191\pi\)
0.887861 + 0.460112i \(0.152191\pi\)
\(692\) 18.8394 2.98388i 0.716168 0.113430i
\(693\) −4.18093 + 3.78547i −0.158820 + 0.143798i
\(694\) 7.68036 10.5711i 0.291542 0.401274i
\(695\) 4.47942 25.6906i 0.169914 0.974501i
\(696\) −1.00777 + 5.47959i −0.0381992 + 0.207703i
\(697\) 38.3894 + 6.08028i 1.45410 + 0.230307i
\(698\) 13.8161 27.1156i 0.522947 1.02634i
\(699\) 9.52861 9.06733i 0.360405 0.342958i
\(700\) 2.95706 1.39266i 0.111766 0.0526377i
\(701\) 52.4507i 1.98104i 0.137384 + 0.990518i \(0.456131\pi\)
−0.137384 + 0.990518i \(0.543869\pi\)
\(702\) 5.35764 + 21.9162i 0.202211 + 0.827173i
\(703\) −2.48160 + 15.6682i −0.0935951 + 0.590937i
\(704\) −2.32663 + 1.69040i −0.0876881 + 0.0637092i
\(705\) 0.474299 11.7496i 0.0178631 0.442514i
\(706\) 2.35718 + 1.71259i 0.0887136 + 0.0644542i
\(707\) −5.80538 + 5.80538i −0.218334 + 0.218334i
\(708\) 11.8561 + 9.07156i 0.445580 + 0.340930i
\(709\) 5.89184 + 1.91438i 0.221273 + 0.0718959i 0.417555 0.908652i \(-0.362887\pi\)
−0.196283 + 0.980547i \(0.562887\pi\)
\(710\) −25.7440 8.80946i −0.966155 0.330613i
\(711\) −29.5613 + 8.00841i −1.10863 + 0.300339i
\(712\) 5.15235 2.62525i 0.193092 0.0983855i
\(713\) 3.71101 1.89085i 0.138978 0.0708130i
\(714\) −3.14044 + 5.80305i −0.117528 + 0.217174i
\(715\) 26.6860 8.21444i 0.998000 0.307203i
\(716\) 3.81721 + 1.24029i 0.142656 + 0.0463517i
\(717\) 13.1432 17.1776i 0.490842 0.641508i
\(718\) 5.59498 5.59498i 0.208803 0.208803i
\(719\) −3.26095 2.36922i −0.121613 0.0883570i 0.525316 0.850907i \(-0.323947\pi\)
−0.646929 + 0.762550i \(0.723947\pi\)
\(720\) −6.16263 + 2.64990i −0.229668 + 0.0987558i
\(721\) −3.23943 + 2.35359i −0.120643 + 0.0876521i
\(722\) −5.33368 + 33.6756i −0.198499 + 1.25327i
\(723\) 37.6772 11.2171i 1.40123 0.417167i
\(724\) 4.08855i 0.151950i
\(725\) 15.1344 + 5.44317i 0.562079 + 0.202154i
\(726\) 3.25885 + 3.42464i 0.120947 + 0.127100i
\(727\) −13.8279 + 27.1388i −0.512850 + 1.00652i 0.478844 + 0.877900i \(0.341056\pi\)
−0.991693 + 0.128624i \(0.958944\pi\)
\(728\) 2.80348 + 0.444028i 0.103904 + 0.0164568i
\(729\) 23.9549 12.4565i 0.887218 0.461350i
\(730\) −1.23926 + 0.176578i −0.0458669 + 0.00653545i
\(731\) 24.6445 33.9203i 0.911510 1.25459i
\(732\) −15.5718 0.386264i −0.575549 0.0142767i
\(733\) −13.6402 + 2.16039i −0.503812 + 0.0797960i −0.403167 0.915126i \(-0.632091\pi\)
−0.100645 + 0.994922i \(0.532091\pi\)
\(734\) 6.80279 20.9368i 0.251096 0.772793i
\(735\) −2.96481 25.2825i −0.109359 0.932560i
\(736\) 0.215722 + 0.663923i 0.00795161 + 0.0244725i
\(737\) −18.5698 36.4453i −0.684028 1.34248i
\(738\) −18.2568 + 8.18890i −0.672043 + 0.301438i
\(739\) −25.2888 + 8.21683i −0.930264 + 0.302261i −0.734671 0.678424i \(-0.762663\pi\)
−0.195593 + 0.980685i \(0.562663\pi\)
\(740\) −3.98234 + 2.79981i −0.146394 + 0.102923i
\(741\) 23.6599 + 49.4285i 0.869170 + 1.81580i
\(742\) 0.231141 + 1.45937i 0.00848547 + 0.0535751i
\(743\) 19.0708 + 19.0708i 0.699641 + 0.699641i 0.964333 0.264692i \(-0.0852703\pi\)
−0.264692 + 0.964333i \(0.585270\pi\)
\(744\) −10.2435 + 1.36297i −0.375546 + 0.0499687i
\(745\) −10.4903 + 19.8205i −0.384334 + 0.726166i
\(746\) −12.5568 17.2829i −0.459736 0.632772i
\(747\) −13.9312 2.92101i −0.509715 0.106874i
\(748\) −14.9325 7.60848i −0.545985 0.278193i
\(749\) −0.380457 −0.0139016
\(750\) 4.65430 + 18.7973i 0.169951 + 0.686379i
\(751\) −27.8529 −1.01637 −0.508183 0.861249i \(-0.669683\pi\)
−0.508183 + 0.861249i \(0.669683\pi\)
\(752\) 2.70527 + 1.37840i 0.0986509 + 0.0502652i
\(753\) 11.9847 8.26123i 0.436747 0.301056i
\(754\) 8.20949 + 11.2994i 0.298972 + 0.411500i
\(755\) 18.7418 35.4109i 0.682082 1.28874i
\(756\) −0.280525 3.38522i −0.0102026 0.123119i
\(757\) −14.2550 14.2550i −0.518108 0.518108i 0.398891 0.916998i \(-0.369395\pi\)
−0.916998 + 0.398891i \(0.869395\pi\)