Properties

Label 150.2.l.a.17.2
Level 150
Weight 2
Character 150.17
Analytic conductor 1.198
Analytic rank 0
Dimension 80
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.l (of order \(20\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{20})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 17.2
Character \(\chi\) = 150.17
Dual form 150.2.l.a.53.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-0.891007 - 0.453990i) q^{2}\) \(+(-0.873670 + 1.49556i) q^{3}\) \(+(0.587785 + 0.809017i) q^{4}\) \(+(-2.21391 + 0.314018i) q^{5}\) \(+(1.45742 - 0.935916i) q^{6}\) \(+(-2.72680 - 2.72680i) q^{7}\) \(+(-0.156434 - 0.987688i) q^{8}\) \(+(-1.47340 - 2.61325i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-0.891007 - 0.453990i) q^{2}\) \(+(-0.873670 + 1.49556i) q^{3}\) \(+(0.587785 + 0.809017i) q^{4}\) \(+(-2.21391 + 0.314018i) q^{5}\) \(+(1.45742 - 0.935916i) q^{6}\) \(+(-2.72680 - 2.72680i) q^{7}\) \(+(-0.156434 - 0.987688i) q^{8}\) \(+(-1.47340 - 2.61325i) q^{9}\) \(+(2.11517 + 0.725301i) q^{10}\) \(+(0.335657 - 0.109061i) q^{11}\) \(+(-1.72346 + 0.172255i) q^{12}\) \(+(-1.12512 - 2.20817i) q^{13}\) \(+(1.19166 + 3.66754i) q^{14}\) \(+(1.46459 - 3.58538i) q^{15}\) \(+(-0.309017 + 0.951057i) q^{16}\) \(+(-3.49819 + 0.554059i) q^{17}\) \(+(0.126420 + 2.99734i) q^{18}\) \(+(-3.84926 + 5.29805i) q^{19}\) \(+(-1.55535 - 1.60651i) q^{20}\) \(+(6.46042 - 1.69577i) q^{21}\) \(+(-0.348585 - 0.0552105i) q^{22}\) \(+(-3.55825 + 6.98347i) q^{23}\) \(+(1.61382 + 0.628956i) q^{24}\) \(+(4.80279 - 1.39041i) q^{25}\) \(+2.47829i q^{26}\) \(+(5.19554 + 0.0795559i) q^{27}\) \(+(0.603255 - 3.80880i) q^{28}\) \(+(5.05137 - 3.67003i) q^{29}\) \(+(-2.93269 + 2.52969i) q^{30}\) \(+(-3.39184 - 2.46432i) q^{31}\) \(+(0.707107 - 0.707107i) q^{32}\) \(+(-0.130145 + 0.597278i) q^{33}\) \(+(3.36845 + 1.09448i) q^{34}\) \(+(6.89315 + 5.18062i) q^{35}\) \(+(1.24812 - 2.72804i) q^{36}\) \(+(4.33521 - 2.20890i) q^{37}\) \(+(5.83498 - 2.97307i) q^{38}\) \(+(4.28544 + 0.246528i) q^{39}\) \(+(0.656484 + 2.13753i) q^{40}\) \(+(-8.06531 - 2.62058i) q^{41}\) \(+(-6.52614 - 1.42202i) q^{42}\) \(+(-5.16349 + 5.16349i) q^{43}\) \(+(0.285527 + 0.207447i) q^{44}\) \(+(4.08259 + 5.32283i) q^{45}\) \(+(6.34085 - 4.60690i) q^{46}\) \(+(0.668895 - 4.22323i) q^{47}\) \(+(-1.15238 - 1.29306i) q^{48}\) \(+7.87088i q^{49}\) \(+(-4.91055 - 0.941550i) q^{50}\) \(+(2.22763 - 5.71582i) q^{51}\) \(+(1.12512 - 2.20817i) q^{52}\) \(+(4.34698 + 0.688494i) q^{53}\) \(+(-4.59315 - 2.42961i) q^{54}\) \(+(-0.708866 + 0.346854i) q^{55}\) \(+(-2.26666 + 3.11979i) q^{56}\) \(+(-4.56057 - 10.3855i) q^{57}\) \(+(-6.16696 + 0.976751i) q^{58}\) \(+(-0.713107 + 2.19472i) q^{59}\) \(+(3.76150 - 0.922555i) q^{60}\) \(+(0.0451729 + 0.139028i) q^{61}\) \(+(1.90338 + 3.73559i) q^{62}\) \(+(-3.10814 + 11.1435i) q^{63}\) \(+(-0.951057 + 0.309017i) q^{64}\) \(+(3.18432 + 4.53538i) q^{65}\) \(+(0.387119 - 0.473094i) q^{66}\) \(+(1.18445 + 7.47829i) q^{67}\) \(+(-2.50443 - 2.50443i) q^{68}\) \(+(-7.33546 - 11.4228i) q^{69}\) \(+(-3.78989 - 7.74539i) q^{70}\) \(+(-3.62303 - 4.98667i) q^{71}\) \(+(-2.35059 + 1.86407i) q^{72}\) \(+(-9.30362 - 4.74043i) q^{73}\) \(-4.86552 q^{74}\) \(+(-2.11660 + 8.39762i) q^{75}\) \(-6.54875 q^{76}\) \(+(-1.21266 - 0.617880i) q^{77}\) \(+(-3.70643 - 2.16521i) q^{78}\) \(+(0.803169 + 1.10547i) q^{79}\) \(+(0.385487 - 2.20259i) q^{80}\) \(+(-4.65817 + 7.70074i) q^{81}\) \(+(5.99652 + 5.99652i) q^{82}\) \(+(-0.915181 - 5.77823i) q^{83}\) \(+(5.16925 + 4.22984i) q^{84}\) \(+(7.57069 - 2.32513i) q^{85}\) \(+(6.94488 - 2.25653i) q^{86}\) \(+(1.07553 + 10.7610i) q^{87}\) \(+(-0.160227 - 0.314463i) q^{88}\) \(+(-0.633239 - 1.94891i) q^{89}\) \(+(-1.22110 - 6.59613i) q^{90}\) \(+(-2.95327 + 9.08922i) q^{91}\) \(+(-7.74123 + 1.22609i) q^{92}\) \(+(6.64888 - 2.91971i) q^{93}\) \(+(-2.51330 + 3.45926i) q^{94}\) \(+(6.85822 - 12.9381i) q^{95}\) \(+(0.439743 + 1.67530i) q^{96}\) \(+(6.93926 + 1.09907i) q^{97}\) \(+(3.57330 - 7.01300i) q^{98}\) \(+(-0.779562 - 0.716464i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut -\mathstrut 4q^{10} \) \(\mathstrut -\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 8q^{15} \) \(\mathstrut +\mathstrut 20q^{16} \) \(\mathstrut -\mathstrut 8q^{18} \) \(\mathstrut -\mathstrut 40q^{19} \) \(\mathstrut -\mathstrut 36q^{22} \) \(\mathstrut -\mathstrut 104q^{25} \) \(\mathstrut +\mathstrut 4q^{27} \) \(\mathstrut -\mathstrut 16q^{28} \) \(\mathstrut +\mathstrut 12q^{30} \) \(\mathstrut +\mathstrut 4q^{33} \) \(\mathstrut -\mathstrut 40q^{34} \) \(\mathstrut -\mathstrut 24q^{37} \) \(\mathstrut -\mathstrut 40q^{39} \) \(\mathstrut -\mathstrut 8q^{40} \) \(\mathstrut -\mathstrut 4q^{42} \) \(\mathstrut -\mathstrut 24q^{43} \) \(\mathstrut -\mathstrut 72q^{45} \) \(\mathstrut -\mathstrut 4q^{48} \) \(\mathstrut -\mathstrut 12q^{55} \) \(\mathstrut -\mathstrut 64q^{57} \) \(\mathstrut +\mathstrut 20q^{58} \) \(\mathstrut +\mathstrut 24q^{60} \) \(\mathstrut +\mathstrut 64q^{63} \) \(\mathstrut +\mathstrut 96q^{67} \) \(\mathstrut +\mathstrut 140q^{69} \) \(\mathstrut +\mathstrut 76q^{70} \) \(\mathstrut +\mathstrut 8q^{72} \) \(\mathstrut +\mathstrut 100q^{73} \) \(\mathstrut +\mathstrut 132q^{75} \) \(\mathstrut +\mathstrut 100q^{78} \) \(\mathstrut +\mathstrut 80q^{79} \) \(\mathstrut -\mathstrut 40q^{81} \) \(\mathstrut +\mathstrut 96q^{82} \) \(\mathstrut +\mathstrut 60q^{84} \) \(\mathstrut +\mathstrut 32q^{85} \) \(\mathstrut +\mathstrut 80q^{87} \) \(\mathstrut +\mathstrut 4q^{88} \) \(\mathstrut +\mathstrut 52q^{90} \) \(\mathstrut +\mathstrut 12q^{93} \) \(\mathstrut -\mathstrut 32q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{13}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.891007 0.453990i −0.630037 0.321020i
\(3\) −0.873670 + 1.49556i −0.504413 + 0.863462i
\(4\) 0.587785 + 0.809017i 0.293893 + 0.404508i
\(5\) −2.21391 + 0.314018i −0.990090 + 0.140433i
\(6\) 1.45742 0.935916i 0.594987 0.382086i
\(7\) −2.72680 2.72680i −1.03063 1.03063i −0.999516 0.0311178i \(-0.990093\pi\)
−0.0311178 0.999516i \(-0.509907\pi\)
\(8\) −0.156434 0.987688i −0.0553079 0.349201i
\(9\) −1.47340 2.61325i −0.491134 0.871084i
\(10\) 2.11517 + 0.725301i 0.668875 + 0.229360i
\(11\) 0.335657 0.109061i 0.101204 0.0328833i −0.257977 0.966151i \(-0.583056\pi\)
0.359181 + 0.933268i \(0.383056\pi\)
\(12\) −1.72346 + 0.172255i −0.497521 + 0.0497257i
\(13\) −1.12512 2.20817i −0.312052 0.612437i 0.680707 0.732555i \(-0.261673\pi\)
−0.992760 + 0.120119i \(0.961673\pi\)
\(14\) 1.19166 + 3.66754i 0.318483 + 0.980191i
\(15\) 1.46459 3.58538i 0.378156 0.925742i
\(16\) −0.309017 + 0.951057i −0.0772542 + 0.237764i
\(17\) −3.49819 + 0.554059i −0.848436 + 0.134379i −0.565488 0.824756i \(-0.691312\pi\)
−0.282948 + 0.959135i \(0.591312\pi\)
\(18\) 0.126420 + 2.99734i 0.0297975 + 0.706479i
\(19\) −3.84926 + 5.29805i −0.883080 + 1.21546i 0.0924780 + 0.995715i \(0.470521\pi\)
−0.975558 + 0.219741i \(0.929479\pi\)
\(20\) −1.55535 1.60651i −0.347787 0.359228i
\(21\) 6.46042 1.69577i 1.40978 0.370048i
\(22\) −0.348585 0.0552105i −0.0743186 0.0117709i
\(23\) −3.55825 + 6.98347i −0.741947 + 1.45615i 0.142638 + 0.989775i \(0.454441\pi\)
−0.884585 + 0.466378i \(0.845559\pi\)
\(24\) 1.61382 + 0.628956i 0.329420 + 0.128385i
\(25\) 4.80279 1.39041i 0.960557 0.278083i
\(26\) 2.47829i 0.486033i
\(27\) 5.19554 + 0.0795559i 0.999883 + 0.0153105i
\(28\) 0.603255 3.80880i 0.114004 0.719796i
\(29\) 5.05137 3.67003i 0.938015 0.681508i −0.00992666 0.999951i \(-0.503160\pi\)
0.947942 + 0.318443i \(0.103160\pi\)
\(30\) −2.93269 + 2.52969i −0.535434 + 0.461856i
\(31\) −3.39184 2.46432i −0.609193 0.442604i 0.239937 0.970788i \(-0.422873\pi\)
−0.849130 + 0.528184i \(0.822873\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) −0.130145 + 0.597278i −0.0226553 + 0.103973i
\(34\) 3.36845 + 1.09448i 0.577684 + 0.187701i
\(35\) 6.89315 + 5.18062i 1.16516 + 0.875685i
\(36\) 1.24812 2.72804i 0.208020 0.454673i
\(37\) 4.33521 2.20890i 0.712704 0.363141i −0.0597483 0.998213i \(-0.519030\pi\)
0.772452 + 0.635073i \(0.219030\pi\)
\(38\) 5.83498 2.97307i 0.946558 0.482296i
\(39\) 4.28544 + 0.246528i 0.686219 + 0.0394761i
\(40\) 0.656484 + 2.13753i 0.103799 + 0.337973i
\(41\) −8.06531 2.62058i −1.25959 0.409265i −0.398241 0.917281i \(-0.630379\pi\)
−0.861348 + 0.508015i \(0.830379\pi\)
\(42\) −6.52614 1.42202i −1.00700 0.219423i
\(43\) −5.16349 + 5.16349i −0.787425 + 0.787425i −0.981071 0.193647i \(-0.937969\pi\)
0.193647 + 0.981071i \(0.437969\pi\)
\(44\) 0.285527 + 0.207447i 0.0430448 + 0.0312738i
\(45\) 4.08259 + 5.32283i 0.608596 + 0.793480i
\(46\) 6.34085 4.60690i 0.934908 0.679250i
\(47\) 0.668895 4.22323i 0.0975683 0.616022i −0.889649 0.456644i \(-0.849051\pi\)
0.987218 0.159378i \(-0.0509488\pi\)
\(48\) −1.15238 1.29306i −0.166332 0.186638i
\(49\) 7.87088i 1.12441i
\(50\) −4.91055 0.941550i −0.694456 0.133155i
\(51\) 2.22763 5.71582i 0.311931 0.800375i
\(52\) 1.12512 2.20817i 0.156026 0.306218i
\(53\) 4.34698 + 0.688494i 0.597103 + 0.0945719i 0.447668 0.894200i \(-0.352255\pi\)
0.149435 + 0.988772i \(0.452255\pi\)
\(54\) −4.59315 2.42961i −0.625048 0.330628i
\(55\) −0.708866 + 0.346854i −0.0955835 + 0.0467698i
\(56\) −2.26666 + 3.11979i −0.302896 + 0.416900i
\(57\) −4.56057 10.3855i −0.604063 1.37560i
\(58\) −6.16696 + 0.976751i −0.809762 + 0.128254i
\(59\) −0.713107 + 2.19472i −0.0928386 + 0.285728i −0.986684 0.162647i \(-0.947997\pi\)
0.893846 + 0.448375i \(0.147997\pi\)
\(60\) 3.76150 0.922555i 0.485608 0.119101i
\(61\) 0.0451729 + 0.139028i 0.00578380 + 0.0178007i 0.953907 0.300103i \(-0.0970211\pi\)
−0.948123 + 0.317904i \(0.897021\pi\)
\(62\) 1.90338 + 3.73559i 0.241729 + 0.474420i
\(63\) −3.10814 + 11.1435i −0.391589 + 1.40395i
\(64\) −0.951057 + 0.309017i −0.118882 + 0.0386271i
\(65\) 3.18432 + 4.53538i 0.394966 + 0.562545i
\(66\) 0.387119 0.473094i 0.0476510 0.0582339i
\(67\) 1.18445 + 7.47829i 0.144703 + 0.913619i 0.948053 + 0.318112i \(0.103049\pi\)
−0.803350 + 0.595507i \(0.796951\pi\)
\(68\) −2.50443 2.50443i −0.303707 0.303707i
\(69\) −7.33546 11.4228i −0.883085 1.37515i
\(70\) −3.78989 7.74539i −0.452978 0.925752i
\(71\) −3.62303 4.98667i −0.429974 0.591809i 0.537973 0.842962i \(-0.319190\pi\)
−0.967947 + 0.251153i \(0.919190\pi\)
\(72\) −2.35059 + 1.86407i −0.277019 + 0.219682i
\(73\) −9.30362 4.74043i −1.08891 0.554825i −0.185079 0.982724i \(-0.559254\pi\)
−0.903827 + 0.427898i \(0.859254\pi\)
\(74\) −4.86552 −0.565605
\(75\) −2.11660 + 8.39762i −0.244404 + 0.969674i
\(76\) −6.54875 −0.751193
\(77\) −1.21266 0.617880i −0.138195 0.0704139i
\(78\) −3.70643 2.16521i −0.419671 0.245161i
\(79\) 0.803169 + 1.10547i 0.0903636 + 0.124375i 0.851805 0.523859i \(-0.175508\pi\)
−0.761442 + 0.648234i \(0.775508\pi\)
\(80\) 0.385487 2.20259i 0.0430987 0.246257i
\(81\) −4.65817 + 7.70074i −0.517574 + 0.855638i
\(82\) 5.99652 + 5.99652i 0.662205 + 0.662205i
\(83\) −0.915181 5.77823i −0.100454 0.634243i −0.985621 0.168969i \(-0.945956\pi\)
0.885167 0.465273i \(-0.154044\pi\)
\(84\) 5.16925 + 4.22984i 0.564011 + 0.461513i
\(85\) 7.57069 2.32513i 0.821157 0.252196i
\(86\) 6.94488 2.25653i 0.748886 0.243328i
\(87\) 1.07553 + 10.7610i 0.115309 + 1.15370i
\(88\) −0.160227 0.314463i −0.0170803 0.0335219i
\(89\) −0.633239 1.94891i −0.0671232 0.206584i 0.911869 0.410481i \(-0.134639\pi\)
−0.978992 + 0.203897i \(0.934639\pi\)
\(90\) −1.22110 6.59613i −0.128715 0.695293i
\(91\) −2.95327 + 9.08922i −0.309587 + 0.952809i
\(92\) −7.74123 + 1.22609i −0.807079 + 0.127829i
\(93\) 6.64888 2.91971i 0.689457 0.302759i
\(94\) −2.51330 + 3.45926i −0.259227 + 0.356795i
\(95\) 6.85822 12.9381i 0.703639 1.32742i
\(96\) 0.439743 + 1.67530i 0.0448811 + 0.170984i
\(97\) 6.93926 + 1.09907i 0.704575 + 0.111594i 0.498433 0.866928i \(-0.333909\pi\)
0.206142 + 0.978522i \(0.433909\pi\)
\(98\) 3.57330 7.01300i 0.360958 0.708420i
\(99\) −0.779562 0.716464i −0.0783490 0.0720073i
\(100\) 3.94788 + 3.06827i 0.394788 + 0.306827i
\(101\) 9.58679i 0.953921i −0.878925 0.476961i \(-0.841738\pi\)
0.878925 0.476961i \(-0.158262\pi\)
\(102\) −4.57976 + 4.08151i −0.453464 + 0.404130i
\(103\) 1.04075 6.57102i 0.102548 0.647462i −0.881853 0.471524i \(-0.843704\pi\)
0.984401 0.175938i \(-0.0562959\pi\)
\(104\) −2.00498 + 1.45670i −0.196604 + 0.142841i
\(105\) −13.7703 + 5.78297i −1.34384 + 0.564360i
\(106\) −3.56062 2.58694i −0.345838 0.251266i
\(107\) 10.4337 10.4337i 1.00866 1.00866i 0.00870186 0.999962i \(-0.497230\pi\)
0.999962 0.00870186i \(-0.00276992\pi\)
\(108\) 2.98950 + 4.25004i 0.287665 + 0.408961i
\(109\) −10.5722 3.43511i −1.01263 0.329024i −0.244729 0.969592i \(-0.578699\pi\)
−0.767902 + 0.640568i \(0.778699\pi\)
\(110\) 0.789073 + 0.0127689i 0.0752351 + 0.00121747i
\(111\) −0.483998 + 8.41342i −0.0459391 + 0.798566i
\(112\) 3.43597 1.75071i 0.324668 0.165427i
\(113\) 1.56816 0.799015i 0.147520 0.0751650i −0.378672 0.925531i \(-0.623619\pi\)
0.526192 + 0.850366i \(0.323619\pi\)
\(114\) −0.651437 + 11.3240i −0.0610127 + 1.06059i
\(115\) 5.68471 16.5781i 0.530102 1.54592i
\(116\) 5.93824 + 1.92945i 0.551352 + 0.179145i
\(117\) −4.11276 + 6.19375i −0.380224 + 0.572612i
\(118\) 1.63176 1.63176i 0.150216 0.150216i
\(119\) 11.0497 + 8.02806i 1.01292 + 0.735931i
\(120\) −3.77035 0.885683i −0.344185 0.0808514i
\(121\) −8.79842 + 6.39242i −0.799856 + 0.581129i
\(122\) 0.0228680 0.144383i 0.00207037 0.0130718i
\(123\) 10.9656 9.77263i 0.988739 0.881169i
\(124\) 4.19255i 0.376502i
\(125\) −10.1963 + 4.58641i −0.911986 + 0.410221i
\(126\) 7.82841 8.51786i 0.697410 0.758831i
\(127\) 2.44874 4.80592i 0.217290 0.426457i −0.756471 0.654027i \(-0.773078\pi\)
0.973762 + 0.227571i \(0.0730782\pi\)
\(128\) 0.987688 + 0.156434i 0.0873001 + 0.0138270i
\(129\) −3.21113 12.2335i −0.282724 1.07710i
\(130\) −0.778228 5.48671i −0.0682551 0.481216i
\(131\) −10.2354 + 14.0878i −0.894273 + 1.23086i 0.0779865 + 0.996954i \(0.475151\pi\)
−0.972259 + 0.233906i \(0.924849\pi\)
\(132\) −0.559706 + 0.245782i −0.0487161 + 0.0213926i
\(133\) 24.9429 3.95056i 2.16282 0.342557i
\(134\) 2.33973 7.20094i 0.202122 0.622066i
\(135\) −11.5274 + 1.45537i −0.992124 + 0.125258i
\(136\) 1.09448 + 3.36845i 0.0938505 + 0.288842i
\(137\) 8.13848 + 15.9727i 0.695317 + 1.36464i 0.920663 + 0.390358i \(0.127649\pi\)
−0.225346 + 0.974279i \(0.572351\pi\)
\(138\) 1.35009 + 13.5080i 0.114927 + 1.14988i
\(139\) 17.1405 5.56927i 1.45383 0.472379i 0.527654 0.849459i \(-0.323072\pi\)
0.926181 + 0.377080i \(0.123072\pi\)
\(140\) −0.139519 + 8.62177i −0.0117915 + 0.728673i
\(141\) 5.73171 + 4.69008i 0.482697 + 0.394976i
\(142\) 0.964240 + 6.08797i 0.0809172 + 0.510891i
\(143\) −0.618480 0.618480i −0.0517199 0.0517199i
\(144\) 2.94066 0.593750i 0.245055 0.0494792i
\(145\) −10.0308 + 9.71134i −0.833014 + 0.806483i
\(146\) 6.13747 + 8.44751i 0.507941 + 0.699121i
\(147\) −11.7714 6.87655i −0.970886 0.567168i
\(148\) 4.33521 + 2.20890i 0.356352 + 0.181570i
\(149\) −4.64891 −0.380854 −0.190427 0.981701i \(-0.560987\pi\)
−0.190427 + 0.981701i \(0.560987\pi\)
\(150\) 5.69834 6.52142i 0.465268 0.532472i
\(151\) −14.6548 −1.19259 −0.596295 0.802765i \(-0.703361\pi\)
−0.596295 + 0.802765i \(0.703361\pi\)
\(152\) 5.83498 + 2.97307i 0.473279 + 0.241148i
\(153\) 6.60214 + 8.32530i 0.533751 + 0.673061i
\(154\) 0.799974 + 1.10107i 0.0644637 + 0.0887267i
\(155\) 8.28307 + 4.39067i 0.665312 + 0.352667i
\(156\) 2.31947 + 3.61190i 0.185706 + 0.289183i
\(157\) 3.17235 + 3.17235i 0.253181 + 0.253181i 0.822273 0.569093i \(-0.192705\pi\)
−0.569093 + 0.822273i \(0.692705\pi\)
\(158\) −0.213757 1.34961i −0.0170056 0.107369i
\(159\) −4.82751 + 5.89965i −0.382846 + 0.467873i
\(160\) −1.34343 + 1.78751i −0.106207 + 0.141315i
\(161\) 28.7452 9.33987i 2.26544 0.736085i
\(162\) 7.64652 4.74665i 0.600768 0.372932i
\(163\) −4.91227 9.64088i −0.384759 0.755132i 0.614675 0.788781i \(-0.289287\pi\)
−0.999434 + 0.0336487i \(0.989287\pi\)
\(164\) −2.62058 8.06531i −0.204633 0.629795i
\(165\) 0.100573 1.36319i 0.00782959 0.106124i
\(166\) −1.80783 + 5.56392i −0.140315 + 0.431844i
\(167\) −16.5871 + 2.62714i −1.28355 + 0.203295i −0.760686 0.649120i \(-0.775137\pi\)
−0.522866 + 0.852415i \(0.675137\pi\)
\(168\) −2.68553 6.11560i −0.207193 0.471829i
\(169\) 4.03108 5.54830i 0.310083 0.426793i
\(170\) −7.80112 1.36531i −0.598319 0.104715i
\(171\) 19.5166 + 2.25292i 1.49247 + 0.172285i
\(172\) −7.21237 1.14233i −0.549938 0.0871017i
\(173\) −7.90821 + 15.5207i −0.601250 + 1.18002i 0.367043 + 0.930204i \(0.380370\pi\)
−0.968293 + 0.249816i \(0.919630\pi\)
\(174\) 3.92710 10.0764i 0.297713 0.763892i
\(175\) −16.8876 9.30485i −1.27658 0.703381i
\(176\) 0.352930i 0.0266031i
\(177\) −2.65931 2.98395i −0.199886 0.224288i
\(178\) −0.320566 + 2.02397i −0.0240274 + 0.151703i
\(179\) −5.94519 + 4.31943i −0.444364 + 0.322849i −0.787367 0.616485i \(-0.788556\pi\)
0.343002 + 0.939334i \(0.388556\pi\)
\(180\) −1.90657 + 6.43156i −0.142107 + 0.479380i
\(181\) −0.543117 0.394597i −0.0403695 0.0293302i 0.567418 0.823430i \(-0.307943\pi\)
−0.607787 + 0.794100i \(0.707943\pi\)
\(182\) 6.75780 6.75780i 0.500922 0.500922i
\(183\) −0.247391 0.0539056i −0.0182877 0.00398482i
\(184\) 7.45412 + 2.42199i 0.549525 + 0.178552i
\(185\) −8.90413 + 6.25164i −0.654644 + 0.459630i
\(186\) −7.24972 0.417054i −0.531575 0.0305799i
\(187\) −1.11376 + 0.567491i −0.0814465 + 0.0414991i
\(188\) 3.80983 1.94121i 0.277861 0.141577i
\(189\) −13.9503 14.3841i −1.01473 1.04629i
\(190\) −11.9845 + 8.41439i −0.869448 + 0.610444i
\(191\) −13.4008 4.35419i −0.969650 0.315058i −0.218975 0.975730i \(-0.570271\pi\)
−0.750675 + 0.660672i \(0.770271\pi\)
\(192\) 0.368756 1.69234i 0.0266126 0.122134i
\(193\) −2.89340 + 2.89340i −0.208271 + 0.208271i −0.803532 0.595261i \(-0.797049\pi\)
0.595261 + 0.803532i \(0.297049\pi\)
\(194\) −5.68396 4.12964i −0.408085 0.296491i
\(195\) −9.56499 + 0.799915i −0.684963 + 0.0572831i
\(196\) −6.36767 + 4.62638i −0.454834 + 0.330456i
\(197\) 3.55739 22.4605i 0.253454 1.60024i −0.452353 0.891839i \(-0.649415\pi\)
0.705806 0.708405i \(-0.250585\pi\)
\(198\) 0.369327 + 0.992288i 0.0262470 + 0.0705188i
\(199\) 6.31867i 0.447919i −0.974598 0.223959i \(-0.928102\pi\)
0.974598 0.223959i \(-0.0718983\pi\)
\(200\) −2.12462 4.52615i −0.150233 0.320047i
\(201\) −12.2191 4.76215i −0.861866 0.335896i
\(202\) −4.35231 + 8.54189i −0.306228 + 0.601006i
\(203\) −23.7815 3.76662i −1.66914 0.264365i
\(204\) 5.93357 1.55748i 0.415433 0.109045i
\(205\) 18.6788 + 3.26907i 1.30458 + 0.228321i
\(206\) −3.91049 + 5.38233i −0.272457 + 0.375005i
\(207\) 23.4923 0.990845i 1.63283 0.0688685i
\(208\) 2.44778 0.387690i 0.169723 0.0268815i
\(209\) −0.714216 + 2.19813i −0.0494033 + 0.152048i
\(210\) 14.8948 + 1.09891i 1.02784 + 0.0758317i
\(211\) −1.28435 3.95283i −0.0884185 0.272124i 0.897064 0.441900i \(-0.145696\pi\)
−0.985483 + 0.169776i \(0.945696\pi\)
\(212\) 1.99809 + 3.92147i 0.137229 + 0.269327i
\(213\) 10.6232 1.06175i 0.727889 0.0727502i
\(214\) −14.0333 + 4.55969i −0.959296 + 0.311694i
\(215\) 9.81007 13.0529i 0.669041 0.890202i
\(216\) −0.734186 5.14402i −0.0499550 0.350006i
\(217\) 2.52917 + 15.9686i 0.171691 + 1.08402i
\(218\) 7.86037 + 7.86037i 0.532371 + 0.532371i
\(219\) 15.2179 9.77255i 1.02833 0.660368i
\(220\) −0.697272 0.369609i −0.0470101 0.0249190i
\(221\) 5.15934 + 7.10123i 0.347055 + 0.477680i
\(222\) 4.25086 7.27668i 0.285299 0.488379i
\(223\) 13.6942 + 6.97753i 0.917030 + 0.467250i 0.847779 0.530349i \(-0.177939\pi\)
0.0692509 + 0.997599i \(0.477939\pi\)
\(224\) −3.85628 −0.257658
\(225\) −10.7099 10.5022i −0.713996 0.700150i
\(226\) −1.75998 −0.117072
\(227\) −12.4969 6.36747i −0.829445 0.422624i −0.0129084 0.999917i \(-0.504109\pi\)
−0.816537 + 0.577293i \(0.804109\pi\)
\(228\) 5.72144 9.79405i 0.378912 0.648627i
\(229\) 10.1878 + 14.0224i 0.673232 + 0.926624i 0.999828 0.0185396i \(-0.00590167\pi\)
−0.326596 + 0.945164i \(0.605902\pi\)
\(230\) −12.5914 + 12.1904i −0.830254 + 0.803811i
\(231\) 1.98354 1.27378i 0.130507 0.0838085i
\(232\) −4.41506 4.41506i −0.289863 0.289863i
\(233\) 0.384884 + 2.43006i 0.0252146 + 0.159199i 0.997083 0.0763263i \(-0.0243191\pi\)
−0.971868 + 0.235525i \(0.924319\pi\)
\(234\) 6.47640 3.65152i 0.423375 0.238707i
\(235\) −0.154700 + 9.55990i −0.0100915 + 0.623619i
\(236\) −2.19472 + 0.713107i −0.142864 + 0.0464193i
\(237\) −2.35500 + 0.235375i −0.152974 + 0.0152892i
\(238\) −6.20067 12.1695i −0.401930 0.788831i
\(239\) −0.751883 2.31406i −0.0486352 0.149684i 0.923790 0.382901i \(-0.125075\pi\)
−0.972425 + 0.233217i \(0.925075\pi\)
\(240\) 2.95732 + 2.50085i 0.190894 + 0.161429i
\(241\) 0.500207 1.53948i 0.0322212 0.0991666i −0.933653 0.358180i \(-0.883397\pi\)
0.965874 + 0.259013i \(0.0833974\pi\)
\(242\) 10.7415 1.70129i 0.690493 0.109363i
\(243\) −7.44723 13.6945i −0.477740 0.878501i
\(244\) −0.0859239 + 0.118264i −0.00550072 + 0.00757109i
\(245\) −2.47160 17.4254i −0.157905 1.11327i
\(246\) −14.2071 + 3.72918i −0.905814 + 0.237764i
\(247\) 16.0299 + 2.53888i 1.01996 + 0.161545i
\(248\) −1.90338 + 3.73559i −0.120865 + 0.237210i
\(249\) 9.44125 + 3.67955i 0.598315 + 0.233182i
\(250\) 11.1672 + 0.542505i 0.706274 + 0.0343110i
\(251\) 24.7263i 1.56071i 0.625335 + 0.780357i \(0.284962\pi\)
−0.625335 + 0.780357i \(0.715038\pi\)
\(252\) −10.8422 + 4.03544i −0.682994 + 0.254209i
\(253\) −0.432724 + 2.73211i −0.0272052 + 0.171767i
\(254\) −4.36369 + 3.17040i −0.273802 + 0.198929i
\(255\) −3.13691 + 13.3538i −0.196441 + 0.836249i
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) −20.2470 + 20.2470i −1.26297 + 1.26297i −0.313326 + 0.949646i \(0.601443\pi\)
−0.949646 + 0.313326i \(0.898557\pi\)
\(258\) −2.69276 + 12.3579i −0.167644 + 0.769372i
\(259\) −17.8445 5.79802i −1.10880 0.360272i
\(260\) −1.79751 + 5.24200i −0.111477 + 0.325095i
\(261\) −17.0334 7.79306i −1.05434 0.482378i
\(262\) 15.5156 7.90558i 0.958555 0.488408i
\(263\) −2.68232 + 1.36671i −0.165399 + 0.0842750i −0.534730 0.845023i \(-0.679587\pi\)
0.369331 + 0.929298i \(0.379587\pi\)
\(264\) 0.610284 + 0.0351078i 0.0375604 + 0.00216073i
\(265\) −9.84001 0.159232i −0.604467 0.00978157i
\(266\) −24.0178 7.80385i −1.47262 0.478485i
\(267\) 3.46795 + 0.755655i 0.212235 + 0.0462454i
\(268\) −5.35387 + 5.35387i −0.327039 + 0.327039i
\(269\) −10.4918 7.62274i −0.639697 0.464767i 0.220049 0.975489i \(-0.429378\pi\)
−0.859746 + 0.510722i \(0.829378\pi\)
\(270\) 10.9317 + 3.93661i 0.665285 + 0.239574i
\(271\) 13.7784 10.0106i 0.836981 0.608102i −0.0845447 0.996420i \(-0.526944\pi\)
0.921526 + 0.388317i \(0.126944\pi\)
\(272\) 0.554059 3.49819i 0.0335948 0.212109i
\(273\) −11.0133 12.3578i −0.666555 0.747926i
\(274\) 17.9265i 1.08298i
\(275\) 1.46045 0.990501i 0.0880682 0.0597294i
\(276\) 4.92959 12.6487i 0.296726 0.761361i
\(277\) −4.82425 + 9.46812i −0.289861 + 0.568884i −0.989315 0.145793i \(-0.953427\pi\)
0.699454 + 0.714677i \(0.253427\pi\)
\(278\) −17.8007 2.81935i −1.06761 0.169093i
\(279\) −1.44233 + 12.4947i −0.0863502 + 0.748036i
\(280\) 4.03851 7.61871i 0.241347 0.455305i
\(281\) 16.4932 22.7009i 0.983902 1.35422i 0.0492011 0.998789i \(-0.484332\pi\)
0.934701 0.355436i \(-0.115668\pi\)
\(282\) −2.97774 6.78104i −0.177322 0.403805i
\(283\) −25.3567 + 4.01611i −1.50730 + 0.238733i −0.854761 0.519022i \(-0.826296\pi\)
−0.652539 + 0.757755i \(0.726296\pi\)
\(284\) 1.90474 5.86218i 0.113025 0.347856i
\(285\) 13.3579 + 21.5605i 0.791256 + 1.27714i
\(286\) 0.270286 + 0.831854i 0.0159823 + 0.0491886i
\(287\) 14.8467 + 29.1383i 0.876372 + 1.71998i
\(288\) −2.88970 0.805995i −0.170277 0.0474937i
\(289\) −4.23760 + 1.37688i −0.249271 + 0.0809930i
\(290\) 13.3464 4.09898i 0.783726 0.240700i
\(291\) −7.70635 + 9.41786i −0.451754 + 0.552085i
\(292\) −1.63344 10.3131i −0.0955899 0.603531i
\(293\) 24.1559 + 24.1559i 1.41120 + 1.41120i 0.751709 + 0.659495i \(0.229230\pi\)
0.659495 + 0.751709i \(0.270770\pi\)
\(294\) 7.36648 + 11.4711i 0.429622 + 0.669010i
\(295\) 0.889572 5.08283i 0.0517929 0.295934i
\(296\) −2.85988 3.93629i −0.166227 0.228792i
\(297\) 1.75260 0.539930i 0.101696 0.0313299i
\(298\) 4.14221 + 2.11056i 0.239952 + 0.122262i
\(299\) 19.4242 1.12333
\(300\) −8.03792 + 3.22363i −0.464070 + 0.186117i
\(301\) 28.1596 1.62309
\(302\) 13.0575 + 6.65314i 0.751376 + 0.382845i
\(303\) 14.3376 + 8.37569i 0.823675 + 0.481171i
\(304\) −3.84926 5.29805i −0.220770 0.303864i
\(305\) −0.143666 0.293610i −0.00822629 0.0168121i
\(306\) −2.10294 10.4152i −0.120217 0.595398i
\(307\) −12.8970 12.8970i −0.736071 0.736071i 0.235744 0.971815i \(-0.424247\pi\)
−0.971815 + 0.235744i \(0.924247\pi\)
\(308\) −0.212907 1.34424i −0.0121315 0.0765952i
\(309\) 8.91809 + 7.29740i 0.507333 + 0.415135i
\(310\) −5.38694 7.67255i −0.305958 0.435772i
\(311\) 15.4255 5.01205i 0.874699 0.284207i 0.162945 0.986635i \(-0.447901\pi\)
0.711755 + 0.702428i \(0.247901\pi\)
\(312\) −0.426897 4.27124i −0.0241683 0.241812i
\(313\) 2.45198 + 4.81228i 0.138594 + 0.272006i 0.949863 0.312668i \(-0.101223\pi\)
−0.811269 + 0.584674i \(0.801223\pi\)
\(314\) −1.38637 4.26680i −0.0782372 0.240789i
\(315\) 3.38188 25.6467i 0.190547 1.44503i
\(316\) −0.422251 + 1.29956i −0.0237535 + 0.0731057i
\(317\) −8.47316 + 1.34202i −0.475900 + 0.0753752i −0.389777 0.920909i \(-0.627448\pi\)
−0.0861233 + 0.996284i \(0.527448\pi\)
\(318\) 6.97973 3.06499i 0.391404 0.171876i
\(319\) 1.29527 1.78278i 0.0725210 0.0998166i
\(320\) 2.00852 0.982784i 0.112279 0.0549393i
\(321\) 6.48862 + 24.7198i 0.362160 + 1.37973i
\(322\) −29.8523 4.72815i −1.66361 0.263489i
\(323\) 10.5300 20.6663i 0.585905 1.14990i
\(324\) −8.96804 + 0.757846i −0.498224 + 0.0421025i
\(325\) −8.47399 9.04099i −0.470052 0.501504i
\(326\) 10.8202i 0.599276i
\(327\) 14.3740 12.8102i 0.794884 0.708404i
\(328\) −1.32662 + 8.37596i −0.0732504 + 0.462485i
\(329\) −13.3399 + 9.69197i −0.735450 + 0.534336i
\(330\) −0.708486 + 1.16895i −0.0390008 + 0.0643486i
\(331\) 22.9895 + 16.7029i 1.26362 + 0.918073i 0.998929 0.0462607i \(-0.0147305\pi\)
0.264690 + 0.964334i \(0.414731\pi\)
\(332\) 4.13675 4.13675i 0.227034 0.227034i
\(333\) −12.1599 8.07440i −0.666360 0.442474i
\(334\) 15.9719 + 5.18960i 0.873946 + 0.283962i
\(335\) −4.97057 16.1843i −0.271571 0.884244i
\(336\) −0.383604 + 6.66824i −0.0209273 + 0.363783i
\(337\) −4.22871 + 2.15464i −0.230353 + 0.117371i −0.565358 0.824846i \(-0.691262\pi\)
0.335005 + 0.942216i \(0.391262\pi\)
\(338\) −6.11059 + 3.11350i −0.332372 + 0.169352i
\(339\) −0.175074 + 3.04335i −0.00950874 + 0.165292i
\(340\) 6.33101 + 4.75814i 0.343347 + 0.258046i
\(341\) −1.40726 0.457245i −0.0762072 0.0247612i
\(342\) −16.3666 10.8677i −0.885007 0.587660i
\(343\) 2.37470 2.37470i 0.128222 0.128222i
\(344\) 5.90767 + 4.29217i 0.318520 + 0.231418i
\(345\) 19.8270 + 22.9856i 1.06745 + 1.23750i
\(346\) 14.0925 10.2388i 0.757620 0.550443i
\(347\) −1.25574 + 7.92843i −0.0674116 + 0.425620i 0.930784 + 0.365570i \(0.119126\pi\)
−0.998195 + 0.0600500i \(0.980874\pi\)
\(348\) −8.07367 + 7.19529i −0.432794 + 0.385708i
\(349\) 18.9234i 1.01295i 0.862256 + 0.506474i \(0.169051\pi\)
−0.862256 + 0.506474i \(0.830949\pi\)
\(350\) 10.8227 + 15.9575i 0.578496 + 0.852964i
\(351\) −5.66994 11.5622i −0.302639 0.617143i
\(352\) 0.160227 0.314463i 0.00854013 0.0167609i
\(353\) 4.66620 + 0.739053i 0.248357 + 0.0393358i 0.279371 0.960183i \(-0.409874\pi\)
−0.0310149 + 0.999519i \(0.509874\pi\)
\(354\) 1.01478 + 3.86602i 0.0539349 + 0.205477i
\(355\) 9.58695 + 9.90233i 0.508823 + 0.525561i
\(356\) 1.20449 1.65784i 0.0638379 0.0878654i
\(357\) −21.6602 + 9.51159i −1.14638 + 0.503406i
\(358\) 7.25818 1.14958i 0.383607 0.0607573i
\(359\) −4.67561 + 14.3900i −0.246769 + 0.759478i 0.748571 + 0.663054i \(0.230740\pi\)
−0.995340 + 0.0964232i \(0.969260\pi\)
\(360\) 4.61864 4.86500i 0.243423 0.256408i
\(361\) −7.38121 22.7170i −0.388485 1.19563i
\(362\) 0.304777 + 0.598158i 0.0160187 + 0.0314385i
\(363\) −1.87335 18.7434i −0.0983252 0.983775i
\(364\) −9.08922 + 2.95327i −0.476405 + 0.154793i
\(365\) 22.0859 + 7.57338i 1.15603 + 0.396409i
\(366\) 0.195954 + 0.160343i 0.0102427 + 0.00838128i
\(367\) −5.73021 36.1791i −0.299114 1.88853i −0.439193 0.898393i \(-0.644735\pi\)
0.140078 0.990140i \(-0.455265\pi\)
\(368\) −5.54211 5.54211i −0.288902 0.288902i
\(369\) 5.03522 + 24.9378i 0.262123 + 1.29821i
\(370\) 10.7718 1.52786i 0.560000 0.0794297i
\(371\) −9.97595 13.7307i −0.517926 0.712864i
\(372\) 6.27021 + 3.66290i 0.325095 + 0.189913i
\(373\) −1.97517 1.00640i −0.102270 0.0521093i 0.402107 0.915593i \(-0.368278\pi\)
−0.504377 + 0.863483i \(0.668278\pi\)
\(374\) 1.25001 0.0646363
\(375\) 2.04895 19.2562i 0.105807 0.994387i
\(376\) −4.27588 −0.220512
\(377\) −13.7875 7.02506i −0.710090 0.361809i
\(378\) 5.89952 + 19.1497i 0.303439 + 0.984952i
\(379\) 4.15559 + 5.71968i 0.213458 + 0.293800i 0.902297 0.431114i \(-0.141879\pi\)
−0.688839 + 0.724914i \(0.741879\pi\)
\(380\) 14.4983 2.05643i 0.743749 0.105492i
\(381\) 5.04816 + 7.86103i 0.258625 + 0.402733i
\(382\) 9.96347 + 9.96347i 0.509775 + 0.509775i
\(383\) −2.17700 13.7450i −0.111240 0.702339i −0.978771 0.204957i \(-0.934295\pi\)
0.867532 0.497382i \(-0.165705\pi\)
\(384\) −1.09687 + 1.34048i −0.0559744 + 0.0684059i
\(385\) 2.87874 + 0.987133i 0.146714 + 0.0503090i
\(386\) 3.89161 1.26446i 0.198078 0.0643593i
\(387\) 21.1014 + 5.88560i 1.07264 + 0.299182i
\(388\) 3.18963 + 6.26000i 0.161929 + 0.317803i
\(389\) 4.65972 + 14.3411i 0.236257 + 0.727125i 0.996952 + 0.0780155i \(0.0248584\pi\)
−0.760695 + 0.649110i \(0.775142\pi\)
\(390\) 8.88562 + 3.62968i 0.449941 + 0.183796i
\(391\) 8.57820 26.4010i 0.433818 1.33515i
\(392\) 7.77397 1.23128i 0.392645 0.0621888i
\(393\) −12.1268 27.6158i −0.611719 1.39303i
\(394\) −13.3665 + 18.3974i −0.673395 + 0.926849i
\(395\) −2.12528 2.19519i −0.106934 0.110452i
\(396\) 0.121416 1.05181i 0.00610139 0.0528552i
\(397\) −13.6256 2.15808i −0.683849 0.108311i −0.195163 0.980771i \(-0.562524\pi\)
−0.488686 + 0.872460i \(0.662524\pi\)
\(398\) −2.86862 + 5.62998i −0.143791 + 0.282205i
\(399\) −15.8835 + 40.7551i −0.795171 + 2.04031i
\(400\) −0.161779 + 4.99738i −0.00808895 + 0.249869i
\(401\) 15.8196i 0.789991i −0.918683 0.394995i \(-0.870746\pi\)
0.918683 0.394995i \(-0.129254\pi\)
\(402\) 8.72529 + 9.79044i 0.435178 + 0.488303i
\(403\) −1.62541 + 10.2624i −0.0809674 + 0.511208i
\(404\) 7.75588 5.63497i 0.385869 0.280350i
\(405\) 7.89459 18.5115i 0.392285 0.919844i
\(406\) 19.4795 + 14.1527i 0.966750 + 0.702385i
\(407\) 1.21424 1.21424i 0.0601875 0.0601875i
\(408\) −5.99393 1.30606i −0.296744 0.0646595i
\(409\) −5.65867 1.83861i −0.279803 0.0909136i 0.165754 0.986167i \(-0.446994\pi\)
−0.445557 + 0.895254i \(0.646994\pi\)
\(410\) −15.1588 11.3927i −0.748638 0.562647i
\(411\) −30.9984 1.78324i −1.52904 0.0879610i
\(412\) 5.92780 3.02037i 0.292042 0.148803i
\(413\) 7.92905 4.04005i 0.390163 0.198798i
\(414\) −21.3816 9.78243i −1.05085 0.480780i
\(415\) 3.84060 + 12.5051i 0.188527 + 0.613850i
\(416\) −2.35699 0.765834i −0.115561 0.0375481i
\(417\) −6.64591 + 30.5003i −0.325452 + 1.49361i
\(418\) 1.63430 1.63430i 0.0799363 0.0799363i
\(419\) 3.49605 + 2.54003i 0.170793 + 0.124088i 0.669898 0.742453i \(-0.266338\pi\)
−0.499105 + 0.866542i \(0.666338\pi\)
\(420\) −12.7725 7.74124i −0.623233 0.377734i
\(421\) −20.2471 + 14.7103i −0.986781 + 0.716939i −0.959214 0.282681i \(-0.908776\pi\)
−0.0275674 + 0.999620i \(0.508776\pi\)
\(422\) −0.650182 + 4.10508i −0.0316503 + 0.199832i
\(423\) −12.0219 + 4.47453i −0.584526 + 0.217559i
\(424\) 4.40116i 0.213739i
\(425\) −16.0307 + 7.52496i −0.777603 + 0.365014i
\(426\) −9.94736 3.87680i −0.481951 0.187831i
\(427\) 0.255924 0.502279i 0.0123850 0.0243070i
\(428\) 14.5738 + 2.30827i 0.704452 + 0.111574i
\(429\) 1.46532 0.384627i 0.0707464 0.0185700i
\(430\) −14.6667 + 7.17656i −0.707293 + 0.346085i
\(431\) −4.11469 + 5.66339i −0.198198 + 0.272796i −0.896535 0.442973i \(-0.853924\pi\)
0.698337 + 0.715769i \(0.253924\pi\)
\(432\) −1.68117 + 4.91667i −0.0808855 + 0.236553i
\(433\) −9.74698 + 1.54377i −0.468410 + 0.0741889i −0.386178 0.922424i \(-0.626205\pi\)
−0.0822322 + 0.996613i \(0.526205\pi\)
\(434\) 4.99607 15.3763i 0.239819 0.738087i
\(435\) −5.76028 23.4862i −0.276184 1.12608i
\(436\) −3.43511 10.5722i −0.164512 0.506315i
\(437\) −23.3021 45.7330i −1.11469 2.18770i
\(438\) −17.9959 + 1.79863i −0.859877 + 0.0859420i
\(439\) −0.555271 + 0.180419i −0.0265016 + 0.00861091i −0.322238 0.946659i \(-0.604435\pi\)
0.295736 + 0.955270i \(0.404435\pi\)
\(440\) 0.453475 + 0.645879i 0.0216186 + 0.0307911i
\(441\) 20.5686 11.5970i 0.979456 0.552237i
\(442\) −1.37312 8.66953i −0.0653126 0.412368i
\(443\) −6.33032 6.33032i −0.300763 0.300763i 0.540549 0.841312i \(-0.318216\pi\)
−0.841312 + 0.540549i \(0.818216\pi\)
\(444\) −7.09108 + 4.55372i −0.336528 + 0.216110i
\(445\) 2.01393 + 4.11586i 0.0954692 + 0.195110i
\(446\) −9.03387 12.4341i −0.427766 0.588770i
\(447\) 4.06161 6.95273i 0.192108 0.328853i
\(448\) 3.43597 + 1.75071i 0.162334 + 0.0827134i
\(449\) 18.3782 0.867322 0.433661 0.901076i \(-0.357221\pi\)
0.433661 + 0.901076i \(0.357221\pi\)
\(450\) 4.77471 + 14.2198i 0.225082 + 0.670327i
\(451\) −2.99298 −0.140934
\(452\) 1.56816 + 0.799015i 0.0737598 + 0.0375825i
\(453\) 12.8035 21.9171i 0.601559 1.02976i
\(454\) 8.24401 + 11.3469i 0.386911 + 0.532537i
\(455\) 3.68408 21.0501i 0.172713 0.986843i
\(456\) −9.54425 + 6.12908i −0.446950 + 0.287021i
\(457\) −24.7918 24.7918i −1.15971 1.15971i −0.984537 0.175174i \(-0.943951\pi\)
−0.175174 0.984537i \(-0.556049\pi\)
\(458\) −2.71142 17.1192i −0.126696 0.799928i
\(459\) −18.2191 + 2.60034i −0.850394 + 0.121373i
\(460\) 16.7534 5.14534i 0.781130 0.239903i
\(461\) −0.133994 + 0.0435374i −0.00624074 + 0.00202774i −0.312136 0.950038i \(-0.601044\pi\)
0.305895 + 0.952065i \(0.401044\pi\)
\(462\) −2.34563 + 0.234438i −0.109129 + 0.0109071i
\(463\) −4.02806 7.90552i −0.187200 0.367401i 0.778264 0.627937i \(-0.216101\pi\)
−0.965464 + 0.260537i \(0.916101\pi\)
\(464\) 1.92945 + 5.93824i 0.0895725 + 0.275676i
\(465\) −13.8032 + 8.55183i −0.640107 + 0.396582i
\(466\) 0.760291 2.33993i 0.0352198 0.108395i
\(467\) 4.81480 0.762590i 0.222803 0.0352885i −0.0440349 0.999030i \(-0.514021\pi\)
0.266838 + 0.963742i \(0.414021\pi\)
\(468\) −7.42827 + 0.313305i −0.343372 + 0.0144825i
\(469\) 17.1621 23.6216i 0.792470 1.09074i
\(470\) 4.47794 8.44770i 0.206552 0.389663i
\(471\) −7.51602 + 1.97285i −0.346320 + 0.0909043i
\(472\) 2.27925 + 0.360998i 0.104911 + 0.0166163i
\(473\) −1.17002 + 2.29630i −0.0537977 + 0.105584i
\(474\) 2.20518 + 0.859427i 0.101287 + 0.0394748i
\(475\) −11.1207 + 30.7975i −0.510251 + 1.41308i
\(476\) 13.6581i 0.626020i
\(477\) −4.60564 12.3742i −0.210878 0.566575i
\(478\) −0.380627 + 2.40319i −0.0174095 + 0.109919i
\(479\) 11.5308 8.37759i 0.526854 0.382782i −0.292326 0.956319i \(-0.594429\pi\)
0.819180 + 0.573537i \(0.194429\pi\)
\(480\) −1.49963 3.57087i −0.0684482 0.162987i
\(481\) −9.75526 7.08761i −0.444802 0.323167i
\(482\) −1.14460 + 1.14460i −0.0521349 + 0.0521349i
\(483\) −11.1454 + 51.1501i −0.507135 + 2.32741i
\(484\) −10.3432 3.36070i −0.470144 0.152759i
\(485\) −15.7080 0.254189i −0.713265 0.0115421i
\(486\) 0.418364 + 15.5828i 0.0189774 + 0.706852i
\(487\) −31.0777 + 15.8349i −1.40827 + 0.717547i −0.982321 0.187202i \(-0.940058\pi\)
−0.425945 + 0.904749i \(0.640058\pi\)
\(488\) 0.130250 0.0663655i 0.00589612 0.00300422i
\(489\) 18.7102 + 1.07634i 0.846106 + 0.0486739i
\(490\) −5.70876 + 16.6482i −0.257895 + 0.752090i
\(491\) 5.09165 + 1.65438i 0.229783 + 0.0746610i 0.421645 0.906761i \(-0.361453\pi\)
−0.191862 + 0.981422i \(0.561453\pi\)
\(492\) 14.3517 + 3.12718i 0.647023 + 0.140984i
\(493\) −15.6372 + 15.6372i −0.704266 + 0.704266i
\(494\) −13.1301 9.53958i −0.590751 0.429206i
\(495\) 1.95086 + 1.34139i 0.0876848 + 0.0602909i
\(496\) 3.39184 2.46432i 0.152298 0.110651i
\(497\) −3.71838 + 23.4769i −0.166792 + 1.05308i
\(498\) −6.74174 7.56474i −0.302104 0.338984i
\(499\) 8.93736i 0.400091i −0.979787 0.200046i \(-0.935891\pi\)
0.979787 0.200046i \(-0.0641090\pi\)
\(500\) −9.70373 5.55316i −0.433964 0.248345i
\(501\) 10.5626 27.1023i 0.471903 1.21084i
\(502\) 11.2255 22.0313i 0.501020 0.983307i
\(503\) −2.88408 0.456793i −0.128595 0.0203674i 0.0918053 0.995777i \(-0.470736\pi\)
−0.220400 + 0.975410i \(0.570736\pi\)
\(504\) 11.4925 + 1.32665i 0.511917 + 0.0590936i
\(505\) 3.01043 + 21.2243i 0.133962 + 0.944468i
\(506\) 1.62591 2.23788i 0.0722807 0.0994859i
\(507\) 4.77599 + 10.8761i 0.212109 + 0.483025i
\(508\) 5.32741 0.843778i 0.236365 0.0374366i
\(509\) 3.24395 9.98385i 0.143786 0.442527i −0.853067 0.521801i \(-0.825260\pi\)
0.996853 + 0.0792745i \(0.0252604\pi\)
\(510\) 8.85751 10.4742i 0.392217 0.463806i
\(511\) 12.4429 + 38.2953i 0.550441 + 1.69408i
\(512\) 0.453990 + 0.891007i 0.0200637 + 0.0393773i
\(513\) −20.4205 + 27.2200i −0.901586 + 1.20179i
\(514\) 27.2321 8.84825i 1.20116 0.390280i
\(515\) −0.240701 + 14.8745i −0.0106065 + 0.655447i
\(516\) 8.00965 9.78853i 0.352605 0.430916i
\(517\) −0.236073 1.49051i −0.0103825 0.0655524i
\(518\) 13.2673 + 13.2673i 0.582932 + 0.582932i
\(519\) −16.3030 25.3872i −0.715624 1.11437i
\(520\) 3.98141 3.85461i 0.174596 0.169036i
\(521\) −11.1471 15.3427i −0.488364 0.672175i 0.491722 0.870753i \(-0.336368\pi\)
−0.980085 + 0.198578i \(0.936368\pi\)
\(522\) 11.6389 + 14.6767i 0.509421 + 0.642381i
\(523\) 21.7058 + 11.0596i 0.949127 + 0.483604i 0.858802 0.512308i \(-0.171209\pi\)
0.0903250 + 0.995912i \(0.471209\pi\)
\(524\) −17.4135 −0.760714
\(525\) 28.6702 17.1271i 1.25127 0.747487i
\(526\) 3.01044 0.131261
\(527\) 13.2307 + 6.74137i 0.576338 + 0.293659i
\(528\) −0.527829 0.308344i −0.0229708 0.0134190i
\(529\) −22.5886 31.0905i −0.982111 1.35176i
\(530\) 8.69523 + 4.60915i 0.377696 + 0.200209i
\(531\) 6.78604 1.37017i 0.294489 0.0594605i
\(532\) 17.8571 + 17.8571i 0.774205 + 0.774205i
\(533\) 3.28775 + 20.7580i 0.142408 + 0.899131i
\(534\) −2.74691 2.24771i −0.118870 0.0972680i
\(535\) −19.8229 + 26.3756i −0.857018 + 1.14032i
\(536\) 7.20094 2.33973i 0.311033 0.101061i
\(537\) −1.26584 12.6651i −0.0546251 0.546541i
\(538\) 5.88761 + 11.5551i 0.253833 + 0.498175i
\(539\) 0.858409 + 2.64191i 0.0369743 + 0.113795i
\(540\) −7.95308 8.47045i −0.342246 0.364510i
\(541\) 8.94591 27.5327i 0.384615 1.18372i −0.552144 0.833749i \(-0.686190\pi\)
0.936759 0.349974i \(-0.113810\pi\)
\(542\) −16.8214 + 2.66425i −0.722542 + 0.114439i
\(543\) 1.06465 0.467516i 0.0456884 0.0200630i
\(544\) −2.08182 + 2.86537i −0.0892571 + 0.122852i
\(545\) 24.4845 + 4.28516i 1.04880 + 0.183556i
\(546\) 4.20261 + 16.0108i 0.179855 + 0.685198i
\(547\) 12.9801 + 2.05584i 0.554988 + 0.0879014i 0.427627 0.903955i \(-0.359350\pi\)
0.127360 + 0.991857i \(0.459350\pi\)
\(548\) −8.13848 + 15.9727i −0.347659 + 0.682319i
\(549\) 0.296757 0.322892i 0.0126653 0.0137807i
\(550\) −1.75094 + 0.219514i −0.0746605 + 0.00936011i
\(551\) 40.8893i 1.74194i
\(552\) −10.1347 + 9.03207i −0.431360 + 0.384430i
\(553\) 0.824307 5.20447i 0.0350531 0.221317i
\(554\) 8.59687 6.24599i 0.365246 0.265367i
\(555\) −1.57044 18.7785i −0.0666614 0.797104i
\(556\) 14.5805 + 10.5934i 0.618353 + 0.449260i
\(557\) 24.6270 24.6270i 1.04348 1.04348i 0.0444707 0.999011i \(-0.485840\pi\)
0.999011 0.0444707i \(-0.0141601\pi\)
\(558\) 6.95759 10.4780i 0.294538 0.443570i
\(559\) 17.2114 + 5.59233i 0.727966 + 0.236530i
\(560\) −7.05717 + 4.95488i −0.298220 + 0.209382i
\(561\) 0.124345 2.16150i 0.00524983 0.0912587i
\(562\) −25.0016 + 12.7389i −1.05463 + 0.537359i
\(563\) 8.71723 4.44165i 0.367388 0.187193i −0.260544 0.965462i \(-0.583902\pi\)
0.627931 + 0.778269i \(0.283902\pi\)
\(564\) −0.425343 + 7.39381i −0.0179102 + 0.311336i
\(565\) −3.22085 + 2.26138i −0.135502 + 0.0951368i
\(566\) 24.4163 + 7.93332i 1.02629 + 0.333462i
\(567\) 33.7003 8.29649i 1.41528 0.348420i
\(568\) −4.35851 + 4.35851i −0.182879 + 0.182879i
\(569\) −8.66014 6.29196i −0.363052 0.263773i 0.391272 0.920275i \(-0.372035\pi\)
−0.754324 + 0.656502i \(0.772035\pi\)
\(570\) −2.11373 25.2750i −0.0885345 1.05865i
\(571\) 12.5798 9.13980i 0.526450 0.382489i −0.292578 0.956242i \(-0.594513\pi\)
0.819028 + 0.573753i \(0.194513\pi\)
\(572\) 0.136828 0.863895i 0.00572105 0.0361213i
\(573\) 18.2199 16.2376i 0.761146 0.678337i
\(574\) 32.7026i 1.36498i
\(575\) −7.37961 + 38.4875i −0.307751 + 1.60504i
\(576\) 2.20883 + 2.03004i 0.0920345 + 0.0845852i
\(577\) −6.76199 + 13.2712i −0.281505 + 0.552485i −0.987855 0.155378i \(-0.950341\pi\)
0.706350 + 0.707863i \(0.250341\pi\)
\(578\) 4.40082 + 0.697022i 0.183050 + 0.0289923i
\(579\) −1.79938 6.85512i −0.0747795 0.284889i
\(580\) −13.7526 2.40691i −0.571046 0.0999417i
\(581\) −13.2606 + 18.2516i −0.550140 + 0.757203i
\(582\) 11.1420 4.89277i 0.461852 0.202812i
\(583\) 1.53418 0.242990i 0.0635392 0.0100636i
\(584\) −3.22666 + 9.93064i −0.133520 + 0.410933i
\(585\) 7.16032 15.0039i 0.296043 0.620334i
\(586\) −10.5565 32.4896i −0.436086 1.34213i
\(587\) −11.6079 22.7817i −0.479108 0.940302i −0.996423 0.0845070i \(-0.973068\pi\)
0.517315 0.855795i \(-0.326932\pi\)
\(588\) −1.35580 13.5652i −0.0559121 0.559418i
\(589\) 26.1121 8.48435i 1.07593 0.349592i
\(590\) −3.10017 + 4.12498i −0.127632 + 0.169823i
\(591\) 30.4830 + 24.9433i 1.25390 + 1.02603i
\(592\) 0.761135 + 4.80562i 0.0312825 + 0.197510i
\(593\) 5.46116 + 5.46116i 0.224263 + 0.224263i 0.810291 0.586028i \(-0.199309\pi\)
−0.586028 + 0.810291i \(0.699309\pi\)
\(594\) −1.80670 0.314580i −0.0741297 0.0129074i
\(595\) −26.9839 14.3036i −1.10623 0.586390i
\(596\) −2.73256 3.76105i −0.111930 0.154058i
\(597\) 9.44996 + 5.52043i 0.386761 + 0.225936i
\(598\) −17.3071 8.81838i −0.707738 0.360611i
\(599\) 20.6409 0.843363 0.421681 0.906744i \(-0.361440\pi\)
0.421681 + 0.906744i \(0.361440\pi\)
\(600\) 8.62534 + 0.776862i 0.352128 + 0.0317153i
\(601\) 17.9854 0.733642 0.366821 0.930292i \(-0.380446\pi\)
0.366821 + 0.930292i \(0.380446\pi\)
\(602\) −25.0904 12.7842i −1.02261 0.521045i
\(603\) 17.7975 14.1138i 0.724770 0.574758i
\(604\) −8.61387 11.8560i −0.350494 0.482413i
\(605\) 17.4716 16.9151i 0.710320 0.687697i
\(606\) −8.97244 13.9719i −0.364480 0.567571i
\(607\) 5.54524 + 5.54524i 0.225074 + 0.225074i 0.810631 0.585557i \(-0.199124\pi\)
−0.585557 + 0.810631i \(0.699124\pi\)
\(608\) 1.02445 + 6.46812i 0.0415469 + 0.262317i
\(609\) 26.4104 32.2759i 1.07020 1.30789i
\(610\) −0.00528883 + 0.326831i −0.000214138 + 0.0132330i
\(611\) −10.0782 + 3.27461i −0.407721 + 0.132477i
\(612\) −2.85467 + 10.2347i −0.115393 + 0.413715i
\(613\) −2.13588 4.19191i −0.0862676 0.169310i 0.843842 0.536592i \(-0.180288\pi\)
−0.930110 + 0.367282i \(0.880288\pi\)
\(614\) 5.63620 + 17.3464i 0.227459 + 0.700045i
\(615\) −21.2082 + 25.0791i −0.855195 + 1.01129i
\(616\) −0.420571 + 1.29439i −0.0169453 + 0.0521523i
\(617\) 40.5328 6.41977i 1.63179 0.258450i 0.727733 0.685861i \(-0.240574\pi\)
0.904058 + 0.427410i \(0.140574\pi\)
\(618\) −4.63313 10.5508i −0.186372 0.424414i
\(619\) −10.1486 + 13.9684i −0.407908 + 0.561438i −0.962707 0.270547i \(-0.912795\pi\)
0.554798 + 0.831985i \(0.312795\pi\)
\(620\) 1.31654 + 9.28192i 0.0528733 + 0.372771i
\(621\) −19.0426 + 35.9998i −0.764155 + 1.44462i
\(622\) −16.0196 2.53726i −0.642329 0.101735i
\(623\) −3.58757 + 7.04100i −0.143733 + 0.282092i
\(624\) −1.55874 + 3.99951i −0.0623994 + 0.160109i
\(625\) 21.1335 13.3557i 0.845340 0.534229i
\(626\) 5.40095i 0.215865i
\(627\) −2.66345 2.98859i −0.106368 0.119353i
\(628\) −0.701824 + 4.43114i −0.0280058 + 0.176822i
\(629\) −13.9415 + 10.1291i −0.555885 + 0.403874i
\(630\) −14.6566 + 21.3160i −0.583934 + 0.849250i
\(631\) −29.4746 21.4146i −1.17337 0.852501i −0.181959 0.983306i \(-0.558244\pi\)
−0.991408 + 0.130805i \(0.958244\pi\)
\(632\) 0.966214 0.966214i 0.0384339 0.0384339i
\(633\) 7.03380 + 1.53264i 0.279569 + 0.0609171i
\(634\) 8.15891 + 2.65099i 0.324032 + 0.105284i
\(635\) −3.91214 + 11.4088i −0.155249 + 0.452745i
\(636\) −7.61046 0.437806i −0.301774 0.0173601i
\(637\) 17.3803 8.85568i 0.688631 0.350875i
\(638\) −1.96346 + 1.00043i −0.0777340 + 0.0396074i
\(639\) −7.69324 + 16.8152i −0.304340 + 0.665201i
\(640\) −2.23578 0.0361796i −0.0883768 0.00143013i
\(641\) −28.1775 9.15543i −1.11294 0.361618i −0.305874 0.952072i \(-0.598949\pi\)
−0.807071 + 0.590454i \(0.798949\pi\)
\(642\) 5.44117 24.9713i 0.214746 0.985539i
\(643\) 16.2471 16.2471i 0.640721 0.640721i −0.310012 0.950733i \(-0.600333\pi\)
0.950733 + 0.310012i \(0.100333\pi\)
\(644\) 24.4521 + 17.7655i 0.963547 + 0.700058i
\(645\) 10.9507 + 26.0755i 0.431183 + 1.02672i
\(646\) −18.7646 + 13.6333i −0.738284 + 0.536394i
\(647\) −0.280589 + 1.77157i −0.0110311 + 0.0696477i −0.992590 0.121513i \(-0.961225\pi\)
0.981559 + 0.191161i \(0.0612253\pi\)
\(648\) 8.33463 + 3.39616i 0.327415 + 0.133414i
\(649\) 0.814444i 0.0319697i
\(650\) 3.44585 + 11.9027i 0.135157 + 0.466862i
\(651\) −26.0916 10.1687i −1.02261 0.398544i
\(652\) 4.91227 9.64088i 0.192379 0.377566i
\(653\) −26.3159 4.16803i −1.02982 0.163107i −0.381416 0.924404i \(-0.624563\pi\)
−0.648404 + 0.761296i \(0.724563\pi\)
\(654\) −18.6230 + 4.88829i −0.728218 + 0.191147i
\(655\) 18.2364 34.4033i 0.712557 1.34425i
\(656\) 4.98463 6.86076i 0.194617 0.267868i
\(657\) 1.32004 + 31.2973i 0.0514996 + 1.22102i
\(658\) 16.2860 2.57944i 0.634893 0.100557i
\(659\) 2.02081 6.21940i 0.0787195 0.242274i −0.903951 0.427637i \(-0.859346\pi\)
0.982670 + 0.185363i \(0.0593462\pi\)
\(660\) 1.16196 0.719897i 0.0452291 0.0280219i
\(661\) 5.97584 + 18.3917i 0.232433 + 0.715356i 0.997452 + 0.0713473i \(0.0227299\pi\)
−0.765018 + 0.644008i \(0.777270\pi\)
\(662\) −12.9009 25.3194i −0.501407 0.984066i
\(663\) −15.1279 + 1.51198i −0.587518 + 0.0587206i
\(664\) −5.56392 + 1.80783i −0.215922 + 0.0701573i
\(665\) −53.9807 + 16.5787i −2.09328 + 0.642894i
\(666\) 7.16887 + 12.7148i 0.277788 + 0.492690i
\(667\) 7.65551 + 48.3350i 0.296422 + 1.87154i
\(668\) −11.8751 11.8751i −0.459461 0.459461i
\(669\) −22.3995 + 14.3844i −0.866015 + 0.556134i
\(670\) −2.91872 + 16.6769i −0.112760 + 0.644286i
\(671\) 0.0303252 + 0.0417390i 0.00117069 + 0.00161132i
\(672\) 3.36911 5.76730i 0.129966 0.222478i
\(673\) 39.1978 + 19.9723i 1.51096 + 0.769874i 0.996170 0.0874407i \(-0.0278688\pi\)
0.514793 + 0.857315i \(0.327869\pi\)
\(674\) 4.74599 0.182809
\(675\) 25.0637 6.84187i 0.964702 0.263344i
\(676\) 6.85808 0.263772
\(677\) 33.3683 + 17.0020i 1.28245 + 0.653440i 0.956441 0.291927i \(-0.0942963\pi\)
0.326008 + 0.945367i \(0.394296\pi\)
\(678\) 1.53764 2.63216i 0.0590528 0.101087i
\(679\) −15.9250 21.9189i −0.611147 0.841171i
\(680\) −3.48082 7.11375i −0.133483 0.272800i
\(681\) 20.4411 13.1267i 0.783303 0.503018i
\(682\) 1.04629 + 1.04629i 0.0400645 + 0.0400645i
\(683\) −5.33840 33.7054i −0.204268 1.28970i −0.850263 0.526358i \(-0.823557\pi\)
0.645995 0.763342i \(-0.276443\pi\)
\(684\) 9.64894 + 17.1135i 0.368937 + 0.654352i
\(685\) −23.0336 32.8064i −0.880067 1.25347i
\(686\) −3.19397 + 1.03778i −0.121946 + 0.0396228i
\(687\) −29.8721 + 2.98562i −1.13969 + 0.113909i
\(688\) −3.31516 6.50638i −0.126389 0.248053i
\(689\) −3.37056 10.3735i −0.128408 0.395199i
\(690\) −7.23074 29.4816i −0.275269 1.12235i
\(691\) −9.75674 + 30.0282i −0.371164 + 1.14232i 0.574867 + 0.818247i \(0.305054\pi\)
−0.946030 + 0.324078i \(0.894946\pi\)
\(692\) −17.2049 + 2.72498i −0.654031 + 0.103588i
\(693\) 0.172057 + 4.07936i 0.00653591 + 0.154962i
\(694\) 4.71830 6.49419i 0.179104 0.246516i
\(695\) −36.1986 + 17.7123i −1.37309 + 0.671865i
\(696\) 10.4603 2.74568i 0.396496 0.104075i
\(697\) 29.6659 + 4.69862i 1.12368 + 0.177973i
\(698\) 8.59105 16.8609i 0.325176 0.638194i
\(699\) −3.97056 1.54745i −0.150181 0.0585301i
\(700\) −2.39851 19.1316i −0.0906552 0.723107i
\(701\) 41.1349i 1.55364i 0.629720 + 0.776822i \(0.283170\pi\)
−0.629720 + 0.776822i \(0.716830\pi\)
\(702\) −0.197163 + 12.8761i −0.00744143 + 0.485976i
\(703\) −4.98448 + 31.4708i −0.187993 + 1.18694i
\(704\) −0.285527 + 0.207447i −0.0107612 + 0.00781846i
\(705\) −14.1623 8.58356i −0.533381 0.323275i
\(706\) −3.82209 2.77691i −0.143846 0.104510i
\(707\) −26.1413 + 26.1413i −0.983143 + 0.983143i
\(708\) 0.850963 3.90535i 0.0319812 0.146772i
\(709\) −48.5191 15.7648i −1.82217 0.592060i −0.999731 0.0232123i \(-0.992611\pi\)
−0.822443 0.568848i \(-0.807389\pi\)
\(710\) −4.04647 13.1754i −0.151861 0.494465i
\(711\) 1.70547 3.72768i 0.0639603 0.139799i
\(712\) −1.82585 + 0.930319i −0.0684268 + 0.0348652i
\(713\) 29.2785 14.9181i 1.09649 0.558689i
\(714\) 23.6176 + 1.35865i 0.883865 + 0.0508460i
\(715\) 1.56347 + 1.17505i 0.0584706 + 0.0439442i
\(716\) −6.98899 2.27086i −0.261191 0.0848660i
\(717\) 4.11771 + 0.897235i 0.153779 + 0.0335079i
\(718\) 10.6989 10.6989i 0.399281 0.399281i
\(719\) −29.8994 21.7232i −1.11506 0.810138i −0.131606 0.991302i \(-0.542013\pi\)
−0.983453 + 0.181164i \(0.942013\pi\)
\(720\) −6.32390 + 2.23793i −0.235678 + 0.0834026i
\(721\) −20.7558 + 15.0800i −0.772985 + 0.561607i
\(722\) −3.73661 + 23.5920i −0.139062 + 0.878004i
\(723\) 1.86537 + 2.09309i 0.0693738 + 0.0778427i
\(724\) 0.671329i 0.0249497i
\(725\) 19.1578 24.6499i 0.711502 0.915474i
\(726\) −6.84017 + 17.5510i −0.253863 + 0.651379i
\(727\) 8.55075 16.7818i 0.317130 0.622402i −0.676328 0.736600i \(-0.736430\pi\)
0.993458 + 0.114198i \(0.0364299\pi\)
\(728\) 9.43931 + 1.49504i 0.349844 + 0.0554099i
\(729\) 26.9873 + 0.826673i 0.999531 + 0.0306175i
\(730\) −16.2405 16.7747i −0.601087 0.620861i
\(731\) 15.2020 20.9238i 0.562266 0.773893i
\(732\) −0.101802 0.231828i −0.00376271 0.00856862i
\(733\) 34.3095 5.43410i 1.26725 0.200713i 0.513625 0.858015i \(-0.328302\pi\)
0.753627 + 0.657302i \(0.228302\pi\)
\(734\) −11.3193 + 34.8373i −0.417804 + 1.28587i
\(735\) 28.2201 + 11.5276i 1.04091 + 0.425203i
\(736\) 2.42199 + 7.45412i 0.0892758 + 0.274763i
\(737\) 1.21316 + 2.38096i 0.0446873 + 0.0877038i
\(738\) 6.83513 24.5057i 0.251605 0.902068i
\(739\) 2.70309 0.878288i 0.0994348 0.0323083i −0.258877 0.965910i \(-0.583352\pi\)
0.358312 + 0.933602i \(0.383352\pi\)
\(740\) −10.2914 3.52897i −0.378319 0.129727i
\(741\) −17.8019 + 21.7555i −0.653968 + 0.799209i
\(742\) 2.65502 + 16.7632i 0.0974689 + 0.615395i
\(743\) −19.3245 19.3245i −0.708947 0.708947i 0.257367 0.966314i \(-0.417145\pi\)
−0.966314 + 0.257367i \(0.917145\pi\)
\(744\) −3.92387 6.11028i −0.143856 0.224014i
\(745\) 10.2923 1.45984i 0.377079 0.0534845i
\(746\) 1.30299 + 1.79341i 0.0477059 + 0.0656615i
\(747\) −13.7515 + 10.9053i −0.503142 + 0.399002i
\(748\) −1.11376 0.567491i −0.0407233 0.0207495i
\(749\) −56.9012 −2.07913
\(750\) −10.5678 + 16.2272i −0.385880 + 0.592534i
\(751\) 13.6596 0.498445 0.249222 0.968446i \(-0.419825\pi\)
0.249222 + 0.968446i \(0.419825\pi\)
\(752\) 3.80983 + 1.94121i 0.138930 + 0.0707886i
\(753\) −36.9797 21.6027i −1.34762 0.787245i
\(754\) 9.09541 + 12.5188i 0.331235 + 0.455906i
\(755\) 32.4444 4.60187i 1.18077 0.167479i
\(756\) 3.43725 19.7408i 0.125012 0.717966i
\(757\) −11.1659 11.1659i −0.405833 0.405833i 0.474450 0.880283i \(-0.342647\pi\)
−0.880283 + 0.474450i \(0.842647\pi\)