Properties

Label 150.2.l.a.17.3
Level 150
Weight 2
Character 150.17
Analytic conductor 1.198
Analytic rank 0
Dimension 80
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.l (of order \(20\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{20})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 17.3
Character \(\chi\) = 150.17
Dual form 150.2.l.a.53.3

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-0.891007 - 0.453990i) q^{2}\) \(+(-0.322239 - 1.70181i) q^{3}\) \(+(0.587785 + 0.809017i) q^{4}\) \(+(-0.0831552 - 2.23452i) q^{5}\) \(+(-0.485490 + 1.66262i) q^{6}\) \(+(0.0556476 + 0.0556476i) q^{7}\) \(+(-0.156434 - 0.987688i) q^{8}\) \(+(-2.79232 + 1.09678i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-0.891007 - 0.453990i) q^{2}\) \(+(-0.322239 - 1.70181i) q^{3}\) \(+(0.587785 + 0.809017i) q^{4}\) \(+(-0.0831552 - 2.23452i) q^{5}\) \(+(-0.485490 + 1.66262i) q^{6}\) \(+(0.0556476 + 0.0556476i) q^{7}\) \(+(-0.156434 - 0.987688i) q^{8}\) \(+(-2.79232 + 1.09678i) q^{9}\) \(+(-0.940360 + 2.02872i) q^{10}\) \(+(-1.04749 + 0.340351i) q^{11}\) \(+(1.18739 - 1.26100i) q^{12}\) \(+(-2.31368 - 4.54086i) q^{13}\) \(+(-0.0243189 - 0.0748459i) q^{14}\) \(+(-3.77594 + 0.861563i) q^{15}\) \(+(-0.309017 + 0.951057i) q^{16}\) \(+(3.10226 - 0.491350i) q^{17}\) \(+(2.98591 + 0.290452i) q^{18}\) \(+(-0.824223 + 1.13445i) q^{19}\) \(+(1.75889 - 1.38069i) q^{20}\) \(+(0.0767699 - 0.112634i) q^{21}\) \(+(1.08784 + 0.172297i) q^{22}\) \(+(1.13408 - 2.22575i) q^{23}\) \(+(-1.63045 + 0.584493i) q^{24}\) \(+(-4.98617 + 0.371624i) q^{25}\) \(+5.09632i q^{26}\) \(+(2.76630 + 4.39859i) q^{27}\) \(+(-0.0123110 + 0.0777287i) q^{28}\) \(+(5.66803 - 4.11807i) q^{29}\) \(+(3.75553 + 0.946581i) q^{30}\) \(+(7.72991 + 5.61611i) q^{31}\) \(+(0.707107 - 0.707107i) q^{32}\) \(+(0.916756 + 1.67296i) q^{33}\) \(+(-2.98720 - 0.970601i) q^{34}\) \(+(0.119718 - 0.128973i) q^{35}\) \(+(-2.52860 - 1.61437i) q^{36}\) \(+(9.23065 - 4.70325i) q^{37}\) \(+(1.24942 - 0.636609i) q^{38}\) \(+(-6.98213 + 5.40069i) q^{39}\) \(+(-2.19400 + 0.431688i) q^{40}\) \(+(3.55210 + 1.15415i) q^{41}\) \(+(-0.119537 + 0.0655044i) q^{42}\) \(+(-1.00563 + 1.00563i) q^{43}\) \(+(-0.891050 - 0.647386i) q^{44}\) \(+(2.68297 + 6.14831i) q^{45}\) \(+(-2.02094 + 1.46830i) q^{46}\) \(+(-1.98797 + 12.5515i) q^{47}\) \(+(1.71810 + 0.219422i) q^{48}\) \(-6.99381i q^{49}\) \(+(4.61142 + 1.93255i) q^{50}\) \(+(-1.83585 - 5.12113i) q^{51}\) \(+(2.31368 - 4.54086i) q^{52}\) \(+(-6.70559 - 1.06206i) q^{53}\) \(+(-0.467880 - 5.17504i) q^{54}\) \(+(0.847626 + 2.31234i) q^{55}\) \(+(0.0462573 - 0.0636677i) q^{56}\) \(+(2.19621 + 1.03711i) q^{57}\) \(+(-6.91981 + 1.09599i) q^{58}\) \(+(2.03647 - 6.26761i) q^{59}\) \(+(-2.91646 - 2.54838i) q^{60}\) \(+(1.23324 + 3.79553i) q^{61}\) \(+(-4.33774 - 8.51329i) q^{62}\) \(+(-0.216419 - 0.0943531i) q^{63}\) \(+(-0.951057 + 0.309017i) q^{64}\) \(+(-9.95425 + 5.54757i) q^{65}\) \(+(-0.0573270 - 1.90682i) q^{66}\) \(+(-1.04169 - 6.57696i) q^{67}\) \(+(2.22097 + 2.22097i) q^{68}\) \(+(-4.15326 - 1.21276i) q^{69}\) \(+(-0.165222 + 0.0605649i) q^{70}\) \(+(-7.51096 - 10.3379i) q^{71}\) \(+(1.52009 + 2.58637i) q^{72}\) \(+(1.18329 + 0.602914i) q^{73}\) \(-10.3598 q^{74}\) \(+(2.23917 + 8.36577i) q^{75}\) \(-1.40225 q^{76}\) \(+(-0.0772302 - 0.0393507i) q^{77}\) \(+(8.67298 - 1.64223i) q^{78}\) \(+(5.85354 + 8.05671i) q^{79}\) \(+(2.15085 + 0.611420i) q^{80}\) \(+(6.59415 - 6.12512i) q^{81}\) \(+(-2.64098 - 2.64098i) q^{82}\) \(+(-0.137997 - 0.871279i) q^{83}\) \(+(0.136247 - 0.00409615i) q^{84}\) \(+(-1.35590 - 6.89121i) q^{85}\) \(+(1.35257 - 0.439477i) q^{86}\) \(+(-8.83463 - 8.31892i) q^{87}\) \(+(0.500025 + 0.981353i) q^{88}\) \(+(1.01326 + 3.11850i) q^{89}\) \(+(0.400727 - 6.69622i) q^{90}\) \(+(0.123937 - 0.381439i) q^{91}\) \(+(2.46727 - 0.390777i) q^{92}\) \(+(7.06668 - 14.9646i) q^{93}\) \(+(7.46957 - 10.2810i) q^{94}\) \(+(2.60348 + 1.74741i) q^{95}\) \(+(-1.43122 - 0.975505i) q^{96}\) \(+(-10.2531 - 1.62393i) q^{97}\) \(+(-3.17512 + 6.23153i) q^{98}\) \(+(2.55165 - 2.09924i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut -\mathstrut 4q^{10} \) \(\mathstrut -\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 8q^{15} \) \(\mathstrut +\mathstrut 20q^{16} \) \(\mathstrut -\mathstrut 8q^{18} \) \(\mathstrut -\mathstrut 40q^{19} \) \(\mathstrut -\mathstrut 36q^{22} \) \(\mathstrut -\mathstrut 104q^{25} \) \(\mathstrut +\mathstrut 4q^{27} \) \(\mathstrut -\mathstrut 16q^{28} \) \(\mathstrut +\mathstrut 12q^{30} \) \(\mathstrut +\mathstrut 4q^{33} \) \(\mathstrut -\mathstrut 40q^{34} \) \(\mathstrut -\mathstrut 24q^{37} \) \(\mathstrut -\mathstrut 40q^{39} \) \(\mathstrut -\mathstrut 8q^{40} \) \(\mathstrut -\mathstrut 4q^{42} \) \(\mathstrut -\mathstrut 24q^{43} \) \(\mathstrut -\mathstrut 72q^{45} \) \(\mathstrut -\mathstrut 4q^{48} \) \(\mathstrut -\mathstrut 12q^{55} \) \(\mathstrut -\mathstrut 64q^{57} \) \(\mathstrut +\mathstrut 20q^{58} \) \(\mathstrut +\mathstrut 24q^{60} \) \(\mathstrut +\mathstrut 64q^{63} \) \(\mathstrut +\mathstrut 96q^{67} \) \(\mathstrut +\mathstrut 140q^{69} \) \(\mathstrut +\mathstrut 76q^{70} \) \(\mathstrut +\mathstrut 8q^{72} \) \(\mathstrut +\mathstrut 100q^{73} \) \(\mathstrut +\mathstrut 132q^{75} \) \(\mathstrut +\mathstrut 100q^{78} \) \(\mathstrut +\mathstrut 80q^{79} \) \(\mathstrut -\mathstrut 40q^{81} \) \(\mathstrut +\mathstrut 96q^{82} \) \(\mathstrut +\mathstrut 60q^{84} \) \(\mathstrut +\mathstrut 32q^{85} \) \(\mathstrut +\mathstrut 80q^{87} \) \(\mathstrut +\mathstrut 4q^{88} \) \(\mathstrut +\mathstrut 52q^{90} \) \(\mathstrut +\mathstrut 12q^{93} \) \(\mathstrut -\mathstrut 32q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{13}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.891007 0.453990i −0.630037 0.321020i
\(3\) −0.322239 1.70181i −0.186045 0.982541i
\(4\) 0.587785 + 0.809017i 0.293893 + 0.404508i
\(5\) −0.0831552 2.23452i −0.0371882 0.999308i
\(6\) −0.485490 + 1.66262i −0.198200 + 0.678761i
\(7\) 0.0556476 + 0.0556476i 0.0210328 + 0.0210328i 0.717545 0.696512i \(-0.245266\pi\)
−0.696512 + 0.717545i \(0.745266\pi\)
\(8\) −0.156434 0.987688i −0.0553079 0.349201i
\(9\) −2.79232 + 1.09678i −0.930775 + 0.365593i
\(10\) −0.940360 + 2.02872i −0.297368 + 0.641539i
\(11\) −1.04749 + 0.340351i −0.315831 + 0.102620i −0.462643 0.886545i \(-0.653099\pi\)
0.146812 + 0.989164i \(0.453099\pi\)
\(12\) 1.18739 1.26100i 0.342769 0.364018i
\(13\) −2.31368 4.54086i −0.641700 1.25941i −0.951220 0.308514i \(-0.900168\pi\)
0.309520 0.950893i \(-0.399832\pi\)
\(14\) −0.0243189 0.0748459i −0.00649950 0.0200034i
\(15\) −3.77594 + 0.861563i −0.974943 + 0.222455i
\(16\) −0.309017 + 0.951057i −0.0772542 + 0.237764i
\(17\) 3.10226 0.491350i 0.752408 0.119170i 0.231562 0.972820i \(-0.425616\pi\)
0.520846 + 0.853650i \(0.325616\pi\)
\(18\) 2.98591 + 0.290452i 0.703785 + 0.0684602i
\(19\) −0.824223 + 1.13445i −0.189090 + 0.260260i −0.893028 0.450002i \(-0.851423\pi\)
0.703938 + 0.710262i \(0.251423\pi\)
\(20\) 1.75889 1.38069i 0.393299 0.308732i
\(21\) 0.0767699 0.112634i 0.0167526 0.0245787i
\(22\) 1.08784 + 0.172297i 0.231928 + 0.0367338i
\(23\) 1.13408 2.22575i 0.236472 0.464102i −0.742023 0.670375i \(-0.766133\pi\)
0.978495 + 0.206273i \(0.0661334\pi\)
\(24\) −1.63045 + 0.584493i −0.332814 + 0.119309i
\(25\) −4.98617 + 0.371624i −0.997234 + 0.0743249i
\(26\) 5.09632i 0.999471i
\(27\) 2.76630 + 4.39859i 0.532376 + 0.846508i
\(28\) −0.0123110 + 0.0777287i −0.00232656 + 0.0146893i
\(29\) 5.66803 4.11807i 1.05253 0.764705i 0.0798355 0.996808i \(-0.474560\pi\)
0.972691 + 0.232103i \(0.0745605\pi\)
\(30\) 3.75553 + 0.946581i 0.685662 + 0.172821i
\(31\) 7.72991 + 5.61611i 1.38833 + 1.00868i 0.996046 + 0.0888399i \(0.0283160\pi\)
0.392287 + 0.919843i \(0.371684\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0.916756 + 1.67296i 0.159587 + 0.291225i
\(34\) −2.98720 0.970601i −0.512301 0.166457i
\(35\) 0.119718 0.128973i 0.0202361 0.0218004i
\(36\) −2.52860 1.61437i −0.421433 0.269061i
\(37\) 9.23065 4.70325i 1.51751 0.773210i 0.520755 0.853706i \(-0.325650\pi\)
0.996755 + 0.0804961i \(0.0256505\pi\)
\(38\) 1.24942 0.636609i 0.202682 0.103272i
\(39\) −6.98213 + 5.40069i −1.11803 + 0.864803i
\(40\) −2.19400 + 0.431688i −0.346902 + 0.0682558i
\(41\) 3.55210 + 1.15415i 0.554745 + 0.180248i 0.572956 0.819586i \(-0.305797\pi\)
−0.0182101 + 0.999834i \(0.505797\pi\)
\(42\) −0.119537 + 0.0655044i −0.0184450 + 0.0101075i
\(43\) −1.00563 + 1.00563i −0.153357 + 0.153357i −0.779616 0.626258i \(-0.784586\pi\)
0.626258 + 0.779616i \(0.284586\pi\)
\(44\) −0.891050 0.647386i −0.134331 0.0975971i
\(45\) 2.68297 + 6.14831i 0.399954 + 0.916535i
\(46\) −2.02094 + 1.46830i −0.297972 + 0.216489i
\(47\) −1.98797 + 12.5515i −0.289975 + 1.83083i 0.225883 + 0.974154i \(0.427473\pi\)
−0.515858 + 0.856674i \(0.672527\pi\)
\(48\) 1.71810 + 0.219422i 0.247986 + 0.0316708i
\(49\) 6.99381i 0.999115i
\(50\) 4.61142 + 1.93255i 0.652154 + 0.273304i
\(51\) −1.83585 5.12113i −0.257071 0.717101i
\(52\) 2.31368 4.54086i 0.320850 0.629704i
\(53\) −6.70559 1.06206i −0.921083 0.145885i −0.322154 0.946687i \(-0.604407\pi\)
−0.598929 + 0.800802i \(0.704407\pi\)
\(54\) −0.467880 5.17504i −0.0636704 0.704234i
\(55\) 0.847626 + 2.31234i 0.114294 + 0.311796i
\(56\) 0.0462573 0.0636677i 0.00618139 0.00850795i
\(57\) 2.19621 + 1.03711i 0.290895 + 0.137369i
\(58\) −6.91981 + 1.09599i −0.908616 + 0.143911i
\(59\) 2.03647 6.26761i 0.265126 0.815974i −0.726538 0.687126i \(-0.758872\pi\)
0.991664 0.128848i \(-0.0411279\pi\)
\(60\) −2.91646 2.54838i −0.376513 0.328995i
\(61\) 1.23324 + 3.79553i 0.157901 + 0.485968i 0.998443 0.0557774i \(-0.0177637\pi\)
−0.840543 + 0.541745i \(0.817764\pi\)
\(62\) −4.33774 8.51329i −0.550894 1.08119i
\(63\) −0.216419 0.0943531i −0.0272663 0.0118874i
\(64\) −0.951057 + 0.309017i −0.118882 + 0.0386271i
\(65\) −9.95425 + 5.54757i −1.23467 + 0.688091i
\(66\) −0.0573270 1.90682i −0.00705647 0.234713i
\(67\) −1.04169 6.57696i −0.127263 0.803504i −0.965919 0.258844i \(-0.916659\pi\)
0.838657 0.544660i \(-0.183341\pi\)
\(68\) 2.22097 + 2.22097i 0.269332 + 0.269332i
\(69\) −4.15326 1.21276i −0.499993 0.146000i
\(70\) −0.165222 + 0.0605649i −0.0197479 + 0.00723889i
\(71\) −7.51096 10.3379i −0.891387 1.22689i −0.973135 0.230236i \(-0.926050\pi\)
0.0817481 0.996653i \(-0.473950\pi\)
\(72\) 1.52009 + 2.58637i 0.179144 + 0.304807i
\(73\) 1.18329 + 0.602914i 0.138493 + 0.0705658i 0.521864 0.853029i \(-0.325237\pi\)
−0.383371 + 0.923595i \(0.625237\pi\)
\(74\) −10.3598 −1.20430
\(75\) 2.23917 + 8.36577i 0.258557 + 0.965996i
\(76\) −1.40225 −0.160849
\(77\) −0.0772302 0.0393507i −0.00880119 0.00448443i
\(78\) 8.67298 1.64223i 0.982022 0.185946i
\(79\) 5.85354 + 8.05671i 0.658575 + 0.906451i 0.999433 0.0336639i \(-0.0107176\pi\)
−0.340858 + 0.940115i \(0.610718\pi\)
\(80\) 2.15085 + 0.611420i 0.240473 + 0.0683588i
\(81\) 6.59415 6.12512i 0.732684 0.680569i
\(82\) −2.64098 2.64098i −0.291647 0.291647i
\(83\) −0.137997 0.871279i −0.0151471 0.0956353i 0.978957 0.204069i \(-0.0654166\pi\)
−0.994104 + 0.108433i \(0.965417\pi\)
\(84\) 0.136247 0.00409615i 0.0148657 0.000446927i
\(85\) −1.35590 6.89121i −0.147068 0.747456i
\(86\) 1.35257 0.439477i 0.145851 0.0473900i
\(87\) −8.83463 8.31892i −0.947172 0.891882i
\(88\) 0.500025 + 0.981353i 0.0533028 + 0.104613i
\(89\) 1.01326 + 3.11850i 0.107406 + 0.330560i 0.990288 0.139035i \(-0.0444000\pi\)
−0.882882 + 0.469595i \(0.844400\pi\)
\(90\) 0.400727 6.69622i 0.0422404 0.705844i
\(91\) 0.123937 0.381439i 0.0129921 0.0399856i
\(92\) 2.46727 0.390777i 0.257230 0.0407413i
\(93\) 7.06668 14.9646i 0.732781 1.55175i
\(94\) 7.46957 10.2810i 0.770427 1.06040i
\(95\) 2.60348 + 1.74741i 0.267112 + 0.179280i
\(96\) −1.43122 0.975505i −0.146073 0.0995621i
\(97\) −10.2531 1.62393i −1.04104 0.164885i −0.387575 0.921838i \(-0.626687\pi\)
−0.653469 + 0.756953i \(0.726687\pi\)
\(98\) −3.17512 + 6.23153i −0.320736 + 0.629479i
\(99\) 2.55165 2.09924i 0.256450 0.210981i
\(100\) −3.23145 3.81546i −0.323145 0.381546i
\(101\) 14.0377i 1.39680i 0.715708 + 0.698399i \(0.246104\pi\)
−0.715708 + 0.698399i \(0.753896\pi\)
\(102\) −0.689188 + 5.39642i −0.0682398 + 0.534325i
\(103\) −2.06559 + 13.0416i −0.203529 + 1.28503i 0.648371 + 0.761324i \(0.275451\pi\)
−0.851900 + 0.523705i \(0.824549\pi\)
\(104\) −4.12301 + 2.99554i −0.404295 + 0.293737i
\(105\) −0.258066 0.162178i −0.0251846 0.0158269i
\(106\) 5.49256 + 3.99058i 0.533484 + 0.387599i
\(107\) −13.7619 + 13.7619i −1.33041 + 1.33041i −0.425413 + 0.904999i \(0.639871\pi\)
−0.904999 + 0.425413i \(0.860129\pi\)
\(108\) −1.93254 + 4.82341i −0.185958 + 0.464133i
\(109\) 11.7044 + 3.80299i 1.12108 + 0.364260i 0.810178 0.586183i \(-0.199370\pi\)
0.310898 + 0.950443i \(0.399370\pi\)
\(110\) 0.294541 2.44513i 0.0280834 0.233134i
\(111\) −10.9785 14.1933i −1.04204 1.34716i
\(112\) −0.0701201 + 0.0357280i −0.00662572 + 0.00337598i
\(113\) 6.80204 3.46581i 0.639882 0.326036i −0.103771 0.994601i \(-0.533091\pi\)
0.743654 + 0.668565i \(0.233091\pi\)
\(114\) −1.48600 1.92113i −0.139177 0.179930i
\(115\) −5.06780 2.34904i −0.472575 0.219049i
\(116\) 6.66317 + 2.16499i 0.618660 + 0.201015i
\(117\) 11.4409 + 10.1420i 1.05771 + 0.937624i
\(118\) −4.65995 + 4.65995i −0.428983 + 0.428983i
\(119\) 0.199976 + 0.145291i 0.0183317 + 0.0133188i
\(120\) 1.44164 + 3.59467i 0.131603 + 0.328147i
\(121\) −7.91779 + 5.75261i −0.719799 + 0.522964i
\(122\) 0.624308 3.94172i 0.0565222 0.356867i
\(123\) 0.819518 6.41692i 0.0738935 0.578594i
\(124\) 9.55469i 0.858037i
\(125\) 1.24503 + 11.1108i 0.111359 + 0.993780i
\(126\) 0.149996 + 0.182322i 0.0133627 + 0.0162425i
\(127\) −1.46280 + 2.87091i −0.129803 + 0.254752i −0.946756 0.321952i \(-0.895661\pi\)
0.816954 + 0.576703i \(0.195661\pi\)
\(128\) 0.987688 + 0.156434i 0.0873001 + 0.0138270i
\(129\) 2.03545 + 1.38734i 0.179211 + 0.122149i
\(130\) 11.3878 0.423786i 0.998780 0.0371685i
\(131\) 3.12598 4.30255i 0.273118 0.375915i −0.650321 0.759660i \(-0.725366\pi\)
0.923439 + 0.383744i \(0.125366\pi\)
\(132\) −0.814598 + 1.72501i −0.0709017 + 0.150143i
\(133\) −0.108995 + 0.0172632i −0.00945109 + 0.00149690i
\(134\) −2.05773 + 6.33303i −0.177761 + 0.547091i
\(135\) 9.59870 6.54713i 0.826125 0.563487i
\(136\) −0.970601 2.98720i −0.0832283 0.256150i
\(137\) −5.21451 10.2341i −0.445506 0.874354i −0.999135 0.0415907i \(-0.986757\pi\)
0.553629 0.832763i \(-0.313243\pi\)
\(138\) 3.15000 + 2.96612i 0.268146 + 0.252493i
\(139\) 10.3684 3.36891i 0.879440 0.285747i 0.165715 0.986174i \(-0.447007\pi\)
0.713725 + 0.700426i \(0.247007\pi\)
\(140\) 0.174710 + 0.0210457i 0.0147657 + 0.00177868i
\(141\) 22.0009 0.661442i 1.85281 0.0557034i
\(142\) 1.99898 + 12.6211i 0.167751 + 1.05914i
\(143\) 3.96905 + 3.96905i 0.331909 + 0.331909i
\(144\) −0.180223 2.99458i −0.0150186 0.249548i
\(145\) −9.67323 12.3229i −0.803318 1.02336i
\(146\) −0.780598 1.07440i −0.0646028 0.0889181i
\(147\) −11.9021 + 2.25367i −0.981672 + 0.185880i
\(148\) 9.23065 + 4.70325i 0.758755 + 0.386605i
\(149\) 14.3679 1.17707 0.588534 0.808472i \(-0.299705\pi\)
0.588534 + 0.808472i \(0.299705\pi\)
\(150\) 1.80286 8.47052i 0.147203 0.691615i
\(151\) −0.326435 −0.0265649 −0.0132824 0.999912i \(-0.504228\pi\)
−0.0132824 + 0.999912i \(0.504228\pi\)
\(152\) 1.24942 + 0.636609i 0.101341 + 0.0516358i
\(153\) −8.12361 + 4.77450i −0.656755 + 0.385995i
\(154\) 0.0509477 + 0.0701235i 0.00410548 + 0.00565071i
\(155\) 11.9065 17.7397i 0.956356 1.42488i
\(156\) −8.47324 2.47421i −0.678402 0.198096i
\(157\) −3.47556 3.47556i −0.277380 0.277380i 0.554682 0.832062i \(-0.312840\pi\)
−0.832062 + 0.554682i \(0.812840\pi\)
\(158\) −1.55788 9.83604i −0.123938 0.782513i
\(159\) 0.353372 + 11.7539i 0.0280242 + 0.932144i
\(160\) −1.63884 1.52125i −0.129562 0.120265i
\(161\) 0.186967 0.0607491i 0.0147350 0.00478770i
\(162\) −8.65618 + 2.46384i −0.680094 + 0.193578i
\(163\) −0.695961 1.36590i −0.0545119 0.106986i 0.862143 0.506664i \(-0.169122\pi\)
−0.916655 + 0.399679i \(0.869122\pi\)
\(164\) 1.15415 + 3.55210i 0.0901239 + 0.277373i
\(165\) 3.66203 2.18763i 0.285089 0.170306i
\(166\) −0.272596 + 0.838964i −0.0211576 + 0.0651163i
\(167\) 22.1072 3.50144i 1.71071 0.270949i 0.777133 0.629336i \(-0.216673\pi\)
0.933573 + 0.358387i \(0.116673\pi\)
\(168\) −0.123256 0.0582050i −0.00950943 0.00449061i
\(169\) −7.62505 + 10.4950i −0.586542 + 0.807306i
\(170\) −1.92043 + 6.75568i −0.147290 + 0.518137i
\(171\) 1.05726 4.07173i 0.0808509 0.311373i
\(172\) −1.40467 0.222477i −0.107105 0.0169637i
\(173\) −6.43491 + 12.6292i −0.489237 + 0.960182i 0.505985 + 0.862542i \(0.331129\pi\)
−0.995222 + 0.0976395i \(0.968871\pi\)
\(174\) 4.09500 + 11.4230i 0.310441 + 0.865979i
\(175\) −0.298148 0.256788i −0.0225379 0.0194114i
\(176\) 1.10140i 0.0830211i
\(177\) −11.3225 1.44602i −0.851053 0.108690i
\(178\) 0.512946 3.23861i 0.0384469 0.242744i
\(179\) −12.2896 + 8.92889i −0.918565 + 0.667377i −0.943167 0.332320i \(-0.892168\pi\)
0.0246011 + 0.999697i \(0.492168\pi\)
\(180\) −3.39707 + 5.78445i −0.253203 + 0.431148i
\(181\) −8.30933 6.03708i −0.617627 0.448733i 0.234465 0.972125i \(-0.424666\pi\)
−0.852092 + 0.523392i \(0.824666\pi\)
\(182\) −0.283598 + 0.283598i −0.0210217 + 0.0210217i
\(183\) 6.06188 3.32181i 0.448107 0.245556i
\(184\) −2.37576 0.771931i −0.175143 0.0569075i
\(185\) −11.2771 20.2350i −0.829109 1.48771i
\(186\) −13.0902 + 10.1253i −0.959823 + 0.742425i
\(187\) −3.08236 + 1.57054i −0.225405 + 0.114849i
\(188\) −11.3229 + 5.76930i −0.825807 + 0.420770i
\(189\) −0.0908325 + 0.398709i −0.00660709 + 0.0290018i
\(190\) −1.52641 2.73891i −0.110738 0.198701i
\(191\) −10.3303 3.35652i −0.747475 0.242869i −0.0895805 0.995980i \(-0.528553\pi\)
−0.657894 + 0.753110i \(0.728553\pi\)
\(192\) 0.832356 + 1.51894i 0.0600701 + 0.109620i
\(193\) −13.7241 + 13.7241i −0.987880 + 0.987880i −0.999927 0.0120476i \(-0.996165\pi\)
0.0120476 + 0.999927i \(0.496165\pi\)
\(194\) 8.39833 + 6.10174i 0.602965 + 0.438080i
\(195\) 12.6486 + 15.1526i 0.905782 + 1.08510i
\(196\) 5.65811 4.11086i 0.404151 0.293633i
\(197\) 1.91320 12.0795i 0.136310 0.860625i −0.820867 0.571120i \(-0.806509\pi\)
0.957176 0.289506i \(-0.0934909\pi\)
\(198\) −3.22657 + 0.712010i −0.229302 + 0.0506003i
\(199\) 15.9356i 1.12965i −0.825212 0.564823i \(-0.808944\pi\)
0.825212 0.564823i \(-0.191056\pi\)
\(200\) 1.14706 + 4.86665i 0.0811092 + 0.344124i
\(201\) −10.8571 + 3.89211i −0.765799 + 0.274528i
\(202\) 6.37296 12.5076i 0.448400 0.880034i
\(203\) 0.544573 + 0.0862519i 0.0382215 + 0.00605369i
\(204\) 3.06399 4.49536i 0.214522 0.314738i
\(205\) 2.28359 8.03322i 0.159493 0.561065i
\(206\) 7.76123 10.6824i 0.540750 0.744279i
\(207\) −0.725556 + 7.45886i −0.0504296 + 0.518427i
\(208\) 5.03358 0.797241i 0.349016 0.0552787i
\(209\) 0.477258 1.46885i 0.0330126 0.101602i
\(210\) 0.156311 + 0.261661i 0.0107865 + 0.0180563i
\(211\) −3.41758 10.5182i −0.235276 0.724104i −0.997085 0.0763026i \(-0.975689\pi\)
0.761809 0.647802i \(-0.224311\pi\)
\(212\) −3.08222 6.04920i −0.211688 0.415461i
\(213\) −15.1729 + 16.1135i −1.03963 + 1.10408i
\(214\) 18.5097 6.01417i 1.26530 0.411120i
\(215\) 2.33073 + 2.16348i 0.158954 + 0.147548i
\(216\) 3.91169 3.42034i 0.266157 0.232724i
\(217\) 0.117628 + 0.742674i 0.00798511 + 0.0504160i
\(218\) −8.70216 8.70216i −0.589385 0.589385i
\(219\) 0.644746 2.20801i 0.0435679 0.149204i
\(220\) −1.37250 + 2.04490i −0.0925341 + 0.137867i
\(221\) −9.40879 12.9501i −0.632904 0.871117i
\(222\) 3.33833 + 17.6304i 0.224054 + 1.18328i
\(223\) 4.89460 + 2.49393i 0.327767 + 0.167006i 0.610129 0.792302i \(-0.291118\pi\)
−0.282362 + 0.959308i \(0.591118\pi\)
\(224\) 0.0786976 0.00525820
\(225\) 13.5154 6.50642i 0.901028 0.433761i
\(226\) −7.63411 −0.507814
\(227\) 6.02606 + 3.07043i 0.399964 + 0.203792i 0.642390 0.766378i \(-0.277943\pi\)
−0.242426 + 0.970170i \(0.577943\pi\)
\(228\) 0.451860 + 2.38637i 0.0299251 + 0.158041i
\(229\) −1.78525 2.45719i −0.117973 0.162376i 0.745947 0.666006i \(-0.231997\pi\)
−0.863919 + 0.503630i \(0.831997\pi\)
\(230\) 3.44900 + 4.39374i 0.227420 + 0.289715i
\(231\) −0.0420810 + 0.144111i −0.00276873 + 0.00948184i
\(232\) −4.95404 4.95404i −0.325249 0.325249i
\(233\) −0.216297 1.36565i −0.0141701 0.0894666i 0.979590 0.201007i \(-0.0644215\pi\)
−0.993760 + 0.111541i \(0.964421\pi\)
\(234\) −5.58954 14.2306i −0.365400 0.930283i
\(235\) 28.2120 + 3.39843i 1.84035 + 0.221689i
\(236\) 6.26761 2.03647i 0.407987 0.132563i
\(237\) 11.8248 12.5578i 0.768101 0.815717i
\(238\) −0.112219 0.220242i −0.00727408 0.0142762i
\(239\) −3.51376 10.8143i −0.227287 0.699516i −0.998051 0.0623963i \(-0.980126\pi\)
0.770765 0.637120i \(-0.219874\pi\)
\(240\) 0.347433 3.85737i 0.0224267 0.248992i
\(241\) −2.72661 + 8.39163i −0.175636 + 0.540552i −0.999662 0.0259998i \(-0.991723\pi\)
0.824026 + 0.566552i \(0.191723\pi\)
\(242\) 9.66643 1.53101i 0.621382 0.0984172i
\(243\) −12.5487 9.24826i −0.804999 0.593276i
\(244\) −2.34577 + 3.22867i −0.150172 + 0.206695i
\(245\) −15.6278 + 0.581572i −0.998424 + 0.0371553i
\(246\) −3.64342 + 5.34547i −0.232296 + 0.340814i
\(247\) 7.05835 + 1.11793i 0.449112 + 0.0711323i
\(248\) 4.33774 8.51329i 0.275447 0.540595i
\(249\) −1.43828 + 0.515604i −0.0911475 + 0.0326751i
\(250\) 3.93487 10.4650i 0.248863 0.661866i
\(251\) 14.6104i 0.922197i 0.887349 + 0.461099i \(0.152545\pi\)
−0.887349 + 0.461099i \(0.847455\pi\)
\(252\) −0.0508748 0.230546i −0.00320481 0.0145230i
\(253\) −0.430401 + 2.71745i −0.0270591 + 0.170844i
\(254\) 2.60673 1.89390i 0.163561 0.118834i
\(255\) −11.2906 + 4.52810i −0.707045 + 0.283561i
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) −1.57229 + 1.57229i −0.0980767 + 0.0980767i −0.754443 0.656366i \(-0.772093\pi\)
0.656366 + 0.754443i \(0.272093\pi\)
\(258\) −1.18376 2.16020i −0.0736975 0.134488i
\(259\) 0.775389 + 0.251939i 0.0481803 + 0.0156547i
\(260\) −10.3390 4.79238i −0.641200 0.297211i
\(261\) −11.3104 + 17.7155i −0.700095 + 1.09656i
\(262\) −4.73859 + 2.41443i −0.292751 + 0.149164i
\(263\) 17.2650 8.79695i 1.06460 0.542443i 0.168233 0.985747i \(-0.446194\pi\)
0.896371 + 0.443304i \(0.146194\pi\)
\(264\) 1.50895 1.16718i 0.0928695 0.0718348i
\(265\) −1.81559 + 15.0721i −0.111531 + 0.925872i
\(266\) 0.104953 + 0.0341012i 0.00643507 + 0.00209088i
\(267\) 4.98058 2.72928i 0.304807 0.167029i
\(268\) 4.70859 4.70859i 0.287623 0.287623i
\(269\) 4.44596 + 3.23018i 0.271075 + 0.196948i 0.715015 0.699109i \(-0.246420\pi\)
−0.443940 + 0.896056i \(0.646420\pi\)
\(270\) −11.5248 + 1.47582i −0.701379 + 0.0898155i
\(271\) 6.02194 4.37520i 0.365807 0.265774i −0.389663 0.920957i \(-0.627409\pi\)
0.755470 + 0.655183i \(0.227409\pi\)
\(272\) −0.491350 + 3.10226i −0.0297924 + 0.188102i
\(273\) −0.689074 0.0880031i −0.0417047 0.00532619i
\(274\) 11.4859i 0.693891i
\(275\) 5.09649 2.08632i 0.307330 0.125810i
\(276\) −1.46008 4.07290i −0.0878863 0.245160i
\(277\) −8.66928 + 17.0144i −0.520886 + 1.02230i 0.469365 + 0.883004i \(0.344483\pi\)
−0.990251 + 0.139293i \(0.955517\pi\)
\(278\) −10.7678 1.70545i −0.645810 0.102286i
\(279\) −27.7440 7.20400i −1.66099 0.431292i
\(280\) −0.146113 0.0980686i −0.00873194 0.00586072i
\(281\) 0.827936 1.13956i 0.0493905 0.0679802i −0.783607 0.621256i \(-0.786623\pi\)
0.832998 + 0.553276i \(0.186623\pi\)
\(282\) −19.9033 9.39887i −1.18522 0.559694i
\(283\) 9.41786 1.49164i 0.559834 0.0886689i 0.129896 0.991528i \(-0.458536\pi\)
0.429937 + 0.902859i \(0.358536\pi\)
\(284\) 3.94874 12.1530i 0.234315 0.721147i
\(285\) 2.13482 4.99372i 0.126456 0.295802i
\(286\) −1.73454 5.33836i −0.102565 0.315664i
\(287\) 0.133440 + 0.261892i 0.00787674 + 0.0154590i
\(288\) −1.19893 + 2.75001i −0.0706478 + 0.162046i
\(289\) −6.78537 + 2.20470i −0.399139 + 0.129688i
\(290\) 3.02443 + 15.3713i 0.177601 + 0.902636i
\(291\) 0.540319 + 17.9721i 0.0316740 + 1.05355i
\(292\) 0.207750 + 1.31168i 0.0121577 + 0.0767604i
\(293\) 22.0266 + 22.0266i 1.28681 + 1.28681i 0.936716 + 0.350091i \(0.113849\pi\)
0.350091 + 0.936716i \(0.386151\pi\)
\(294\) 11.6280 + 3.39542i 0.678161 + 0.198025i
\(295\) −14.1745 4.02935i −0.825269 0.234598i
\(296\) −6.08934 8.38126i −0.353936 0.487151i
\(297\) −4.39475 3.66597i −0.255009 0.212721i
\(298\) −12.8019 6.52291i −0.741596 0.377862i
\(299\) −12.7307 −0.736237
\(300\) −5.45190 + 6.72880i −0.314766 + 0.388488i
\(301\) −0.111922 −0.00645107
\(302\) 0.290856 + 0.148198i 0.0167369 + 0.00852785i
\(303\) 23.8894 4.52347i 1.37241 0.259867i
\(304\) −0.824223 1.13445i −0.0472724 0.0650649i
\(305\) 8.37864 3.07133i 0.479760 0.175864i
\(306\) 9.40577 0.566067i 0.537692 0.0323599i
\(307\) 1.56450 + 1.56450i 0.0892910 + 0.0892910i 0.750341 0.661050i \(-0.229889\pi\)
−0.661050 + 0.750341i \(0.729889\pi\)
\(308\) −0.0135593 0.0856103i −0.000772615 0.00487810i
\(309\) 22.8600 0.687269i 1.30046 0.0390974i
\(310\) −18.6624 + 10.4007i −1.05995 + 0.590720i
\(311\) 12.9644 4.21240i 0.735145 0.238863i 0.0825681 0.996585i \(-0.473688\pi\)
0.652577 + 0.757722i \(0.273688\pi\)
\(312\) 6.42644 + 6.05131i 0.363826 + 0.342588i
\(313\) −8.67043 17.0167i −0.490082 0.961839i −0.995113 0.0987386i \(-0.968519\pi\)
0.505032 0.863101i \(-0.331481\pi\)
\(314\) 1.51888 + 4.67462i 0.0857152 + 0.263804i
\(315\) −0.192838 + 0.491439i −0.0108652 + 0.0276895i
\(316\) −3.07739 + 9.47123i −0.173117 + 0.532798i
\(317\) 8.97408 1.42135i 0.504034 0.0798312i 0.100761 0.994911i \(-0.467872\pi\)
0.403274 + 0.915079i \(0.367872\pi\)
\(318\) 5.02130 10.6332i 0.281580 0.596281i
\(319\) −4.53563 + 6.24276i −0.253947 + 0.349528i
\(320\) 0.769590 + 2.09946i 0.0430214 + 0.117363i
\(321\) 27.8548 + 18.9855i 1.55470 + 1.05967i
\(322\) −0.194168 0.0307532i −0.0108206 0.00171381i
\(323\) −1.99954 + 3.92433i −0.111258 + 0.218355i
\(324\) 8.83128 + 1.73453i 0.490626 + 0.0963625i
\(325\) 13.2239 + 21.7817i 0.733530 + 1.20823i
\(326\) 1.53299i 0.0849043i
\(327\) 2.70036 21.1441i 0.149330 1.16927i
\(328\) 0.584268 3.68892i 0.0322608 0.203687i
\(329\) −0.809088 + 0.587837i −0.0446065 + 0.0324085i
\(330\) −4.25606 + 0.286660i −0.234288 + 0.0157801i
\(331\) 8.94485 + 6.49882i 0.491654 + 0.357207i 0.805820 0.592161i \(-0.201725\pi\)
−0.314166 + 0.949368i \(0.601725\pi\)
\(332\) 0.623767 0.623767i 0.0342336 0.0342336i
\(333\) −20.6166 + 23.2570i −1.12978 + 1.27448i
\(334\) −21.2873 6.91666i −1.16479 0.378463i
\(335\) −14.6097 + 2.87458i −0.798215 + 0.157055i
\(336\) 0.0833977 + 0.107818i 0.00454971 + 0.00588197i
\(337\) 15.4169 7.85531i 0.839813 0.427906i 0.0194923 0.999810i \(-0.493795\pi\)
0.820321 + 0.571904i \(0.193795\pi\)
\(338\) 11.5586 5.88940i 0.628705 0.320341i
\(339\) −8.09004 10.4590i −0.439391 0.568054i
\(340\) 4.77812 5.14750i 0.259130 0.279162i
\(341\) −10.0085 3.25195i −0.541989 0.176103i
\(342\) −2.79056 + 3.14795i −0.150896 + 0.170222i
\(343\) 0.778722 0.778722i 0.0420470 0.0420470i
\(344\) 1.15057 + 0.835934i 0.0620343 + 0.0450706i
\(345\) −2.36458 + 9.38139i −0.127305 + 0.505077i
\(346\) 11.4671 8.33133i 0.616475 0.447895i
\(347\) −2.33923 + 14.7693i −0.125576 + 0.792857i 0.841851 + 0.539709i \(0.181466\pi\)
−0.967428 + 0.253148i \(0.918534\pi\)
\(348\) 1.53728 12.0371i 0.0824070 0.645256i
\(349\) 0.345103i 0.0184729i −0.999957 0.00923647i \(-0.997060\pi\)
0.999957 0.00923647i \(-0.00294010\pi\)
\(350\) 0.149073 + 0.364157i 0.00796827 + 0.0194650i
\(351\) 13.5730 22.7383i 0.724473 1.21368i
\(352\) −0.500025 + 0.981353i −0.0266514 + 0.0523063i
\(353\) 19.7879 + 3.13409i 1.05320 + 0.166811i 0.658947 0.752190i \(-0.271002\pi\)
0.394256 + 0.919001i \(0.371002\pi\)
\(354\) 9.43196 + 6.42874i 0.501303 + 0.341683i
\(355\) −22.4758 + 17.6431i −1.19289 + 0.936396i
\(356\) −1.92734 + 2.65275i −0.102149 + 0.140596i
\(357\) 0.182818 0.387139i 0.00967574 0.0204896i
\(358\) 15.0037 2.37636i 0.792971 0.125594i
\(359\) −5.66877 + 17.4467i −0.299186 + 0.920800i 0.682597 + 0.730795i \(0.260850\pi\)
−0.981783 + 0.190005i \(0.939150\pi\)
\(360\) 5.65290 3.61175i 0.297934 0.190356i
\(361\) 5.26370 + 16.2000i 0.277037 + 0.852632i
\(362\) 4.66289 + 9.15143i 0.245076 + 0.480989i
\(363\) 12.3413 + 11.6209i 0.647749 + 0.609937i
\(364\) 0.381439 0.123937i 0.0199928 0.00649606i
\(365\) 1.24883 2.69421i 0.0653667 0.141022i
\(366\) −6.90925 + 0.207721i −0.361152 + 0.0108578i
\(367\) 0.00304877 + 0.0192492i 0.000159144 + 0.00100480i 0.987768 0.155932i \(-0.0498381\pi\)
−0.987609 + 0.156937i \(0.949838\pi\)
\(368\) 1.76637 + 1.76637i 0.0920783 + 0.0920783i
\(369\) −11.1845 + 0.673114i −0.582240 + 0.0350409i
\(370\) 0.861472 + 23.1492i 0.0447858 + 1.20347i
\(371\) −0.314049 0.432251i −0.0163046 0.0224414i
\(372\) 16.2603 3.07889i 0.843057 0.159633i
\(373\) −6.23329 3.17602i −0.322748 0.164448i 0.285109 0.958495i \(-0.407970\pi\)
−0.607856 + 0.794047i \(0.707970\pi\)
\(374\) 3.45942 0.178882
\(375\) 18.5073 5.69913i 0.955712 0.294302i
\(376\) 12.7080 0.655364
\(377\) −31.8136 16.2098i −1.63848 0.834848i
\(378\) 0.261942 0.314015i 0.0134729 0.0161512i
\(379\) −7.15293 9.84516i −0.367421 0.505712i 0.584776 0.811194i \(-0.301182\pi\)
−0.952198 + 0.305483i \(0.901182\pi\)
\(380\) 0.116605 + 3.13336i 0.00598169 + 0.160738i
\(381\) 5.35711 + 1.56429i 0.274453 + 0.0801412i
\(382\) 7.68054 + 7.68054i 0.392971 + 0.392971i
\(383\) −0.148258 0.936062i −0.00757561 0.0478305i 0.983611 0.180304i \(-0.0577081\pi\)
−0.991187 + 0.132473i \(0.957708\pi\)
\(384\) −0.0520493 1.73127i −0.00265613 0.0883484i
\(385\) −0.0815080 + 0.175845i −0.00415403 + 0.00896187i
\(386\) 18.4588 5.99764i 0.939530 0.305272i
\(387\) 1.70509 3.91100i 0.0866748 0.198807i
\(388\) −4.71283 9.24945i −0.239258 0.469570i
\(389\) −6.14102 18.9001i −0.311362 0.958273i −0.977226 0.212200i \(-0.931937\pi\)
0.665864 0.746073i \(-0.268063\pi\)
\(390\) −4.39081 19.2434i −0.222337 0.974428i
\(391\) 2.42458 7.46210i 0.122616 0.377374i
\(392\) −6.90770 + 1.09407i −0.348892 + 0.0552590i
\(393\) −8.32944 3.93339i −0.420164 0.198413i
\(394\) −7.18863 + 9.89430i −0.362158 + 0.498468i
\(395\) 17.5161 13.7498i 0.881333 0.691829i
\(396\) 3.19814 + 0.830427i 0.160713 + 0.0417305i
\(397\) 26.6394 + 4.21926i 1.33699 + 0.211759i 0.783654 0.621198i \(-0.213354\pi\)
0.553338 + 0.832957i \(0.313354\pi\)
\(398\) −7.23462 + 14.1987i −0.362639 + 0.711719i
\(399\) 0.0645011 + 0.179927i 0.00322909 + 0.00900759i
\(400\) 1.18738 4.85697i 0.0593688 0.242848i
\(401\) 33.9394i 1.69485i 0.530912 + 0.847427i \(0.321849\pi\)
−0.530912 + 0.847427i \(0.678151\pi\)
\(402\) 11.4407 + 1.46112i 0.570611 + 0.0728739i
\(403\) 7.61739 48.0943i 0.379449 2.39575i
\(404\) −11.3567 + 8.25112i −0.565017 + 0.410509i
\(405\) −14.2351 14.2254i −0.707346 0.706868i
\(406\) −0.446060 0.324082i −0.0221376 0.0160839i
\(407\) −8.06828 + 8.06828i −0.399930 + 0.399930i
\(408\) −4.77089 + 2.61437i −0.236194 + 0.129431i
\(409\) −15.1218 4.91338i −0.747726 0.242951i −0.0897236 0.995967i \(-0.528598\pi\)
−0.658002 + 0.753016i \(0.728598\pi\)
\(410\) −5.68170 + 6.12093i −0.280599 + 0.302291i
\(411\) −15.7361 + 12.1719i −0.776205 + 0.600396i
\(412\) −11.7650 + 5.99458i −0.579621 + 0.295332i
\(413\) 0.462102 0.235453i 0.0227386 0.0115859i
\(414\) 4.03273 6.31650i 0.198198 0.310439i
\(415\) −1.93542 + 0.380809i −0.0950058 + 0.0186932i
\(416\) −4.84689 1.57485i −0.237638 0.0772134i
\(417\) −9.07436 16.5595i −0.444373 0.810924i
\(418\) −1.09208 + 1.09208i −0.0534155 + 0.0534155i
\(419\) −22.2455 16.1623i −1.08677 0.789582i −0.107916 0.994160i \(-0.534418\pi\)
−0.978850 + 0.204578i \(0.934418\pi\)
\(420\) −0.0204826 0.304105i −0.000999447 0.0148388i
\(421\) 25.8507 18.7816i 1.25988 0.915359i 0.261132 0.965303i \(-0.415904\pi\)
0.998752 + 0.0499438i \(0.0159042\pi\)
\(422\) −1.73009 + 10.9234i −0.0842194 + 0.531741i
\(423\) −8.21520 37.2283i −0.399437 1.81010i
\(424\) 6.78917i 0.329711i
\(425\) −15.2858 + 3.60283i −0.741470 + 0.174763i
\(426\) 20.8346 7.46889i 1.00944 0.361869i
\(427\) −0.142585 + 0.279839i −0.00690018 + 0.0135424i
\(428\) −19.2226 3.04457i −0.929162 0.147165i
\(429\) 5.47559 8.03356i 0.264364 0.387864i
\(430\) −1.09449 2.98580i −0.0527812 0.143988i
\(431\) −5.09101 + 7.00718i −0.245225 + 0.337524i −0.913832 0.406093i \(-0.866891\pi\)
0.668607 + 0.743616i \(0.266891\pi\)
\(432\) −5.03814 + 1.27167i −0.242398 + 0.0611835i
\(433\) 10.6490 1.68664i 0.511760 0.0810548i 0.104786 0.994495i \(-0.466584\pi\)
0.406974 + 0.913440i \(0.366584\pi\)
\(434\) 0.232360 0.715129i 0.0111536 0.0343273i
\(435\) −17.8542 + 20.4329i −0.856041 + 0.979684i
\(436\) 3.80299 + 11.7044i 0.182130 + 0.560538i
\(437\) 1.59026 + 3.12107i 0.0760726 + 0.149301i
\(438\) −1.57689 + 1.67464i −0.0753467 + 0.0800176i
\(439\) −32.6251 + 10.6006i −1.55711 + 0.505937i −0.956035 0.293253i \(-0.905262\pi\)
−0.601078 + 0.799190i \(0.705262\pi\)
\(440\) 2.15128 1.19892i 0.102558 0.0571563i
\(441\) 7.67066 + 19.5290i 0.365269 + 0.929951i
\(442\) 2.50408 + 15.8101i 0.119107 + 0.752011i
\(443\) −4.58214 4.58214i −0.217704 0.217704i 0.589826 0.807530i \(-0.299196\pi\)
−0.807530 + 0.589826i \(0.799196\pi\)
\(444\) 5.02958 17.2244i 0.238693 0.817434i
\(445\) 6.88409 2.52347i 0.326337 0.119624i
\(446\) −3.22891 4.44421i −0.152893 0.210439i
\(447\) −4.62991 24.4515i −0.218987 1.15652i
\(448\) −0.0701201 0.0357280i −0.00331286 0.00168799i
\(449\) 22.7460 1.07345 0.536726 0.843756i \(-0.319661\pi\)
0.536726 + 0.843756i \(0.319661\pi\)
\(450\) −14.9962 0.338608i −0.706927 0.0159621i
\(451\) −4.11362 −0.193703
\(452\) 6.80204 + 3.46581i 0.319941 + 0.163018i
\(453\) 0.105190 + 0.555530i 0.00494225 + 0.0261011i
\(454\) −3.97531 5.47155i −0.186571 0.256792i
\(455\) −0.862639 0.245221i −0.0404411 0.0114961i
\(456\) 0.680779 2.33141i 0.0318804 0.109178i
\(457\) −6.28077 6.28077i −0.293802 0.293802i 0.544778 0.838580i \(-0.316614\pi\)
−0.838580 + 0.544778i \(0.816614\pi\)
\(458\) 0.475131 + 2.99986i 0.0222014 + 0.140174i
\(459\) 10.7430 + 12.2863i 0.501442 + 0.573477i
\(460\) −1.07837 5.48067i −0.0502790 0.255537i
\(461\) −21.3397 + 6.93369i −0.993889 + 0.322934i −0.760421 0.649430i \(-0.775007\pi\)
−0.233468 + 0.972364i \(0.575007\pi\)
\(462\) 0.102920 0.109300i 0.00478826 0.00508509i
\(463\) 10.9916 + 21.5722i 0.510823 + 1.00255i 0.992037 + 0.125944i \(0.0401959\pi\)
−0.481214 + 0.876603i \(0.659804\pi\)
\(464\) 2.16499 + 6.66317i 0.100507 + 0.309330i
\(465\) −34.0263 14.5463i −1.57793 0.674567i
\(466\) −0.427269 + 1.31500i −0.0197929 + 0.0609161i
\(467\) −13.3049 + 2.10730i −0.615679 + 0.0975140i −0.456482 0.889733i \(-0.650891\pi\)
−0.159197 + 0.987247i \(0.550891\pi\)
\(468\) −1.48024 + 15.2171i −0.0684240 + 0.703413i
\(469\) 0.308025 0.423960i 0.0142233 0.0195766i
\(470\) −23.5942 15.8360i −1.08832 0.730460i
\(471\) −4.79479 + 7.03472i −0.220932 + 0.324143i
\(472\) −6.50902 1.03093i −0.299602 0.0474523i
\(473\) 0.711123 1.39566i 0.0326975 0.0641724i
\(474\) −16.2371 + 5.82076i −0.745793 + 0.267356i
\(475\) 3.68813 5.96284i 0.169223 0.273594i
\(476\) 0.247184i 0.0113296i
\(477\) 19.8890 4.38893i 0.910656 0.200955i
\(478\) −1.77878 + 11.2308i −0.0813596 + 0.513684i
\(479\) 13.9808 10.1576i 0.638797 0.464113i −0.220639 0.975355i \(-0.570814\pi\)
0.859437 + 0.511242i \(0.170814\pi\)
\(480\) −2.06077 + 3.27921i −0.0940610 + 0.149675i
\(481\) −42.7136 31.0332i −1.94757 1.41499i
\(482\) 6.23914 6.23914i 0.284185 0.284185i
\(483\) −0.163631 0.298606i −0.00744549 0.0135871i
\(484\) −9.30791 3.02432i −0.423087 0.137469i
\(485\) −2.77611 + 23.0458i −0.126057 + 1.04646i
\(486\) 6.98235 + 13.9372i 0.316726 + 0.632206i
\(487\) 3.22789 1.64469i 0.146270 0.0745281i −0.379324 0.925264i \(-0.623843\pi\)
0.525593 + 0.850736i \(0.323843\pi\)
\(488\) 3.55588 1.81181i 0.160967 0.0820169i
\(489\) −2.10024 + 1.62454i −0.0949761 + 0.0734643i
\(490\) 14.1885 + 6.57669i 0.640971 + 0.297105i
\(491\) −5.48953 1.78366i −0.247739 0.0804953i 0.182515 0.983203i \(-0.441576\pi\)
−0.430254 + 0.902708i \(0.641576\pi\)
\(492\) 5.67310 3.10877i 0.255763 0.140154i
\(493\) 15.5603 15.5603i 0.700800 0.700800i
\(494\) −5.78150 4.20051i −0.260122 0.188990i
\(495\) −4.90297 5.52715i −0.220372 0.248427i
\(496\) −7.72991 + 5.61611i −0.347083 + 0.252171i
\(497\) 0.157315 0.993249i 0.00705655 0.0445533i
\(498\) 1.51560 + 0.193560i 0.0679157 + 0.00867365i
\(499\) 28.5582i 1.27844i −0.769024 0.639220i \(-0.779257\pi\)
0.769024 0.639220i \(-0.220743\pi\)
\(500\) −8.25702 + 7.53801i −0.369265 + 0.337110i
\(501\) −13.0826 36.4940i −0.584486 1.63043i
\(502\) 6.63296 13.0179i 0.296044 0.581018i
\(503\) −23.7938 3.76856i −1.06091 0.168032i −0.398497 0.917170i \(-0.630468\pi\)
−0.662414 + 0.749138i \(0.730468\pi\)
\(504\) −0.0593360 + 0.228515i −0.00264304 + 0.0101789i
\(505\) 31.3674 1.16730i 1.39583 0.0519444i
\(506\) 1.61718 2.22586i 0.0718926 0.0989517i
\(507\) 20.3176 + 9.59451i 0.902335 + 0.426107i
\(508\) −3.18243 + 0.504047i −0.141197 + 0.0223635i
\(509\) −1.35722 + 4.17708i −0.0601576 + 0.185146i −0.976619 0.214977i \(-0.931032\pi\)
0.916462 + 0.400123i \(0.131032\pi\)
\(510\) 12.1157 + 1.09126i 0.536493 + 0.0483220i
\(511\) 0.0322963 + 0.0993978i 0.00142870 + 0.00439710i
\(512\) 0.453990 + 0.891007i 0.0200637 + 0.0393773i
\(513\) −7.27001 0.487193i −0.320979 0.0215101i
\(514\) 2.11472 0.687116i 0.0932765 0.0303074i
\(515\) 29.3136 + 3.53113i 1.29171 + 0.155600i
\(516\) 0.0740233 + 2.46217i 0.00325869 + 0.108391i
\(517\) −2.18954 13.8242i −0.0962960 0.607989i
\(518\) −0.576498 0.576498i −0.0253299 0.0253299i
\(519\) 23.5661 + 6.88138i 1.03444 + 0.302059i
\(520\) 7.03646 + 8.96386i 0.308569 + 0.393091i
\(521\) 3.85216 + 5.30205i 0.168766 + 0.232287i 0.885020 0.465553i \(-0.154145\pi\)
−0.716254 + 0.697840i \(0.754145\pi\)
\(522\) 18.1203 10.6499i 0.793104 0.466132i
\(523\) 7.96973 + 4.06078i 0.348492 + 0.177566i 0.619471 0.785020i \(-0.287347\pi\)
−0.270979 + 0.962585i \(0.587347\pi\)
\(524\) 5.31824 0.232328
\(525\) −0.340931 + 0.590140i −0.0148794 + 0.0257558i
\(526\) −19.3769 −0.844875
\(527\) 26.7397 + 13.6245i 1.16480 + 0.593494i
\(528\) −1.87437 + 0.354913i −0.0815716 + 0.0154456i
\(529\) 9.85121 + 13.5590i 0.428314 + 0.589523i
\(530\) 8.46029 12.6051i 0.367492 0.547529i
\(531\) 1.18770 + 19.7348i 0.0515416 + 0.856416i
\(532\) −0.0780320 0.0780320i −0.00338312 0.00338312i
\(533\) −2.97762 18.7999i −0.128975 0.814315i
\(534\) −5.67680 + 0.170669i −0.245659 + 0.00738556i
\(535\) 31.8956 + 29.6069i 1.37897 + 1.28002i
\(536\) −6.33303 + 2.05773i −0.273545 + 0.0888803i
\(537\) 19.1555 + 18.0373i 0.826619 + 0.778367i
\(538\) −2.49491 4.89653i −0.107563 0.211105i
\(539\) 2.38035 + 7.32596i 0.102529 + 0.315551i
\(540\) 10.9387 + 3.91720i 0.470727 + 0.168570i
\(541\) 4.98127 15.3308i 0.214161 0.659121i −0.785051 0.619432i \(-0.787363\pi\)
0.999212 0.0396896i \(-0.0126369\pi\)
\(542\) −7.35189 + 1.16442i −0.315791 + 0.0500163i
\(543\) −7.59639 + 16.0863i −0.325992 + 0.690329i
\(544\) 1.84619 2.54107i 0.0791548 0.108947i
\(545\) 7.52457 26.4699i 0.322317 1.13385i
\(546\) 0.574017 + 0.391244i 0.0245657 + 0.0167437i
\(547\) −23.3625 3.70025i −0.998907 0.158211i −0.364494 0.931206i \(-0.618758\pi\)
−0.634413 + 0.772994i \(0.718758\pi\)
\(548\) 5.21451 10.2341i 0.222753 0.437177i
\(549\) −7.60647 9.24576i −0.324636 0.394599i
\(550\) −5.48818 0.454833i −0.234017 0.0193942i
\(551\) 9.82428i 0.418528i
\(552\) −0.548120 + 4.29184i −0.0233295 + 0.182673i
\(553\) −0.122601 + 0.774072i −0.00521353 + 0.0329169i
\(554\) 15.4488 11.2242i 0.656355 0.476870i
\(555\) −30.8022 + 25.7120i −1.30748 + 1.09141i
\(556\) 8.81992 + 6.40805i 0.374048 + 0.271762i
\(557\) 27.5142 27.5142i 1.16581 1.16581i 0.182634 0.983181i \(-0.441538\pi\)
0.983181 0.182634i \(-0.0584623\pi\)
\(558\) 21.4496 + 19.0143i 0.908033 + 0.804941i
\(559\) 6.89314 + 2.23972i 0.291549 + 0.0947299i
\(560\) 0.0856657 + 0.153714i 0.00362004 + 0.00649560i
\(561\) 3.66602 + 4.73951i 0.154780 + 0.200102i
\(562\) −1.25504 + 0.639477i −0.0529408 + 0.0269747i
\(563\) −22.1789 + 11.3007i −0.934728 + 0.476267i −0.853886 0.520460i \(-0.825761\pi\)
−0.0808412 + 0.996727i \(0.525761\pi\)
\(564\) 13.4669 + 17.4103i 0.567061 + 0.733108i
\(565\) −8.31006 14.9111i −0.349607 0.627315i
\(566\) −9.06857 2.94656i −0.381180 0.123853i
\(567\) 0.707797 + 0.0261004i 0.0297247 + 0.00109611i
\(568\) −9.03570 + 9.03570i −0.379129 + 0.379129i
\(569\) 25.9540 + 18.8567i 1.08805 + 0.790515i 0.979069 0.203529i \(-0.0652412\pi\)
0.108981 + 0.994044i \(0.465241\pi\)
\(570\) −4.16924 + 3.48025i −0.174630 + 0.145772i
\(571\) −34.1170 + 24.7874i −1.42775 + 1.03732i −0.437322 + 0.899305i \(0.644073\pi\)
−0.990430 + 0.138017i \(0.955927\pi\)
\(572\) −0.878080 + 5.54398i −0.0367144 + 0.231805i
\(573\) −2.38334 + 18.6618i −0.0995655 + 0.779609i
\(574\) 0.293928i 0.0122683i
\(575\) −4.82756 + 11.5194i −0.201323 + 0.480394i
\(576\) 2.31674 1.90597i 0.0965306 0.0794156i
\(577\) −10.0150 + 19.6556i −0.416931 + 0.818274i 0.583052 + 0.812435i \(0.301859\pi\)
−0.999983 + 0.00583873i \(0.998141\pi\)
\(578\) 7.04672 + 1.11609i 0.293105 + 0.0464233i
\(579\) 27.7782 + 18.9333i 1.15442 + 0.786843i
\(580\) 4.28365 15.0690i 0.177869 0.625707i
\(581\) 0.0408054 0.0561638i 0.00169289 0.00233007i
\(582\) 7.67775 16.2586i 0.318253 0.673940i
\(583\) 7.38553 1.16975i 0.305877 0.0484462i
\(584\) 0.410385 1.26303i 0.0169818 0.0522647i
\(585\) 21.7110 26.4082i 0.897641 1.09185i
\(586\) −9.62597 29.6257i −0.397645 1.22383i
\(587\) 5.85750 + 11.4960i 0.241765 + 0.474490i 0.979723 0.200356i \(-0.0642099\pi\)
−0.737958 + 0.674846i \(0.764210\pi\)
\(588\) −8.81916 8.30436i −0.363696 0.342466i
\(589\) −12.7423 + 4.14024i −0.525039 + 0.170596i
\(590\) 10.8002 + 10.0252i 0.444639 + 0.412733i
\(591\) −21.1735 + 0.636564i −0.870960 + 0.0261848i
\(592\) 1.62063 + 10.2323i 0.0666075 + 0.420543i
\(593\) −3.75033 3.75033i −0.154007 0.154007i 0.625898 0.779905i \(-0.284733\pi\)
−0.779905 + 0.625898i \(0.784733\pi\)
\(594\) 2.25143 + 5.26158i 0.0923774 + 0.215885i
\(595\) 0.308027 0.458932i 0.0126279 0.0188144i
\(596\) 8.44527 + 11.6239i 0.345932 + 0.476134i
\(597\) −27.1194 + 5.13507i −1.10992 + 0.210165i
\(598\) 11.3432 + 5.77963i 0.463856 + 0.236347i
\(599\) −29.8620 −1.22013 −0.610065 0.792352i \(-0.708857\pi\)
−0.610065 + 0.792352i \(0.708857\pi\)
\(600\) 7.91249 3.52030i 0.323026 0.143716i
\(601\) 19.0008 0.775058 0.387529 0.921858i \(-0.373329\pi\)
0.387529 + 0.921858i \(0.373329\pi\)
\(602\) 0.0997231 + 0.0508115i 0.00406441 + 0.00207092i
\(603\) 10.1222 + 17.2225i 0.412208 + 0.701355i
\(604\) −0.191874 0.264091i −0.00780722 0.0107457i
\(605\) 13.5127 + 17.2141i 0.549371 + 0.699853i
\(606\) −23.3393 6.81513i −0.948092 0.276846i
\(607\) 29.8007 + 29.8007i 1.20957 + 1.20957i 0.971165 + 0.238406i \(0.0766250\pi\)
0.238406 + 0.971165i \(0.423375\pi\)
\(608\) 0.219361 + 1.38499i 0.00889625 + 0.0561687i
\(609\) −0.0286980 0.954554i −0.00116290 0.0386805i
\(610\) −8.85978 1.06725i −0.358722 0.0432118i
\(611\) 61.5942 20.0132i 2.49184 0.809646i
\(612\) −8.63759 3.76576i −0.349154 0.152222i
\(613\) 0.600877 + 1.17929i 0.0242692 + 0.0476310i 0.902823 0.430013i \(-0.141491\pi\)
−0.878554 + 0.477644i \(0.841491\pi\)
\(614\) −0.683714 2.10425i −0.0275924 0.0849208i
\(615\) −14.4069 1.29763i −0.580942 0.0523255i
\(616\) −0.0267848 + 0.0824351i −0.00107919 + 0.00332141i
\(617\) −41.5066 + 6.57400i −1.67099 + 0.264659i −0.918927 0.394428i \(-0.870943\pi\)
−0.752067 + 0.659087i \(0.770943\pi\)
\(618\) −20.6804 9.76586i −0.831889 0.392841i
\(619\) −9.51877 + 13.1015i −0.382592 + 0.526592i −0.956269 0.292489i \(-0.905516\pi\)
0.573677 + 0.819082i \(0.305516\pi\)
\(620\) 21.3502 0.794523i 0.857443 0.0319088i
\(621\) 12.9274 1.16877i 0.518758 0.0469013i
\(622\) −13.4638 2.13245i −0.539848 0.0855036i
\(623\) −0.117151 + 0.229923i −0.00469357 + 0.00921165i
\(624\) −2.97877 8.30930i −0.119246 0.332638i
\(625\) 24.7238 3.70596i 0.988952 0.148239i
\(626\) 19.0983i 0.763320i
\(627\) −2.65349 0.338883i −0.105970 0.0135337i
\(628\) 0.768905 4.85468i 0.0306827 0.193723i
\(629\) 26.3249 19.1262i 1.04964 0.762611i
\(630\) 0.394928 0.350329i 0.0157343 0.0139575i
\(631\) −9.33690 6.78365i −0.371696 0.270053i 0.386218 0.922408i \(-0.373781\pi\)
−0.757914 + 0.652355i \(0.773781\pi\)
\(632\) 7.04182 7.04182i 0.280109 0.280109i
\(633\) −16.7988 + 9.20545i −0.667691 + 0.365884i
\(634\) −8.64124 2.80771i −0.343188 0.111508i
\(635\) 6.53674 + 3.02993i 0.259403 + 0.120239i
\(636\) −9.30139 + 7.19464i −0.368824 + 0.285286i
\(637\) −31.7579 + 16.1814i −1.25829 + 0.641132i
\(638\) 6.87543 3.50321i 0.272201 0.138693i
\(639\) 32.3115 + 20.6290i 1.27822 + 0.816073i
\(640\) 0.267425 2.22002i 0.0105709 0.0877540i
\(641\) −15.5088 5.03912i −0.612561 0.199033i −0.0137264 0.999906i \(-0.504369\pi\)
−0.598835 + 0.800873i \(0.704369\pi\)
\(642\) −16.1995 29.5620i −0.639344 1.16672i
\(643\) −12.8296 + 12.8296i −0.505952 + 0.505952i −0.913281 0.407330i \(-0.866460\pi\)
0.407330 + 0.913281i \(0.366460\pi\)
\(644\) 0.159043 + 0.115552i 0.00626719 + 0.00455338i
\(645\) 2.93078 4.66361i 0.115400 0.183630i
\(646\) 3.56321 2.58883i 0.140193 0.101856i
\(647\) 3.97829 25.1179i 0.156403 0.987488i −0.777220 0.629229i \(-0.783371\pi\)
0.933622 0.358259i \(-0.116629\pi\)
\(648\) −7.08127 5.55479i −0.278178 0.218213i
\(649\) 7.25839i 0.284917i
\(650\) −1.89392 25.4111i −0.0742856 0.996707i
\(651\) 1.22599 0.439499i 0.0480502 0.0172253i
\(652\) 0.695961 1.36590i 0.0272559 0.0534928i
\(653\) −30.0615 4.76127i −1.17640 0.186323i −0.462529 0.886604i \(-0.653058\pi\)
−0.713867 + 0.700281i \(0.753058\pi\)
\(654\) −12.0053 + 17.6136i −0.469443 + 0.688747i
\(655\) −9.87407 6.62730i −0.385812 0.258950i
\(656\) −2.19532 + 3.02160i −0.0857129 + 0.117974i
\(657\) −3.96538 0.385730i −0.154704 0.0150488i
\(658\) 0.987775 0.156448i 0.0385075 0.00609899i
\(659\) 3.19473 9.83236i 0.124449 0.383014i −0.869351 0.494195i \(-0.835463\pi\)
0.993800 + 0.111180i \(0.0354631\pi\)
\(660\) 3.92231 + 1.67679i 0.152676 + 0.0652691i
\(661\) 3.97825 + 12.2438i 0.154736 + 0.476229i 0.998134 0.0610606i \(-0.0194483\pi\)
−0.843398 + 0.537289i \(0.819448\pi\)
\(662\) −5.01952 9.85137i −0.195089 0.382884i
\(663\) −19.0067 + 20.1850i −0.738161 + 0.783921i
\(664\) −0.838964 + 0.272596i −0.0325581 + 0.0105788i
\(665\) 0.0476384 + 0.242117i 0.00184734 + 0.00938888i
\(666\) 28.9279 11.3624i 1.12093 0.440284i
\(667\) −2.73781 17.2859i −0.106008 0.669311i
\(668\) 15.8270 + 15.8270i 0.612365 + 0.612365i
\(669\) 2.66696 9.13333i 0.103111 0.353115i
\(670\) 14.3224 + 4.07141i 0.553323 + 0.157292i
\(671\) −2.58363 3.55605i −0.0997397 0.137280i
\(672\) −0.0253594 0.133928i −0.000978260 0.00516640i
\(673\) 30.0291 + 15.3006i 1.15754 + 0.589794i 0.923939 0.382540i \(-0.124951\pi\)
0.233596 + 0.972334i \(0.424951\pi\)
\(674\) −17.3028 −0.666479
\(675\) −15.4279 20.9041i −0.593820 0.804598i
\(676\) −12.9725 −0.498943
\(677\) 13.8891 + 7.07682i 0.533800 + 0.271984i 0.700044 0.714100i \(-0.253164\pi\)
−0.166244 + 0.986085i \(0.553164\pi\)
\(678\) 2.46001 + 12.9918i 0.0944759 + 0.498948i
\(679\) −0.480192 0.660928i −0.0184281 0.0253641i
\(680\) −6.59425 + 2.41723i −0.252878 + 0.0926965i
\(681\) 3.28346 11.2446i 0.125823 0.430895i
\(682\) 7.44126 + 7.44126i 0.284940 + 0.284940i
\(683\) −4.20549 26.5524i −0.160919 1.01600i −0.927492 0.373844i \(-0.878040\pi\)
0.766573 0.642157i \(-0.221960\pi\)
\(684\) 3.91554 1.53796i 0.149715 0.0588054i
\(685\) −22.4346 + 12.5029i −0.857182 + 0.477713i
\(686\) −1.04738 + 0.340314i −0.0399891 + 0.0129932i
\(687\) −3.60640 + 3.82996i −0.137593 + 0.146122i
\(688\) −0.645655 1.26717i −0.0246154 0.0483104i
\(689\) 10.6919 + 32.9064i 0.407330 + 1.25363i
\(690\) 6.36592 7.28538i 0.242346 0.277350i
\(691\) 7.00128 21.5477i 0.266341 0.819714i −0.725040 0.688707i \(-0.758179\pi\)
0.991381 0.131007i \(-0.0418212\pi\)
\(692\) −13.9996 + 2.21732i −0.532185 + 0.0842898i
\(693\) 0.258811 + 0.0251756i 0.00983141 + 0.000956343i
\(694\) 8.78938 12.0975i 0.333640 0.459217i
\(695\) −8.39009 22.8884i −0.318254 0.868205i
\(696\) −6.83446 + 10.0272i −0.259060 + 0.380081i
\(697\) 11.5866 + 1.83514i 0.438875 + 0.0695110i
\(698\) −0.156673 + 0.307489i −0.00593018 + 0.0116386i
\(699\) −2.25438 + 0.808162i −0.0852684 + 0.0305675i
\(700\) 0.0324990 0.392144i 0.00122834 0.0148216i
\(701\) 37.8133i 1.42819i −0.700049 0.714095i \(-0.746839\pi\)
0.700049 0.714095i \(-0.253161\pi\)
\(702\) −22.4166 + 14.0980i −0.846061 + 0.532094i
\(703\) −2.27253 + 14.3482i −0.0857102 + 0.541153i
\(704\) 0.891050 0.647386i 0.0335827 0.0243993i
\(705\) −3.30750 49.1066i −0.124568 1.84946i
\(706\) −16.2083 11.7760i −0.610007 0.443196i
\(707\) −0.781162 + 0.781162i −0.0293786 + 0.0293786i
\(708\) −5.48536 10.0101i −0.206152 0.376201i
\(709\) 37.7779 + 12.2748i 1.41878 + 0.460989i 0.915214 0.402968i \(-0.132022\pi\)
0.503565 + 0.863958i \(0.332022\pi\)
\(710\) 28.0359 5.51628i 1.05217 0.207022i
\(711\) −25.1814 16.0769i −0.944377 0.602931i
\(712\) 2.92160 1.48863i 0.109491 0.0557887i
\(713\) 21.2664 10.8358i 0.796433 0.405803i
\(714\) −0.338649 + 0.261946i −0.0126736 + 0.00980309i
\(715\) 8.53888 9.19897i 0.319336 0.344022i
\(716\) −14.4473 4.69420i −0.539919 0.175430i
\(717\) −17.2716 + 9.46453i −0.645018 + 0.353459i
\(718\) 12.9715 12.9715i 0.484093 0.484093i
\(719\) −25.6075 18.6049i −0.954998 0.693847i −0.00301445 0.999995i \(-0.500960\pi\)
−0.951984 + 0.306149i \(0.900960\pi\)
\(720\) −6.67647 + 0.651726i −0.248817 + 0.0242884i
\(721\) −0.840680 + 0.610790i −0.0313086 + 0.0227470i
\(722\) 2.66466 16.8240i 0.0991682 0.626124i
\(723\) 15.1596 + 1.93606i 0.563791 + 0.0720029i
\(724\) 10.2709i 0.381715i
\(725\) −26.7314 + 22.6398i −0.992779 + 0.840819i
\(726\) −5.72039 15.9571i −0.212304 0.592223i
\(727\) −23.4214 + 45.9671i −0.868652 + 1.70483i −0.174934 + 0.984580i \(0.555971\pi\)
−0.693719 + 0.720246i \(0.744029\pi\)
\(728\) −0.396131 0.0627409i −0.0146816 0.00232533i
\(729\) −11.6951 + 24.3357i −0.433152 + 0.901321i
\(730\) −2.33586 + 1.83361i −0.0864541 + 0.0678648i
\(731\) −2.62561 + 3.61384i −0.0971117 + 0.133663i
\(732\) 6.25049 + 2.95165i 0.231025 + 0.109096i
\(733\) −20.9008 + 3.31036i −0.771988 + 0.122271i −0.529988 0.848005i \(-0.677803\pi\)
−0.242000 + 0.970276i \(0.577803\pi\)
\(734\) 0.00602247 0.0185352i 0.000222293 0.000684148i
\(735\) 6.02561 + 26.4082i 0.222258 + 0.974080i
\(736\) −0.771931 2.37576i −0.0284538 0.0875717i
\(737\) 3.32964 + 6.53478i 0.122649 + 0.240712i
\(738\) 10.2710 + 4.47789i 0.378082 + 0.164834i
\(739\) 11.8537 3.85150i 0.436046 0.141680i −0.0827648 0.996569i \(-0.526375\pi\)
0.518811 + 0.854889i \(0.326375\pi\)
\(740\) 9.74194 21.0172i 0.358121 0.772607i
\(741\) −0.371961 12.3722i −0.0136643 0.454505i
\(742\) 0.0835816 + 0.527714i 0.00306838 + 0.0193730i
\(743\) −2.30237 2.30237i −0.0844658 0.0844658i 0.663612 0.748077i \(-0.269023\pi\)
−0.748077 + 0.663612i \(0.769023\pi\)
\(744\) −15.8858 4.63870i −0.582402 0.170063i
\(745\) −1.19477 32.1055i −0.0437730 1.17625i
\(746\) 4.11202 + 5.65971i 0.150552 + 0.207217i
\(747\) 1.34093 + 2.28154i 0.0490621 + 0.0834772i
\(748\) −3.08236 1.57054i −0.112702 0.0574247i
\(749\) −1.53163 −0.0559646
\(750\) −19.0775 3.32417i −0.696611 0.121382i
\(751\) 18.7652 0.684751 0.342375 0.939563i \(-0.388769\pi\)
0.342375 + 0.939563i \(0.388769\pi\)
\(752\) −11.3229 5.76930i −0.412904 0.210385i
\(753\) 24.8641 4.70802i 0.906097 0.171570i
\(754\) 20.9870 + 28.8861i 0.764301 + 1.05197i
\(755\) 0.0271448 + 0.729425i 0.000987899 + 0.0265465i
\(756\) −0.375952 + 0.160870i −0.0136733 + 0.00585079i
\(757\) −7.02667 7.02667i −0.255389 0.255389i 0.567787 0.823176i \(-0.307800\pi\)
−0.823176 +