Properties

Label 150.2.l.a.17.10
Level 150
Weight 2
Character 150.17
Analytic conductor 1.198
Analytic rank 0
Dimension 80
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.l (of order \(20\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{20})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 17.10
Character \(\chi\) = 150.17
Dual form 150.2.l.a.53.10

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(0.891007 + 0.453990i) q^{2}\) \(+(1.73204 + 0.00452789i) q^{3}\) \(+(0.587785 + 0.809017i) q^{4}\) \(+(-1.35266 - 1.78054i) q^{5}\) \(+(1.54121 + 0.790366i) q^{6}\) \(+(-0.152718 - 0.152718i) q^{7}\) \(+(0.156434 + 0.987688i) q^{8}\) \(+(2.99996 + 0.0156850i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(0.891007 + 0.453990i) q^{2}\) \(+(1.73204 + 0.00452789i) q^{3}\) \(+(0.587785 + 0.809017i) q^{4}\) \(+(-1.35266 - 1.78054i) q^{5}\) \(+(1.54121 + 0.790366i) q^{6}\) \(+(-0.152718 - 0.152718i) q^{7}\) \(+(0.156434 + 0.987688i) q^{8}\) \(+(2.99996 + 0.0156850i) q^{9}\) \(+(-0.396880 - 2.20056i) q^{10}\) \(+(-4.88609 + 1.58759i) q^{11}\) \(+(1.01441 + 1.40392i) q^{12}\) \(+(0.674795 + 1.32436i) q^{13}\) \(+(-0.0667401 - 0.205405i) q^{14}\) \(+(-2.33480 - 3.09010i) q^{15}\) \(+(-0.309017 + 0.951057i) q^{16}\) \(+(-4.81543 + 0.762690i) q^{17}\) \(+(2.66586 + 1.37593i) q^{18}\) \(+(0.283032 - 0.389560i) q^{19}\) \(+(0.645413 - 2.14090i) q^{20}\) \(+(-0.263823 - 0.265206i) q^{21}\) \(+(-5.07429 - 0.803689i) q^{22}\) \(+(1.21389 - 2.38239i) q^{23}\) \(+(0.266479 + 1.71143i) q^{24}\) \(+(-1.34063 + 4.81692i) q^{25}\) \(+1.48636i q^{26}\) \(+(5.19599 + 0.0407506i) q^{27}\) \(+(0.0337860 - 0.213317i) q^{28}\) \(+(7.59423 - 5.51753i) q^{29}\) \(+(-0.677451 - 3.81327i) q^{30}\) \(+(-1.84019 - 1.33698i) q^{31}\) \(+(-0.707107 + 0.707107i) q^{32}\) \(+(-8.47012 + 2.72765i) q^{33}\) \(+(-4.63684 - 1.50660i) q^{34}\) \(+(-0.0653448 + 0.478495i) q^{35}\) \(+(1.75064 + 2.43624i) q^{36}\) \(+(3.83574 - 1.95441i) q^{37}\) \(+(0.429039 - 0.218606i) q^{38}\) \(+(1.16278 + 2.29691i) q^{39}\) \(+(1.54701 - 1.61454i) q^{40}\) \(+(-5.95547 - 1.93505i) q^{41}\) \(+(-0.114667 - 0.356073i) q^{42}\) \(+(-2.72225 + 2.72225i) q^{43}\) \(+(-4.15636 - 3.01977i) q^{44}\) \(+(-4.02999 - 5.36276i) q^{45}\) \(+(2.16317 - 1.57163i) q^{46}\) \(+(-1.58814 + 10.0271i) q^{47}\) \(+(-0.539538 + 1.64587i) q^{48}\) \(-6.95335i q^{49}\) \(+(-3.38135 + 3.68327i) q^{50}\) \(+(-8.34400 + 1.29921i) q^{51}\) \(+(-0.674795 + 1.32436i) q^{52}\) \(+(7.59700 + 1.20325i) q^{53}\) \(+(4.61116 + 2.39524i) q^{54}\) \(+(9.43598 + 6.55241i) q^{55}\) \(+(0.126947 - 0.174728i) q^{56}\) \(+(0.491987 - 0.673453i) q^{57}\) \(+(9.27141 - 1.46845i) q^{58}\) \(+(1.54130 - 4.74363i) q^{59}\) \(+(1.12758 - 3.70521i) q^{60}\) \(+(-4.21680 - 12.9780i) q^{61}\) \(+(-1.03265 - 2.02668i) q^{62}\) \(+(-0.455752 - 0.460543i) q^{63}\) \(+(-0.951057 + 0.309017i) q^{64}\) \(+(1.44531 - 2.99291i) q^{65}\) \(+(-8.78526 - 1.41500i) q^{66}\) \(+(2.35050 + 14.8405i) q^{67}\) \(+(-3.44747 - 3.44747i) q^{68}\) \(+(2.11330 - 4.12092i) q^{69}\) \(+(-0.275455 + 0.396676i) q^{70}\) \(+(7.13100 + 9.81498i) q^{71}\) \(+(0.453805 + 2.96548i) q^{72}\) \(+(8.36209 + 4.26070i) q^{73}\) \(+4.30495 q^{74}\) \(+(-2.34384 + 8.33705i) q^{75}\) \(+0.481522 q^{76}\) \(+(0.988647 + 0.503741i) q^{77}\) \(+(-0.00673009 + 2.57445i) q^{78}\) \(+(-1.28502 - 1.76867i) q^{79}\) \(+(2.11139 - 0.736238i) q^{80}\) \(+(8.99951 + 0.0941087i) q^{81}\) \(+(-4.42787 - 4.42787i) q^{82}\) \(+(0.782253 + 4.93895i) q^{83}\) \(+(0.0594848 - 0.369321i) q^{84}\) \(+(7.87163 + 7.54240i) q^{85}\) \(+(-3.66142 + 1.18967i) q^{86}\) \(+(13.1785 - 9.52222i) q^{87}\) \(+(-2.33240 - 4.57759i) q^{88}\) \(+(3.38311 + 10.4121i) q^{89}\) \(+(-1.15611 - 6.60783i) q^{90}\) \(+(0.0992002 - 0.305307i) q^{91}\) \(+(2.64090 - 0.418278i) q^{92}\) \(+(-3.18124 - 2.32404i) q^{93}\) \(+(-5.96725 + 8.21321i) q^{94}\) \(+(-1.07647 + 0.0229926i) q^{95}\) \(+(-1.22794 + 1.22154i) q^{96}\) \(+(-9.96799 - 1.57877i) q^{97}\) \(+(3.15676 - 6.19548i) q^{98}\) \(+(-14.6830 + 4.68606i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut -\mathstrut 4q^{10} \) \(\mathstrut -\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 8q^{15} \) \(\mathstrut +\mathstrut 20q^{16} \) \(\mathstrut -\mathstrut 8q^{18} \) \(\mathstrut -\mathstrut 40q^{19} \) \(\mathstrut -\mathstrut 36q^{22} \) \(\mathstrut -\mathstrut 104q^{25} \) \(\mathstrut +\mathstrut 4q^{27} \) \(\mathstrut -\mathstrut 16q^{28} \) \(\mathstrut +\mathstrut 12q^{30} \) \(\mathstrut +\mathstrut 4q^{33} \) \(\mathstrut -\mathstrut 40q^{34} \) \(\mathstrut -\mathstrut 24q^{37} \) \(\mathstrut -\mathstrut 40q^{39} \) \(\mathstrut -\mathstrut 8q^{40} \) \(\mathstrut -\mathstrut 4q^{42} \) \(\mathstrut -\mathstrut 24q^{43} \) \(\mathstrut -\mathstrut 72q^{45} \) \(\mathstrut -\mathstrut 4q^{48} \) \(\mathstrut -\mathstrut 12q^{55} \) \(\mathstrut -\mathstrut 64q^{57} \) \(\mathstrut +\mathstrut 20q^{58} \) \(\mathstrut +\mathstrut 24q^{60} \) \(\mathstrut +\mathstrut 64q^{63} \) \(\mathstrut +\mathstrut 96q^{67} \) \(\mathstrut +\mathstrut 140q^{69} \) \(\mathstrut +\mathstrut 76q^{70} \) \(\mathstrut +\mathstrut 8q^{72} \) \(\mathstrut +\mathstrut 100q^{73} \) \(\mathstrut +\mathstrut 132q^{75} \) \(\mathstrut +\mathstrut 100q^{78} \) \(\mathstrut +\mathstrut 80q^{79} \) \(\mathstrut -\mathstrut 40q^{81} \) \(\mathstrut +\mathstrut 96q^{82} \) \(\mathstrut +\mathstrut 60q^{84} \) \(\mathstrut +\mathstrut 32q^{85} \) \(\mathstrut +\mathstrut 80q^{87} \) \(\mathstrut +\mathstrut 4q^{88} \) \(\mathstrut +\mathstrut 52q^{90} \) \(\mathstrut +\mathstrut 12q^{93} \) \(\mathstrut -\mathstrut 32q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{13}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.891007 + 0.453990i 0.630037 + 0.321020i
\(3\) 1.73204 + 0.00452789i 0.999997 + 0.00261418i
\(4\) 0.587785 + 0.809017i 0.293893 + 0.404508i
\(5\) −1.35266 1.78054i −0.604927 0.796281i
\(6\) 1.54121 + 0.790366i 0.629195 + 0.322666i
\(7\) −0.152718 0.152718i −0.0577219 0.0577219i 0.677657 0.735379i \(-0.262996\pi\)
−0.735379 + 0.677657i \(0.762996\pi\)
\(8\) 0.156434 + 0.987688i 0.0553079 + 0.349201i
\(9\) 2.99996 + 0.0156850i 0.999986 + 0.00522833i
\(10\) −0.396880 2.20056i −0.125505 0.695880i
\(11\) −4.88609 + 1.58759i −1.47321 + 0.478676i −0.932077 0.362259i \(-0.882005\pi\)
−0.541136 + 0.840935i \(0.682005\pi\)
\(12\) 1.01441 + 1.40392i 0.292834 + 0.405275i
\(13\) 0.674795 + 1.32436i 0.187155 + 0.367312i 0.965451 0.260586i \(-0.0839157\pi\)
−0.778296 + 0.627897i \(0.783916\pi\)
\(14\) −0.0667401 0.205405i −0.0178371 0.0548968i
\(15\) −2.33480 3.09010i −0.602844 0.797859i
\(16\) −0.309017 + 0.951057i −0.0772542 + 0.237764i
\(17\) −4.81543 + 0.762690i −1.16791 + 0.184979i −0.710121 0.704080i \(-0.751360\pi\)
−0.457793 + 0.889059i \(0.651360\pi\)
\(18\) 2.66586 + 1.37593i 0.628350 + 0.324309i
\(19\) 0.283032 0.389560i 0.0649319 0.0893711i −0.775316 0.631574i \(-0.782409\pi\)
0.840248 + 0.542202i \(0.182409\pi\)
\(20\) 0.645413 2.14090i 0.144319 0.478719i
\(21\) −0.263823 0.265206i −0.0575708 0.0578726i
\(22\) −5.07429 0.803689i −1.08184 0.171347i
\(23\) 1.21389 2.38239i 0.253114 0.496763i −0.729130 0.684376i \(-0.760075\pi\)
0.982243 + 0.187612i \(0.0600748\pi\)
\(24\) 0.266479 + 1.71143i 0.0543949 + 0.349344i
\(25\) −1.34063 + 4.81692i −0.268126 + 0.963384i
\(26\) 1.48636i 0.291500i
\(27\) 5.19599 + 0.0407506i 0.999969 + 0.00784246i
\(28\) 0.0337860 0.213317i 0.00638496 0.0403130i
\(29\) 7.59423 5.51753i 1.41021 1.02458i 0.416921 0.908943i \(-0.363109\pi\)
0.993292 0.115637i \(-0.0368909\pi\)
\(30\) −0.677451 3.81327i −0.123685 0.696205i
\(31\) −1.84019 1.33698i −0.330508 0.240128i 0.410138 0.912023i \(-0.365480\pi\)
−0.740646 + 0.671895i \(0.765480\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) −8.47012 + 2.72765i −1.47446 + 0.474823i
\(34\) −4.63684 1.50660i −0.795211 0.258380i
\(35\) −0.0653448 + 0.478495i −0.0110453 + 0.0808804i
\(36\) 1.75064 + 2.43624i 0.291774 + 0.406040i
\(37\) 3.83574 1.95441i 0.630592 0.321303i −0.109320 0.994007i \(-0.534867\pi\)
0.739912 + 0.672704i \(0.234867\pi\)
\(38\) 0.429039 0.218606i 0.0695994 0.0354627i
\(39\) 1.16278 + 2.29691i 0.186194 + 0.367800i
\(40\) 1.54701 1.61454i 0.244604 0.255282i
\(41\) −5.95547 1.93505i −0.930087 0.302204i −0.195489 0.980706i \(-0.562629\pi\)
−0.734598 + 0.678502i \(0.762629\pi\)
\(42\) −0.114667 0.356073i −0.0176935 0.0549432i
\(43\) −2.72225 + 2.72225i −0.415139 + 0.415139i −0.883524 0.468385i \(-0.844836\pi\)
0.468385 + 0.883524i \(0.344836\pi\)
\(44\) −4.15636 3.01977i −0.626595 0.455248i
\(45\) −4.02999 5.36276i −0.600756 0.799433i
\(46\) 2.16317 1.57163i 0.318942 0.231725i
\(47\) −1.58814 + 10.0271i −0.231654 + 1.46260i 0.548046 + 0.836448i \(0.315372\pi\)
−0.779699 + 0.626154i \(0.784628\pi\)
\(48\) −0.539538 + 1.64587i −0.0778755 + 0.237561i
\(49\) 6.95335i 0.993336i
\(50\) −3.38135 + 3.68327i −0.478194 + 0.520894i
\(51\) −8.34400 + 1.29921i −1.16839 + 0.181926i
\(52\) −0.674795 + 1.32436i −0.0935773 + 0.183656i
\(53\) 7.59700 + 1.20325i 1.04353 + 0.165279i 0.654589 0.755985i \(-0.272842\pi\)
0.388939 + 0.921264i \(0.372842\pi\)
\(54\) 4.61116 + 2.39524i 0.627500 + 0.325951i
\(55\) 9.43598 + 6.55241i 1.27235 + 0.883527i
\(56\) 0.126947 0.174728i 0.0169640 0.0233490i
\(57\) 0.491987 0.673453i 0.0651653 0.0892011i
\(58\) 9.27141 1.46845i 1.21740 0.192817i
\(59\) 1.54130 4.74363i 0.200660 0.617569i −0.799204 0.601061i \(-0.794745\pi\)
0.999864 0.0165081i \(-0.00525494\pi\)
\(60\) 1.12758 3.70521i 0.145570 0.478340i
\(61\) −4.21680 12.9780i −0.539906 1.66166i −0.732803 0.680440i \(-0.761789\pi\)
0.192898 0.981219i \(-0.438211\pi\)
\(62\) −1.03265 2.02668i −0.131146 0.257389i
\(63\) −0.455752 0.460543i −0.0574193 0.0580229i
\(64\) −0.951057 + 0.309017i −0.118882 + 0.0386271i
\(65\) 1.44531 2.99291i 0.179268 0.371224i
\(66\) −8.78526 1.41500i −1.08139 0.174175i
\(67\) 2.35050 + 14.8405i 0.287159 + 1.81305i 0.535673 + 0.844425i \(0.320058\pi\)
−0.248514 + 0.968628i \(0.579942\pi\)
\(68\) −3.44747 3.44747i −0.418067 0.418067i
\(69\) 2.11330 4.12092i 0.254411 0.496100i
\(70\) −0.275455 + 0.396676i −0.0329231 + 0.0474119i
\(71\) 7.13100 + 9.81498i 0.846294 + 1.16482i 0.984667 + 0.174444i \(0.0558128\pi\)
−0.138373 + 0.990380i \(0.544187\pi\)
\(72\) 0.453805 + 2.96548i 0.0534814 + 0.349485i
\(73\) 8.36209 + 4.26070i 0.978708 + 0.498677i 0.868745 0.495259i \(-0.164927\pi\)
0.109963 + 0.993936i \(0.464927\pi\)
\(74\) 4.30495 0.500441
\(75\) −2.34384 + 8.33705i −0.270643 + 0.962680i
\(76\) 0.481522 0.0552344
\(77\) 0.988647 + 0.503741i 0.112667 + 0.0574066i
\(78\) −0.00673009 + 2.57445i −0.000762033 + 0.291499i
\(79\) −1.28502 1.76867i −0.144576 0.198991i 0.730588 0.682819i \(-0.239246\pi\)
−0.875163 + 0.483828i \(0.839246\pi\)
\(80\) 2.11139 0.736238i 0.236060 0.0823139i
\(81\) 8.99951 + 0.0941087i 0.999945 + 0.0104565i
\(82\) −4.42787 4.42787i −0.488976 0.488976i
\(83\) 0.782253 + 4.93895i 0.0858634 + 0.542120i 0.992697 + 0.120632i \(0.0384921\pi\)
−0.906834 + 0.421488i \(0.861508\pi\)
\(84\) 0.0594848 0.369321i 0.00649032 0.0402962i
\(85\) 7.87163 + 7.54240i 0.853798 + 0.818088i
\(86\) −3.66142 + 1.18967i −0.394821 + 0.128285i
\(87\) 13.1785 9.52222i 1.41289 1.02089i
\(88\) −2.33240 4.57759i −0.248634 0.487972i
\(89\) 3.38311 + 10.4121i 0.358609 + 1.10368i 0.953887 + 0.300165i \(0.0970417\pi\)
−0.595279 + 0.803519i \(0.702958\pi\)
\(90\) −1.15611 6.60783i −0.121865 0.696526i
\(91\) 0.0992002 0.305307i 0.0103990 0.0320048i
\(92\) 2.64090 0.418278i 0.275333 0.0436085i
\(93\) −3.18124 2.32404i −0.329879 0.240991i
\(94\) −5.96725 + 8.21321i −0.615475 + 0.847128i
\(95\) −1.07647 + 0.0229926i −0.110444 + 0.00235899i
\(96\) −1.22794 + 1.22154i −0.125326 + 0.124673i
\(97\) −9.96799 1.57877i −1.01210 0.160300i −0.371706 0.928350i \(-0.621227\pi\)
−0.640390 + 0.768050i \(0.721227\pi\)
\(98\) 3.15676 6.19548i 0.318881 0.625838i
\(99\) −14.6830 + 4.68606i −1.47570 + 0.470967i
\(100\) −4.68497 + 1.74672i −0.468497 + 0.174672i
\(101\) 9.53700i 0.948967i −0.880264 0.474483i \(-0.842635\pi\)
0.880264 0.474483i \(-0.157365\pi\)
\(102\) −8.02438 2.63049i −0.794533 0.260458i
\(103\) 1.58215 9.98929i 0.155894 0.984274i −0.778400 0.627769i \(-0.783968\pi\)
0.934293 0.356505i \(-0.116032\pi\)
\(104\) −1.20249 + 0.873663i −0.117914 + 0.0856697i
\(105\) −0.115347 + 0.828479i −0.0112567 + 0.0808513i
\(106\) 6.22271 + 4.52106i 0.604403 + 0.439125i
\(107\) 7.80873 7.80873i 0.754898 0.754898i −0.220491 0.975389i \(-0.570766\pi\)
0.975389 + 0.220491i \(0.0707659\pi\)
\(108\) 3.02116 + 4.22760i 0.290711 + 0.406801i
\(109\) −5.83194 1.89491i −0.558598 0.181500i 0.0160921 0.999871i \(-0.494877\pi\)
−0.574690 + 0.818371i \(0.694877\pi\)
\(110\) 5.43279 + 10.1221i 0.517996 + 0.965103i
\(111\) 6.65253 3.36776i 0.631430 0.319653i
\(112\) 0.192436 0.0980509i 0.0181835 0.00926494i
\(113\) −9.78864 + 4.98756i −0.920838 + 0.469190i −0.849099 0.528233i \(-0.822855\pi\)
−0.0717385 + 0.997423i \(0.522855\pi\)
\(114\) 0.744105 0.376694i 0.0696918 0.0352806i
\(115\) −5.88392 + 1.06119i −0.548678 + 0.0989563i
\(116\) 8.92755 + 2.90074i 0.828902 + 0.269327i
\(117\) 2.00359 + 3.98361i 0.185232 + 0.368285i
\(118\) 3.52687 3.52687i 0.324675 0.324675i
\(119\) 0.851879 + 0.618926i 0.0780916 + 0.0567369i
\(120\) 2.68681 2.78946i 0.245271 0.254641i
\(121\) 12.4543 9.04858i 1.13221 0.822598i
\(122\) 2.13468 13.4778i 0.193265 1.22023i
\(123\) −10.3064 3.37856i −0.929294 0.304634i
\(124\) 2.27460i 0.204265i
\(125\) 10.3901 4.12861i 0.929321 0.369274i
\(126\) −0.196996 0.617253i −0.0175498 0.0549893i
\(127\) −6.82658 + 13.3979i −0.605761 + 1.18887i 0.360850 + 0.932624i \(0.382487\pi\)
−0.966611 + 0.256249i \(0.917513\pi\)
\(128\) −0.987688 0.156434i −0.0873001 0.0138270i
\(129\) −4.72738 + 4.70273i −0.416223 + 0.414052i
\(130\) 2.64653 2.01054i 0.232116 0.176336i
\(131\) 5.12870 7.05905i 0.448097 0.616752i −0.523891 0.851785i \(-0.675520\pi\)
0.971987 + 0.235034i \(0.0755200\pi\)
\(132\) −7.18533 5.24920i −0.625403 0.456884i
\(133\) −0.102717 + 0.0162687i −0.00890667 + 0.00141068i
\(134\) −4.64313 + 14.2901i −0.401105 + 1.23447i
\(135\) −6.95585 9.30678i −0.598664 0.801000i
\(136\) −1.50660 4.63684i −0.129190 0.397605i
\(137\) −1.28180 2.51567i −0.109511 0.214928i 0.829747 0.558140i \(-0.188485\pi\)
−0.939258 + 0.343212i \(0.888485\pi\)
\(138\) 3.75382 2.71235i 0.319546 0.230890i
\(139\) −6.62014 + 2.15102i −0.561513 + 0.182447i −0.576002 0.817448i \(-0.695388\pi\)
0.0144887 + 0.999895i \(0.495388\pi\)
\(140\) −0.425519 + 0.228387i −0.0359629 + 0.0193022i
\(141\) −2.79613 + 17.3602i −0.235476 + 1.46199i
\(142\) 1.89786 + 11.9826i 0.159265 + 1.00556i
\(143\) −5.39965 5.39965i −0.451542 0.451542i
\(144\) −0.941956 + 2.84828i −0.0784963 + 0.237357i
\(145\) −20.0966 6.05848i −1.66893 0.503129i
\(146\) 5.51636 + 7.59261i 0.456537 + 0.628369i
\(147\) 0.0314840 12.0435i 0.00259676 0.993333i
\(148\) 3.83574 + 1.95441i 0.315296 + 0.160651i
\(149\) −7.72360 −0.632742 −0.316371 0.948635i \(-0.602465\pi\)
−0.316371 + 0.948635i \(0.602465\pi\)
\(150\) −5.87332 + 6.36428i −0.479555 + 0.519642i
\(151\) −14.7868 −1.20333 −0.601667 0.798747i \(-0.705497\pi\)
−0.601667 + 0.798747i \(0.705497\pi\)
\(152\) 0.429039 + 0.218606i 0.0347997 + 0.0177313i
\(153\) −14.4581 + 2.21251i −1.16887 + 0.178871i
\(154\) 0.652197 + 0.897673i 0.0525556 + 0.0723365i
\(155\) 0.108612 + 5.08500i 0.00872392 + 0.408437i
\(156\) −1.17477 + 2.29080i −0.0940571 + 0.183411i
\(157\) −11.5941 11.5941i −0.925312 0.925312i 0.0720863 0.997398i \(-0.477034\pi\)
−0.997398 + 0.0720863i \(0.977034\pi\)
\(158\) −0.341997 2.15928i −0.0272078 0.171783i
\(159\) 13.1529 + 2.11847i 1.04309 + 0.168006i
\(160\) 2.21550 + 0.302556i 0.175151 + 0.0239192i
\(161\) −0.549217 + 0.178451i −0.0432843 + 0.0140639i
\(162\) 7.97590 + 4.16954i 0.626646 + 0.327590i
\(163\) −1.84215 3.61543i −0.144289 0.283182i 0.807540 0.589813i \(-0.200798\pi\)
−0.951829 + 0.306630i \(0.900798\pi\)
\(164\) −1.93505 5.95547i −0.151102 0.465044i
\(165\) 16.3139 + 11.3918i 1.27003 + 0.886850i
\(166\) −1.54524 + 4.75577i −0.119934 + 0.369119i
\(167\) −13.6706 + 2.16520i −1.05786 + 0.167549i −0.661042 0.750349i \(-0.729886\pi\)
−0.396818 + 0.917897i \(0.629886\pi\)
\(168\) 0.220670 0.302062i 0.0170250 0.0233046i
\(169\) 6.34263 8.72988i 0.487894 0.671529i
\(170\) 3.58950 + 10.2940i 0.275302 + 0.789512i
\(171\) 0.855194 1.16422i 0.0653983 0.0890304i
\(172\) −3.80244 0.602248i −0.289934 0.0459210i
\(173\) 0.412278 0.809140i 0.0313449 0.0615178i −0.874803 0.484479i \(-0.839009\pi\)
0.906148 + 0.422961i \(0.139009\pi\)
\(174\) 16.0652 2.50144i 1.21790 0.189633i
\(175\) 0.940368 0.530891i 0.0710851 0.0401316i
\(176\) 5.13754i 0.387257i
\(177\) 2.69108 8.20921i 0.202274 0.617042i
\(178\) −1.71264 + 10.8132i −0.128368 + 0.810482i
\(179\) −9.58645 + 6.96496i −0.716525 + 0.520586i −0.885272 0.465074i \(-0.846028\pi\)
0.168747 + 0.985659i \(0.446028\pi\)
\(180\) 1.96979 6.41248i 0.146820 0.477958i
\(181\) 13.9076 + 10.1044i 1.03374 + 0.751057i 0.969054 0.246848i \(-0.0793949\pi\)
0.0646876 + 0.997906i \(0.479395\pi\)
\(182\) 0.226994 0.226994i 0.0168259 0.0168259i
\(183\) −7.24492 22.4975i −0.535560 1.66306i
\(184\) 2.54296 + 0.826257i 0.187469 + 0.0609125i
\(185\) −8.66835 4.18604i −0.637310 0.307764i
\(186\) −1.77942 3.51498i −0.130473 0.257731i
\(187\) 22.3178 11.3715i 1.63204 0.831566i
\(188\) −9.04558 + 4.60895i −0.659716 + 0.336142i
\(189\) −0.787297 0.799744i −0.0572675 0.0581728i
\(190\) −0.969581 0.468221i −0.0703408 0.0339683i
\(191\) 4.70151 + 1.52761i 0.340189 + 0.110534i 0.474129 0.880455i \(-0.342763\pi\)
−0.133940 + 0.990989i \(0.542763\pi\)
\(192\) −1.64867 + 0.530925i −0.118983 + 0.0383162i
\(193\) 2.38356 2.38356i 0.171572 0.171572i −0.616098 0.787670i \(-0.711287\pi\)
0.787670 + 0.616098i \(0.211287\pi\)
\(194\) −8.16479 5.93207i −0.586198 0.425898i
\(195\) 2.51689 5.17730i 0.180238 0.370754i
\(196\) 5.62538 4.08708i 0.401813 0.291934i
\(197\) 1.14693 7.24145i 0.0817156 0.515932i −0.912548 0.408970i \(-0.865888\pi\)
0.994263 0.106961i \(-0.0341121\pi\)
\(198\) −15.2101 2.49062i −1.08093 0.177001i
\(199\) 8.34182i 0.591336i 0.955291 + 0.295668i \(0.0955422\pi\)
−0.955291 + 0.295668i \(0.904458\pi\)
\(200\) −4.96734 0.570592i −0.351244 0.0403470i
\(201\) 4.00398 + 25.7150i 0.282419 + 1.81380i
\(202\) 4.32971 8.49753i 0.304637 0.597884i
\(203\) −2.00240 0.317149i −0.140541 0.0222595i
\(204\) −5.95556 5.98678i −0.416973 0.419158i
\(205\) 4.61029 + 13.2214i 0.321996 + 0.923422i
\(206\) 5.94475 8.18224i 0.414190 0.570084i
\(207\) 3.67899 7.12804i 0.255707 0.495433i
\(208\) −1.46807 + 0.232519i −0.101792 + 0.0161223i
\(209\) −0.764459 + 2.35276i −0.0528787 + 0.162744i
\(210\) −0.478896 + 0.685814i −0.0330470 + 0.0473256i
\(211\) 1.32487 + 4.07753i 0.0912078 + 0.280709i 0.986247 0.165279i \(-0.0528525\pi\)
−0.895039 + 0.445988i \(0.852852\pi\)
\(212\) 3.49196 + 6.85335i 0.239828 + 0.470690i
\(213\) 12.3068 + 17.0323i 0.843246 + 1.16703i
\(214\) 10.5027 3.41254i 0.717951 0.233276i
\(215\) 8.52934 + 1.16479i 0.581696 + 0.0794383i
\(216\) 0.772583 + 5.13840i 0.0525676 + 0.349624i
\(217\) 0.0768498 + 0.485210i 0.00521690 + 0.0329382i
\(218\) −4.33602 4.33602i −0.293672 0.293672i
\(219\) 14.4642 + 7.41758i 0.977401 + 0.501233i
\(220\) 0.245317 + 11.4853i 0.0165393 + 0.774337i
\(221\) −4.25951 5.86271i −0.286525 0.394369i
\(222\) 7.45637 + 0.0194923i 0.500439 + 0.00130824i
\(223\) 0.651256 + 0.331831i 0.0436113 + 0.0222211i 0.475660 0.879629i \(-0.342209\pi\)
−0.432049 + 0.901850i \(0.642209\pi\)
\(224\) 0.215976 0.0144305
\(225\) −4.09739 + 14.4295i −0.273159 + 0.961969i
\(226\) −10.9860 −0.730781
\(227\) 2.94981 + 1.50300i 0.195786 + 0.0997579i 0.549135 0.835734i \(-0.314957\pi\)
−0.353349 + 0.935492i \(0.614957\pi\)
\(228\) 0.834018 + 0.00218028i 0.0552342 + 0.000144392i
\(229\) −6.20224 8.53665i −0.409855 0.564117i 0.553328 0.832964i \(-0.313358\pi\)
−0.963183 + 0.268846i \(0.913358\pi\)
\(230\) −5.72438 1.72572i −0.377455 0.113791i
\(231\) 1.71010 + 0.876978i 0.112516 + 0.0577009i
\(232\) 6.63760 + 6.63760i 0.435780 + 0.435780i
\(233\) 1.96935 + 12.4340i 0.129016 + 0.814577i 0.964311 + 0.264774i \(0.0852973\pi\)
−0.835294 + 0.549803i \(0.814703\pi\)
\(234\) −0.0233136 + 4.45903i −0.00152406 + 0.291496i
\(235\) 20.0018 10.7355i 1.30478 0.700307i
\(236\) 4.74363 1.54130i 0.308784 0.100330i
\(237\) −2.21770 3.06924i −0.144055 0.199369i
\(238\) 0.478043 + 0.938212i 0.0309869 + 0.0608152i
\(239\) −3.62951 11.1705i −0.234773 0.722558i −0.997151 0.0754263i \(-0.975968\pi\)
0.762378 0.647132i \(-0.224032\pi\)
\(240\) 3.66035 1.26564i 0.236275 0.0816966i
\(241\) 0.375849 1.15675i 0.0242106 0.0745125i −0.938221 0.346036i \(-0.887527\pi\)
0.962432 + 0.271524i \(0.0875275\pi\)
\(242\) 15.2048 2.40821i 0.977403 0.154805i
\(243\) 15.5871 + 0.203749i 0.999915 + 0.0130705i
\(244\) 8.02083 11.0397i 0.513481 0.706746i
\(245\) −12.3807 + 9.40551i −0.790975 + 0.600896i
\(246\) −7.64921 7.68931i −0.487696 0.490253i
\(247\) 0.706906 + 0.111963i 0.0449793 + 0.00712403i
\(248\) 1.03265 2.02668i 0.0655732 0.128695i
\(249\) 1.33253 + 8.55802i 0.0844459 + 0.542343i
\(250\) 11.1320 + 1.03840i 0.704050 + 0.0656743i
\(251\) 22.6123i 1.42728i −0.700515 0.713638i \(-0.747046\pi\)
0.700515 0.713638i \(-0.252954\pi\)
\(252\) 0.104703 0.639411i 0.00659564 0.0402791i
\(253\) −2.14892 + 13.5678i −0.135102 + 0.852998i
\(254\) −12.1651 + 8.83843i −0.763304 + 0.554573i
\(255\) 13.5999 + 13.0994i 0.851657 + 0.820317i
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) −2.98436 + 2.98436i −0.186159 + 0.186159i −0.794033 0.607874i \(-0.792022\pi\)
0.607874 + 0.794033i \(0.292022\pi\)
\(258\) −6.34713 + 2.04398i −0.395155 + 0.127252i
\(259\) −0.884259 0.287313i −0.0549452 0.0178528i
\(260\) 3.27084 0.589909i 0.202849 0.0365846i
\(261\) 22.8689 16.4332i 1.41555 1.01719i
\(262\) 7.77445 3.96128i 0.480307 0.244729i
\(263\) 2.29146 1.16756i 0.141298 0.0719947i −0.381912 0.924199i \(-0.624734\pi\)
0.523210 + 0.852204i \(0.324734\pi\)
\(264\) −4.01909 7.93914i −0.247358 0.488621i
\(265\) −8.13372 15.1543i −0.499650 0.930922i
\(266\) −0.0989071 0.0321369i −0.00606438 0.00197044i
\(267\) 5.81255 + 18.0496i 0.355722 + 1.10462i
\(268\) −10.6246 + 10.6246i −0.649002 + 0.649002i
\(269\) 19.5493 + 14.2034i 1.19194 + 0.865996i 0.993468 0.114110i \(-0.0364018\pi\)
0.198473 + 0.980106i \(0.436402\pi\)
\(270\) −1.97251 11.4503i −0.120043 0.696843i
\(271\) −9.36464 + 6.80381i −0.568861 + 0.413302i −0.834691 0.550718i \(-0.814354\pi\)
0.265830 + 0.964020i \(0.414354\pi\)
\(272\) 0.762690 4.81543i 0.0462448 0.291978i
\(273\) 0.173202 0.528356i 0.0104826 0.0319776i
\(274\) 2.82340i 0.170568i
\(275\) −1.09684 25.6643i −0.0661420 1.54762i
\(276\) 4.57606 0.712519i 0.275446 0.0428886i
\(277\) 3.42126 6.71461i 0.205564 0.403442i −0.765090 0.643924i \(-0.777305\pi\)
0.970654 + 0.240482i \(0.0773055\pi\)
\(278\) −6.87513 1.08891i −0.412343 0.0653087i
\(279\) −5.49953 4.03974i −0.329248 0.241853i
\(280\) −0.482826 + 0.0103128i −0.0288544 + 0.000616308i
\(281\) −13.8790 + 19.1028i −0.827952 + 1.13958i 0.160349 + 0.987060i \(0.448738\pi\)
−0.988301 + 0.152517i \(0.951262\pi\)
\(282\) −10.3727 + 14.1986i −0.617687 + 0.845516i
\(283\) 9.72347 1.54005i 0.578000 0.0915463i 0.139412 0.990234i \(-0.455479\pi\)
0.438588 + 0.898688i \(0.355479\pi\)
\(284\) −3.74899 + 11.5382i −0.222462 + 0.684667i
\(285\) −1.86460 + 0.0349501i −0.110449 + 0.00207027i
\(286\) −2.35974 7.26252i −0.139534 0.429442i
\(287\) 0.613989 + 1.20502i 0.0362426 + 0.0711302i
\(288\) −2.13238 + 2.11020i −0.125652 + 0.124345i
\(289\) 6.43873 2.09207i 0.378749 0.123063i
\(290\) −15.1557 14.5218i −0.889972 0.852749i
\(291\) −17.2579 2.77964i −1.01167 0.162945i
\(292\) 1.46814 + 9.26944i 0.0859161 + 0.542453i
\(293\) 3.33944 + 3.33944i 0.195092 + 0.195092i 0.797892 0.602800i \(-0.205948\pi\)
−0.602800 + 0.797892i \(0.705948\pi\)
\(294\) 5.49570 10.7166i 0.320516 0.625003i
\(295\) −10.5311 + 3.67217i −0.613143 + 0.213802i
\(296\) 2.53039 + 3.48278i 0.147076 + 0.202433i
\(297\) −25.4528 + 8.04999i −1.47692 + 0.467108i
\(298\) −6.88178 3.50644i −0.398651 0.203123i
\(299\) 3.97428 0.229838
\(300\) −8.12249 + 3.00419i −0.468952 + 0.173447i
\(301\) 0.831472 0.0479252
\(302\) −13.1751 6.71307i −0.758145 0.386294i
\(303\) 0.0431824 16.5185i 0.00248077 0.948964i
\(304\) 0.283032 + 0.389560i 0.0162330 + 0.0223428i
\(305\) −17.4039 + 25.0629i −0.996543 + 1.43510i
\(306\) −13.8867 4.59246i −0.793849 0.262534i
\(307\) −11.8133 11.8133i −0.674221 0.674221i 0.284465 0.958686i \(-0.408184\pi\)
−0.958686 + 0.284465i \(0.908184\pi\)
\(308\) 0.173577 + 1.09592i 0.00989048 + 0.0624460i
\(309\) 2.78558 17.2947i 0.158466 0.983863i
\(310\) −2.21177 + 4.58008i −0.125620 + 0.260131i
\(311\) −28.7239 + 9.33296i −1.62878 + 0.529224i −0.973991 0.226586i \(-0.927244\pi\)
−0.654791 + 0.755810i \(0.727244\pi\)
\(312\) −2.08673 + 1.50778i −0.118138 + 0.0853612i
\(313\) −7.57278 14.8624i −0.428039 0.840073i −0.999807 0.0196580i \(-0.993742\pi\)
0.571768 0.820415i \(-0.306258\pi\)
\(314\) −5.06682 15.5941i −0.285937 0.880024i
\(315\) −0.203537 + 1.43444i −0.0114680 + 0.0808216i
\(316\) 0.675573 2.07920i 0.0380040 0.116964i
\(317\) 10.7129 1.69675i 0.601695 0.0952991i 0.151847 0.988404i \(-0.451478\pi\)
0.449848 + 0.893105i \(0.351478\pi\)
\(318\) 10.7575 + 7.85886i 0.603253 + 0.440703i
\(319\) −28.3466 + 39.0157i −1.58710 + 2.18446i
\(320\) 1.83667 + 1.27540i 0.102673 + 0.0712969i
\(321\) 13.5604 13.4897i 0.756869 0.752922i
\(322\) −0.570371 0.0903379i −0.0317855 0.00503433i
\(323\) −1.06581 + 2.09176i −0.0593031 + 0.116389i
\(324\) 5.21364 + 7.33607i 0.289647 + 0.407559i
\(325\) −7.28399 + 1.47496i −0.404043 + 0.0818159i
\(326\) 4.05769i 0.224735i
\(327\) −10.0926 3.30848i −0.558122 0.182959i
\(328\) 0.979584 6.18485i 0.0540885 0.341501i
\(329\) 1.77385 1.28878i 0.0977957 0.0710527i
\(330\) 9.36400 + 17.5565i 0.515471 + 0.966454i
\(331\) −7.79472 5.66319i −0.428436 0.311277i 0.352587 0.935779i \(-0.385302\pi\)
−0.781023 + 0.624502i \(0.785302\pi\)
\(332\) −3.53590 + 3.53590i −0.194058 + 0.194058i
\(333\) 11.5377 5.80298i 0.632263 0.318001i
\(334\) −13.1635 4.27710i −0.720277 0.234032i
\(335\) 23.2446 24.2593i 1.26999 1.32543i
\(336\) 0.333751 0.168957i 0.0182076 0.00921737i
\(337\) −25.0858 + 12.7818i −1.36651 + 0.696272i −0.974646 0.223752i \(-0.928170\pi\)
−0.391864 + 0.920023i \(0.628170\pi\)
\(338\) 9.61460 4.89888i 0.522965 0.266464i
\(339\) −16.9769 + 8.59436i −0.922061 + 0.466782i
\(340\) −1.47510 + 10.8016i −0.0799986 + 0.585799i
\(341\) 11.1139 + 3.61113i 0.601852 + 0.195554i
\(342\) 1.29053 0.649081i 0.0697838 0.0350983i
\(343\) −2.13093 + 2.13093i −0.115059 + 0.115059i
\(344\) −3.11459 2.26288i −0.167927 0.122006i
\(345\) −10.1960 + 1.81138i −0.548935 + 0.0975216i
\(346\) 0.734684 0.533779i 0.0394969 0.0286962i
\(347\) −3.02097 + 19.0736i −0.162174 + 1.02393i 0.763556 + 0.645742i \(0.223452\pi\)
−0.925730 + 0.378185i \(0.876548\pi\)
\(348\) 15.4498 + 5.06463i 0.828195 + 0.271493i
\(349\) 14.4119i 0.771451i −0.922614 0.385725i \(-0.873951\pi\)
0.922614 0.385725i \(-0.126049\pi\)
\(350\) 1.07889 0.0461098i 0.0576693 0.00246467i
\(351\) 3.45226 + 6.90887i 0.184268 + 0.368768i
\(352\) 2.33240 4.57759i 0.124317 0.243986i
\(353\) 34.5802 + 5.47696i 1.84052 + 0.291509i 0.977068 0.212929i \(-0.0683002\pi\)
0.863448 + 0.504438i \(0.168300\pi\)
\(354\) 6.12467 6.09273i 0.325523 0.323825i
\(355\) 7.83014 25.9733i 0.415581 1.37852i
\(356\) −6.43505 + 8.85709i −0.341057 + 0.469425i
\(357\) 1.47269 + 1.07586i 0.0779430 + 0.0569408i
\(358\) −11.7036 + 1.85367i −0.618555 + 0.0979695i
\(359\) 10.6846 32.8840i 0.563914 1.73555i −0.107242 0.994233i \(-0.534202\pi\)
0.671156 0.741316i \(-0.265798\pi\)
\(360\) 4.66630 4.81930i 0.245936 0.253999i
\(361\) 5.79967 + 17.8496i 0.305246 + 0.939450i
\(362\) 7.80442 + 15.3170i 0.410191 + 0.805045i
\(363\) 21.6124 15.6161i 1.13436 0.819635i
\(364\) 0.305307 0.0992002i 0.0160024 0.00519950i
\(365\) −3.72472 20.6523i −0.194961 1.08099i
\(366\) 3.75839 23.3346i 0.196454 1.21972i
\(367\) 0.505240 + 3.18996i 0.0263733 + 0.166514i 0.997360 0.0726205i \(-0.0231362\pi\)
−0.970986 + 0.239135i \(0.923136\pi\)
\(368\) 1.89068 + 1.89068i 0.0985584 + 0.0985584i
\(369\) −17.8358 5.89848i −0.928495 0.307062i
\(370\) −5.82313 7.66513i −0.302730 0.398491i
\(371\) −0.976440 1.34395i −0.0506942 0.0697746i
\(372\) 0.0102991 3.93971i 0.000533985 0.204265i
\(373\) 9.65408 + 4.91900i 0.499869 + 0.254696i 0.685698 0.727886i \(-0.259497\pi\)
−0.185829 + 0.982582i \(0.559497\pi\)
\(374\) 25.0479 1.29519
\(375\) 18.0149 7.10388i 0.930283 0.366843i
\(376\) −10.1521 −0.523554
\(377\) 12.4317 + 6.33429i 0.640268 + 0.326233i
\(378\) −0.338411 1.07000i −0.0174060 0.0550350i
\(379\) 19.6854 + 27.0946i 1.01117 + 1.39176i 0.918213 + 0.396087i \(0.129632\pi\)
0.0929573 + 0.995670i \(0.470368\pi\)
\(380\) −0.651335 0.857368i −0.0334128 0.0439821i
\(381\) −11.8846 + 23.1749i −0.608867 + 1.18729i
\(382\) 3.49555 + 3.49555i 0.178848 + 0.178848i
\(383\) 2.54182 + 16.0484i 0.129881 + 0.820034i 0.963503 + 0.267699i \(0.0862632\pi\)
−0.833622 + 0.552335i \(0.813737\pi\)
\(384\) −1.71001 0.275424i −0.0872637 0.0140552i
\(385\) −0.440372 2.44171i −0.0224434 0.124441i
\(386\) 3.20588 1.04165i 0.163175 0.0530187i
\(387\) −8.20933 + 8.12394i −0.417304 + 0.412963i
\(388\) −4.58178 8.99225i −0.232605 0.456512i
\(389\) 0.804900 + 2.47723i 0.0408101 + 0.125600i 0.969386 0.245542i \(-0.0789660\pi\)
−0.928576 + 0.371143i \(0.878966\pi\)
\(390\) 4.59301 3.47037i 0.232576 0.175729i
\(391\) −4.02838 + 12.3981i −0.203724 + 0.626998i
\(392\) 6.86775 1.08774i 0.346874 0.0549394i
\(393\) 8.91510 12.2034i 0.449707 0.615578i
\(394\) 4.30947 5.93148i 0.217108 0.298824i
\(395\) −1.41100 + 4.68043i −0.0709952 + 0.235498i
\(396\) −12.4215 9.12439i −0.624206 0.458518i
\(397\) 1.86357 + 0.295160i 0.0935298 + 0.0148137i 0.203024 0.979174i \(-0.434923\pi\)
−0.109494 + 0.993987i \(0.534923\pi\)
\(398\) −3.78711 + 7.43262i −0.189831 + 0.372563i
\(399\) −0.177984 + 0.0277131i −0.00891032 + 0.00138739i
\(400\) −4.16689 2.76352i −0.208344 0.138176i
\(401\) 7.16880i 0.357993i −0.983850 0.178996i \(-0.942715\pi\)
0.983850 0.178996i \(-0.0572850\pi\)
\(402\) −8.10681 + 24.7300i −0.404331 + 1.23342i
\(403\) 0.528887 3.33926i 0.0263458 0.166341i
\(404\) 7.71559 5.60571i 0.383865 0.278894i
\(405\) −12.0057 16.1513i −0.596568 0.802563i
\(406\) −1.64017 1.19165i −0.0814002 0.0591407i
\(407\) −15.6390 + 15.6390i −0.775197 + 0.775197i
\(408\) −2.58850 8.03803i −0.128150 0.397942i
\(409\) 15.2838 + 4.96600i 0.755734 + 0.245553i 0.661447 0.749992i \(-0.269943\pi\)
0.0942874 + 0.995545i \(0.469943\pi\)
\(410\) −1.89459 + 13.8734i −0.0935672 + 0.685157i
\(411\) −2.20874 4.36305i −0.108949 0.215214i
\(412\) 9.01147 4.59157i 0.443963 0.226211i
\(413\) −0.959822 + 0.489054i −0.0472297 + 0.0240648i
\(414\) 6.51407 4.68091i 0.320149 0.230054i
\(415\) 7.73586 8.07354i 0.379739 0.396315i
\(416\) −1.41362 0.459312i −0.0693083 0.0225196i
\(417\) −11.4761 + 3.69568i −0.561988 + 0.180978i
\(418\) −1.74927 + 1.74927i −0.0855596 + 0.0855596i
\(419\) −1.81333 1.31746i −0.0885872 0.0643624i 0.542610 0.839985i \(-0.317436\pi\)
−0.631197 + 0.775622i \(0.717436\pi\)
\(420\) −0.738053 + 0.393650i −0.0360133 + 0.0192082i
\(421\) 2.09500 1.52210i 0.102104 0.0741828i −0.535562 0.844496i \(-0.679900\pi\)
0.637666 + 0.770313i \(0.279900\pi\)
\(422\) −0.670692 + 4.23458i −0.0326488 + 0.206136i
\(423\) −4.92162 + 30.0560i −0.239297 + 1.46137i
\(424\) 7.69169i 0.373542i
\(425\) 2.78190 24.2180i 0.134942 1.17475i
\(426\) 3.23292 + 20.7630i 0.156636 + 1.00597i
\(427\) −1.33799 + 2.62595i −0.0647498 + 0.127079i
\(428\) 10.9072 + 1.72754i 0.527222 + 0.0835037i
\(429\) −9.32799 9.37689i −0.450360 0.452721i
\(430\) 7.07089 + 4.91008i 0.340989 + 0.236785i
\(431\) 0.661426 0.910375i 0.0318598 0.0438512i −0.792790 0.609495i \(-0.791372\pi\)
0.824650 + 0.565644i \(0.191372\pi\)
\(432\) −1.64441 + 4.92909i −0.0791165 + 0.237151i
\(433\) 20.2750 3.21125i 0.974355 0.154323i 0.351097 0.936339i \(-0.385809\pi\)
0.623258 + 0.782016i \(0.285809\pi\)
\(434\) −0.151807 + 0.467215i −0.00728698 + 0.0224270i
\(435\) −34.7807 10.5845i −1.66761 0.507490i
\(436\) −1.89491 5.83194i −0.0907498 0.279299i
\(437\) −0.584515 1.14718i −0.0279611 0.0548768i
\(438\) 9.52020 + 13.1757i 0.454893 + 0.629561i
\(439\) 22.3736 7.26963i 1.06783 0.346960i 0.278191 0.960526i \(-0.410265\pi\)
0.789644 + 0.613565i \(0.210265\pi\)
\(440\) −4.99563 + 10.3448i −0.238157 + 0.493170i
\(441\) 0.109063 20.8598i 0.00519350 0.993323i
\(442\) −1.13363 7.15749i −0.0539215 0.340447i
\(443\) 13.6168 + 13.6168i 0.646952 + 0.646952i 0.952255 0.305303i \(-0.0987577\pi\)
−0.305303 + 0.952255i \(0.598758\pi\)
\(444\) 6.63483 + 3.40249i 0.314875 + 0.161475i
\(445\) 13.9630 20.1078i 0.661910 0.953202i
\(446\) 0.429625 + 0.591328i 0.0203433 + 0.0280002i
\(447\) −13.3776 0.0349716i −0.632740 0.00165410i
\(448\) 0.192436 + 0.0980509i 0.00909173 + 0.00463247i
\(449\) −19.2184 −0.906973 −0.453487 0.891263i \(-0.649820\pi\)
−0.453487 + 0.891263i \(0.649820\pi\)
\(450\) −10.2017 + 10.9966i −0.480911 + 0.518386i
\(451\) 32.1710 1.51487
\(452\) −9.78864 4.98756i −0.460419 0.234595i
\(453\) −25.6114 0.0669530i −1.20333 0.00314573i
\(454\) 1.94595 + 2.67837i 0.0913281 + 0.125702i
\(455\) −0.677794 + 0.236346i −0.0317755 + 0.0110801i
\(456\) 0.742126 + 0.380579i 0.0347532 + 0.0178222i
\(457\) 15.9563 + 15.9563i 0.746405 + 0.746405i 0.973802 0.227397i \(-0.0730215\pi\)
−0.227397 + 0.973802i \(0.573021\pi\)
\(458\) −1.65068 10.4220i −0.0771311 0.486986i
\(459\) −25.0520 + 3.76670i −1.16933 + 0.175814i
\(460\) −4.31700 4.13644i −0.201281 0.192863i
\(461\) −15.2184 + 4.94475i −0.708790 + 0.230300i −0.641156 0.767410i \(-0.721545\pi\)
−0.0676337 + 0.997710i \(0.521545\pi\)
\(462\) 1.12557 + 1.55776i 0.0523663 + 0.0724737i
\(463\) −2.81092 5.51675i −0.130635 0.256385i 0.816419 0.577460i \(-0.195956\pi\)
−0.947054 + 0.321075i \(0.895956\pi\)
\(464\) 2.90074 + 8.92755i 0.134663 + 0.414451i
\(465\) 0.165096 + 8.80795i 0.00765616 + 0.408459i
\(466\) −3.89021 + 11.9728i −0.180210 + 0.554630i
\(467\) −22.9270 + 3.63127i −1.06093 + 0.168035i −0.662424 0.749129i \(-0.730472\pi\)
−0.398509 + 0.917164i \(0.630472\pi\)
\(468\) −2.04513 + 3.96244i −0.0945362 + 0.183164i
\(469\) 1.90744 2.62537i 0.0880775 0.121228i
\(470\) 22.6956 0.484761i 1.04687 0.0223604i
\(471\) −20.0291 20.1340i −0.922890 0.927728i
\(472\) 4.92635 + 0.780256i 0.226753 + 0.0359142i
\(473\) 8.97936 17.6230i 0.412871 0.810305i
\(474\) −0.582577 3.74153i −0.0267587 0.171854i
\(475\) 1.49704 + 1.88560i 0.0686888 + 0.0865171i
\(476\) 1.05298i 0.0482633i
\(477\) 22.7718 + 3.72885i 1.04265 + 0.170732i
\(478\) 1.83738 11.6007i 0.0840396 0.530605i
\(479\) 18.1330 13.1744i 0.828519 0.601954i −0.0906212 0.995885i \(-0.528885\pi\)
0.919140 + 0.393931i \(0.128885\pi\)
\(480\) 3.83598 + 0.534073i 0.175088 + 0.0243770i
\(481\) 5.17668 + 3.76108i 0.236036 + 0.171491i
\(482\) 0.860035 0.860035i 0.0391735 0.0391735i
\(483\) −0.952076 + 0.306599i −0.0433210 + 0.0139507i
\(484\) 14.6409 + 4.75712i 0.665496 + 0.216233i
\(485\) 10.6722 + 19.8839i 0.484600 + 0.902882i
\(486\) 13.7957 + 7.25795i 0.625787 + 0.329227i
\(487\) 18.8976 9.62881i 0.856332 0.436323i 0.0300294 0.999549i \(-0.490440\pi\)
0.826303 + 0.563226i \(0.190440\pi\)
\(488\) 12.1585 6.19509i 0.550391 0.280438i
\(489\) −3.17432 6.27042i −0.143548 0.283558i
\(490\) −15.3013 + 2.75965i −0.691243 + 0.124668i
\(491\) 29.6177 + 9.62339i 1.33663 + 0.434297i 0.888174 0.459507i \(-0.151974\pi\)
0.448456 + 0.893805i \(0.351974\pi\)
\(492\) −3.32462 10.3239i −0.149886 0.465437i
\(493\) −32.3613 + 32.3613i −1.45748 + 1.45748i
\(494\) 0.579028 + 0.420688i 0.0260517 + 0.0189277i
\(495\) 28.2048 + 19.8050i 1.26771 + 0.890167i
\(496\) 1.84019 1.33698i 0.0826270 0.0600320i
\(497\) 0.409892 2.58795i 0.0183862 0.116086i
\(498\) −2.69796 + 8.23021i −0.120899 + 0.368805i
\(499\) 1.25659i 0.0562528i −0.999604 0.0281264i \(-0.991046\pi\)
0.999604 0.0281264i \(-0.00895410\pi\)
\(500\) 9.44727 + 5.97905i 0.422495 + 0.267391i
\(501\) −23.6878 + 3.68833i −1.05829 + 0.164783i
\(502\) 10.2658 20.1477i 0.458184 0.899236i
\(503\) −25.9752 4.11407i −1.15818 0.183437i −0.452363 0.891834i \(-0.649419\pi\)
−0.705815 + 0.708397i \(0.749419\pi\)
\(504\) 0.383577 0.522186i 0.0170859 0.0232600i
\(505\) −16.9810 + 12.9003i −0.755644 + 0.574056i
\(506\) −8.07434 + 11.1134i −0.358948 + 0.494050i
\(507\) 11.0252 15.0918i 0.489648 0.670251i
\(508\) −14.8517 + 2.35228i −0.658938 + 0.104366i
\(509\) 5.31690 16.3637i 0.235668 0.725310i −0.761365 0.648324i \(-0.775470\pi\)
0.997032 0.0769863i \(-0.0245298\pi\)
\(510\) 6.17056 + 17.8459i 0.273237 + 0.790229i
\(511\) −0.626355 1.92772i −0.0277083 0.0852775i
\(512\) −0.453990 0.891007i −0.0200637 0.0393773i
\(513\) 1.48651 2.01262i 0.0656308 0.0888591i
\(514\) −4.01395 + 1.30421i −0.177048 + 0.0575263i
\(515\) −19.9264 + 10.6950i −0.878063 + 0.471279i
\(516\) −6.58328 1.06034i −0.289813 0.0466788i
\(517\) −8.15912 51.5147i −0.358838 2.26561i
\(518\) −0.657443 0.657443i −0.0288864 0.0288864i
\(519\) 0.717747 1.39960i 0.0315056 0.0614357i
\(520\) 3.18215 + 0.959319i 0.139547 + 0.0420689i
\(521\) −7.91212 10.8901i −0.346636 0.477104i 0.599729 0.800203i \(-0.295275\pi\)
−0.946365 + 0.323099i \(0.895275\pi\)
\(522\) 27.8369 4.25986i 1.21839 0.186449i
\(523\) −22.9585 11.6979i −1.00390 0.511514i −0.126858 0.991921i \(-0.540489\pi\)
−0.877046 + 0.480407i \(0.840489\pi\)
\(524\) 8.72546 0.381174
\(525\) 1.63116 0.915270i 0.0711898 0.0399457i
\(526\) 2.57177 0.112134
\(527\) 9.88101 + 5.03463i 0.430424 + 0.219312i
\(528\) 0.0232622 8.89846i 0.00101236 0.387256i
\(529\) 9.31679 + 12.8235i 0.405078 + 0.557542i
\(530\) −0.367277 17.1952i −0.0159535 0.746913i
\(531\) 4.69824 14.2065i 0.203886 0.616511i
\(532\) −0.0735370 0.0735370i −0.00318823 0.00318823i
\(533\) −1.45602 9.19295i −0.0630672 0.398191i
\(534\) −3.01533 + 18.7212i −0.130486 + 0.810144i
\(535\) −24.4663 3.34119i −1.05777 0.144452i
\(536\) −14.2901 + 4.64313i −0.617237 + 0.200553i
\(537\) −16.6357 + 12.0202i −0.717883 + 0.518711i
\(538\) 10.9703 + 21.5305i 0.472965 + 0.928246i
\(539\) 11.0391 + 33.9747i 0.475486 + 1.46340i
\(540\) 3.44080 11.0978i 0.148069 0.477573i
\(541\) −6.47364 + 19.9238i −0.278323 + 0.856591i 0.709998 + 0.704204i \(0.248696\pi\)
−0.988321 + 0.152387i \(0.951304\pi\)
\(542\) −11.4328 + 1.81078i −0.491082 + 0.0777797i
\(543\) 24.0428 + 17.5643i 1.03177 + 0.753757i
\(544\) 2.86572 3.94433i 0.122867 0.169112i
\(545\) 4.51466 + 12.9472i 0.193387 + 0.554595i
\(546\) 0.394192 0.392137i 0.0168699 0.0167819i
\(547\) 43.0967 + 6.82585i 1.84268 + 0.291852i 0.977709 0.209965i \(-0.0673349\pi\)
0.864974 + 0.501817i \(0.167335\pi\)
\(548\) 1.28180 2.51567i 0.0547557 0.107464i
\(549\) −12.4467 38.9995i −0.531211 1.66446i
\(550\) 10.6741 23.3650i 0.455143 0.996287i
\(551\) 4.52004i 0.192560i
\(552\) 4.40077 + 1.44263i 0.187309 + 0.0614023i
\(553\) −0.0738630 + 0.466353i −0.00314098 + 0.0198313i
\(554\) 6.09674 4.42954i 0.259025 0.188193i
\(555\) −14.9950 7.28965i −0.636503 0.309429i
\(556\) −5.63143 4.09147i −0.238826 0.173517i
\(557\) 20.7979 20.7979i 0.881236 0.881236i −0.112424 0.993660i \(-0.535861\pi\)
0.993660 + 0.112424i \(0.0358615\pi\)
\(558\) −3.06611 6.09617i −0.129799 0.258071i
\(559\) −5.44220 1.76828i −0.230181 0.0747902i
\(560\) −0.434883 0.210010i −0.0183772 0.00887453i
\(561\) 38.7070 19.5949i 1.63421 0.827297i
\(562\) −21.0388 + 10.7198i −0.887467 + 0.452187i
\(563\) −14.0139 + 7.14045i −0.590616 + 0.300934i −0.723639 0.690179i \(-0.757532\pi\)
0.133022 + 0.991113i \(0.457532\pi\)
\(564\) −15.6882 + 7.94195i −0.660593 + 0.334417i
\(565\) 22.1212 + 10.6826i 0.930647 + 0.449419i
\(566\) 9.36284 + 3.04217i 0.393550 + 0.127872i
\(567\) −1.36001 1.38876i −0.0571152 0.0583223i
\(568\) −8.57861 + 8.57861i −0.359950 + 0.359950i
\(569\) 3.20445 + 2.32817i 0.134338 + 0.0976021i 0.652925 0.757423i \(-0.273542\pi\)
−0.518587 + 0.855025i \(0.673542\pi\)
\(570\) −1.67724 0.815370i −0.0702518 0.0341521i
\(571\) −31.7943 + 23.0999i −1.33055 + 0.966702i −0.330815 + 0.943696i \(0.607324\pi\)
−0.999735 + 0.0230060i \(0.992676\pi\)
\(572\) 1.19457 7.54225i 0.0499477 0.315357i
\(573\) 8.13631 + 2.66718i 0.339899 + 0.111423i
\(574\) 1.35243i 0.0564492i
\(575\) 9.84842 + 9.04112i 0.410708 + 0.377041i
\(576\) −2.85798 + 0.912121i −0.119082 + 0.0380050i
\(577\) −8.56788 + 16.8154i −0.356685 + 0.700034i −0.997721 0.0674769i \(-0.978505\pi\)
0.641036 + 0.767511i \(0.278505\pi\)
\(578\) 6.68673 + 1.05907i 0.278131 + 0.0440517i
\(579\) 4.13922 4.11763i 0.172020 0.171123i
\(580\) −6.91106 19.8195i −0.286966 0.822962i
\(581\) 0.634802 0.873729i 0.0263360 0.0362484i
\(582\) −14.1149 10.3116i −0.585083 0.427429i
\(583\) −39.0299 + 6.18173i −1.61645 + 0.256021i
\(584\) −2.90012 + 8.92565i −0.120008 + 0.369346i
\(585\) 4.38280 8.95593i 0.181207 0.370282i
\(586\) 1.45939 + 4.49153i 0.0602867 + 0.185543i
\(587\) −2.11434 4.14963i −0.0872683 0.171274i 0.843247 0.537526i \(-0.180641\pi\)
−0.930516 + 0.366252i \(0.880641\pi\)
\(588\) 9.76192 7.05353i 0.402575 0.290883i
\(589\) −1.04166 + 0.338457i −0.0429210 + 0.0139459i
\(590\) −11.0504 1.50908i −0.454937 0.0621277i
\(591\) 2.01933 12.5373i 0.0830640 0.515716i
\(592\) 0.673443 + 4.25195i 0.0276783 + 0.174754i
\(593\) −32.4687 32.4687i −1.33333 1.33333i −0.902371 0.430960i \(-0.858175\pi\)
−0.430960 0.902371i \(-0.641825\pi\)
\(594\) −26.3332 4.38274i −1.08047 0.179826i
\(595\) −0.0502797 2.35400i −0.00206127 0.0965045i
\(596\) −4.53982 6.24853i −0.185958 0.255950i
\(597\) −0.0377708 + 14.4484i −0.00154586 + 0.591334i
\(598\) 3.54111 + 1.80428i 0.144807 + 0.0737826i
\(599\) −18.2921 −0.747393 −0.373697 0.927551i \(-0.621910\pi\)
−0.373697 + 0.927551i \(0.621910\pi\)
\(600\) −8.60106 1.01078i −0.351137 0.0412650i
\(601\) −0.981781 −0.0400477 −0.0200238 0.999800i \(-0.506374\pi\)
−0.0200238 + 0.999800i \(0.506374\pi\)
\(602\) 0.740847 + 0.377480i 0.0301947 + 0.0153850i
\(603\) 6.81864 + 44.5577i 0.277676 + 1.81453i
\(604\) −8.69147 11.9628i −0.353651 0.486759i
\(605\) −32.9577 9.93571i −1.33992 0.403944i
\(606\) 7.53772 14.6985i 0.306199 0.597086i
\(607\) −2.39455 2.39455i −0.0971917 0.0971917i 0.656839 0.754031i \(-0.271893\pi\)
−0.754031 + 0.656839i \(0.771893\pi\)
\(608\) 0.0753267 + 0.475594i 0.00305490 + 0.0192879i
\(609\) −3.46681 0.558383i −0.140482 0.0226268i
\(610\) −26.8853 + 14.4300i −1.08855 + 0.584255i
\(611\) −14.3512 + 4.66298i −0.580586 + 0.188644i
\(612\) −10.2882 10.3963i −0.415875 0.420247i
\(613\) 6.24017 + 12.2470i 0.252038 + 0.494653i 0.982011 0.188823i \(-0.0604673\pi\)
−0.729973 + 0.683476i \(0.760467\pi\)
\(614\) −5.16261 15.8889i −0.208346 0.641223i
\(615\) 7.92536 + 22.9209i 0.319581 + 0.924261i
\(616\) −0.342880 + 1.05528i −0.0138150 + 0.0425183i
\(617\) 10.1292 1.60431i 0.407787 0.0645872i 0.0508287 0.998707i \(-0.483814\pi\)
0.356959 + 0.934120i \(0.383814\pi\)
\(618\) 10.3336 14.1451i 0.415679 0.568999i
\(619\) 27.3325 37.6199i 1.09859 1.51207i 0.261338 0.965247i \(-0.415836\pi\)
0.837247 0.546825i \(-0.184164\pi\)
\(620\) −4.05001 + 3.07676i −0.162652 + 0.123566i
\(621\) 6.40445 12.3294i 0.257002 0.494763i
\(622\) −29.8303 4.72465i −1.19608 0.189441i
\(623\) 1.07346 2.10678i 0.0430072 0.0844063i
\(624\) −2.54381 + 0.396086i −0.101834 + 0.0158561i
\(625\) −21.4054 12.9154i −0.856217 0.516616i
\(626\) 16.6805i 0.666686i
\(627\) −1.33473 + 4.07163i −0.0533040 + 0.162605i
\(628\) 2.56499 16.1947i 0.102354 0.646239i
\(629\) −16.9802 + 12.3368i −0.677043 + 0.491900i
\(630\) −0.832575 + 1.18569i −0.0331706 + 0.0472391i
\(631\) −20.6748 15.0211i −0.823051 0.597981i 0.0945340 0.995522i \(-0.469864\pi\)
−0.917585 + 0.397540i \(0.869864\pi\)
\(632\) 1.54588 1.54588i 0.0614917 0.0614917i
\(633\) 2.27627 + 7.06846i 0.0904736 + 0.280946i
\(634\) 10.3155 + 3.35172i 0.409683 + 0.133114i
\(635\) 33.0895 5.96783i 1.31312 0.236826i
\(636\) 6.01719 + 11.8861i 0.238597 + 0.471315i
\(637\) 9.20875 4.69209i 0.364864 0.185907i
\(638\) −42.9697 + 21.8942i −1.70119 + 0.866798i
\(639\) 21.2388 + 29.5564i 0.840193 + 1.16923i
\(640\) 1.05747 + 1.97022i 0.0418001 + 0.0778797i
\(641\) −0.702023 0.228101i −0.0277282 0.00900945i 0.295120 0.955460i \(-0.404640\pi\)
−0.322848 + 0.946451i \(0.604640\pi\)
\(642\) 18.2066 5.86312i 0.718558 0.231399i
\(643\) 17.1573 17.1573i 0.676616 0.676616i −0.282617 0.959233i \(-0.591203\pi\)
0.959233 + 0.282617i \(0.0912025\pi\)
\(644\) −0.467192 0.339435i −0.0184099 0.0133756i
\(645\) 14.7679 + 2.05610i 0.581487 + 0.0809587i
\(646\) −1.89928 + 1.37991i −0.0747262 + 0.0542918i
\(647\) 0.943217 5.95524i 0.0370817 0.234125i −0.962186 0.272394i \(-0.912185\pi\)
0.999267 + 0.0382696i \(0.0121846\pi\)
\(648\) 1.31488 + 8.90343i 0.0516535 + 0.349760i
\(649\) 25.6248i 1.00586i
\(650\) −7.15970 1.99266i −0.280826 0.0781587i
\(651\) 0.130910 + 0.840754i 0.00513078 + 0.0329517i
\(652\) 1.84215 3.61543i 0.0721443 0.141591i
\(653\) 9.97451 + 1.57981i 0.390333 + 0.0618226i 0.348516 0.937303i \(-0.386686\pi\)
0.0418163 + 0.999125i \(0.486686\pi\)
\(654\) −7.49055 7.52982i −0.292904 0.294439i
\(655\) −19.5063 + 0.416640i −0.762174 + 0.0162795i
\(656\) 3.68068 5.06602i 0.143706 0.197795i
\(657\) 25.0191 + 12.9131i 0.976087 + 0.503787i
\(658\) 2.16561 0.342999i 0.0844242 0.0133715i
\(659\) −3.59331 + 11.0591i −0.139975 + 0.430800i −0.996331 0.0855871i \(-0.972723\pi\)
0.856355 + 0.516387i \(0.172723\pi\)
\(660\) 0.372896 + 19.8941i 0.0145150 + 0.774378i
\(661\) 12.8291 + 39.4838i 0.498993 + 1.53574i 0.810641 + 0.585544i \(0.199119\pi\)
−0.311648 + 0.950197i \(0.600881\pi\)
\(662\) −4.37411 8.58467i −0.170005 0.333653i
\(663\) −7.35111 10.1738i −0.285494 0.395116i
\(664\) −4.75577 + 1.54524i −0.184560 + 0.0599671i
\(665\) 0.167908 + 0.160885i 0.00651118 + 0.00623885i
\(666\) 12.9147 + 0.0675232i 0.500434 + 0.00261647i
\(667\) −3.92637 24.7901i −0.152030 0.959877i
\(668\) −9.78704 9.78704i −0.378672 0.378672i
\(669\) 1.12650 + 0.577696i 0.0435531 + 0.0223350i
\(670\) 31.7246 11.0623i 1.22563 0.427375i
\(671\) 41.2074 + 56.7171i 1.59079 + 2.18954i
\(672\) 0.374079 0.000977913i 0.0144304 3.77238e-5i
\(673\) −23.9046 12.1800i −0.921454 0.469504i −0.0721411 0.997394i \(-0.522983\pi\)
−0.849313 + 0.527890i \(0.822983\pi\)
\(674\) −28.1544 −1.08447
\(675\) −7.16219 + 24.9740i −0.275673 + 0.961251i
\(676\) 10.7907 0.415028
\(677\) −19.6621 10.0184i −0.755677 0.385037i 0.0333112 0.999445i \(-0.489395\pi\)
−0.788988 + 0.614408i \(0.789395\pi\)
\(678\) −19.0283 0.0497436i −0.730779 0.00191039i
\(679\) 1.28118 + 1.76340i 0.0491673 + 0.0676729i
\(680\) −6.21815 + 8.95461i −0.238455 + 0.343394i
\(681\) 5.10240 + 2.61663i 0.195524 + 0.100269i
\(682\) 8.26315 + 8.26315i 0.316413 + 0.316413i
\(683\) −3.06282 19.3379i −0.117196 0.739944i −0.974376 0.224927i \(-0.927786\pi\)
0.857180 0.515017i \(-0.172214\pi\)
\(684\) 1.44455 + 0.00755268i 0.0552336 + 0.000288784i
\(685\) −2.74541 + 5.68513i −0.104897 + 0.217218i
\(686\) −2.86609 + 0.931249i −0.109428 + 0.0355552i
\(687\) −10.7039 14.8139i −0.408379 0.565187i
\(688\) −1.74779 3.43023i −0.0666339 0.130776i
\(689\) 3.53289 + 10.8731i 0.134592 + 0.414232i
\(690\) −9.90707 3.01494i −0.377156 0.114777i
\(691\) 12.6136 38.8206i 0.479843 1.47681i −0.359469 0.933157i \(-0.617042\pi\)
0.839313 0.543649i \(-0.182958\pi\)
\(692\) 0.896939 0.142061i 0.0340965 0.00540036i
\(693\) 2.95800 + 1.52671i 0.112365 + 0.0579949i
\(694\) −11.3510 + 15.6232i −0.430876 + 0.593050i
\(695\) 12.7848 + 8.87783i 0.484954 + 0.336755i
\(696\) 11.4666 + 11.5267i 0.434639 + 0.436917i
\(697\) 30.1540 + 4.77592i 1.14216 + 0.180901i
\(698\) 6.54286 12.8411i 0.247651 0.486042i
\(699\) 3.35470 + 21.5451i 0.126886 + 0.814912i
\(700\) 0.982234 + 0.448723i 0.0371250 + 0.0169601i
\(701\) 1.34594i 0.0508356i −0.999677 0.0254178i \(-0.991908\pi\)
0.999677 0.0254178i \(-0.00809161\pi\)
\(702\) −0.0605703 + 7.72314i −0.00228608 + 0.291491i
\(703\) 0.324278 2.04741i 0.0122304 0.0772195i
\(704\) 4.15636 3.01977i 0.156649 0.113812i
\(705\) 34.6927 18.5038i 1.30660 0.696894i
\(706\) 28.3247 + 20.5791i 1.06601 + 0.774503i
\(707\) −1.45647 + 1.45647i −0.0547762 + 0.0547762i
\(708\) 8.22317 2.64812i 0.309046 0.0995225i
\(709\) −5.99345 1.94739i −0.225089 0.0731358i 0.194301 0.980942i \(-0.437756\pi\)
−0.419390 + 0.907806i \(0.637756\pi\)
\(710\) 18.7684 19.5876i 0.704364 0.735110i
\(711\) −3.82725 5.32610i −0.143533 0.199744i
\(712\) −9.75471 + 4.97027i −0.365573 + 0.186269i
\(713\) −5.41900 + 2.76112i −0.202943 + 0.103405i
\(714\) 0.823744 + 1.62719i 0.0308278 + 0.0608960i
\(715\) −2.31040 + 16.9182i −0.0864041 + 0.632704i
\(716\) −11.2695 3.66170i −0.421163 0.136844i
\(717\) −6.23589 19.3642i −0.232884 0.723170i
\(718\) 24.4491 24.4491i 0.912432 0.912432i
\(719\) −15.2779 11.1001i −0.569770 0.413962i 0.265251 0.964179i \(-0.414545\pi\)
−0.835022 + 0.550217i \(0.814545\pi\)
\(720\) 6.34562 2.17557i 0.236487 0.0810786i
\(721\) −1.76717 + 1.28392i −0.0658127 + 0.0478157i
\(722\) −2.93598 + 18.5371i −0.109266 + 0.689878i
\(723\) 0.656225 2.00183i 0.0244053 0.0744490i
\(724\) 17.1907i 0.638888i
\(725\) 16.3964 + 43.9777i 0.608949 + 1.63329i
\(726\) 26.3463 4.10228i 0.977805 0.152250i
\(727\) −5.62601 + 11.0417i −0.208657 + 0.409513i −0.971489 0.237084i \(-0.923808\pi\)
0.762832 + 0.646597i \(0.223808\pi\)
\(728\) 0.317066 + 0.0502184i 0.0117513 + 0.00186122i
\(729\) 26.9967 + 0.423480i 0.999877 + 0.0156844i
\(730\) 6.05719 20.0923i 0.224187 0.743649i
\(731\) 11.0326 15.1850i 0.408055 0.561639i
\(732\) 13.9424 19.0850i 0.515327 0.705401i
\(733\) 9.27418 1.46889i 0.342550 0.0542545i 0.0172103 0.999852i \(-0.494522\pi\)
0.325339 + 0.945597i \(0.394522\pi\)
\(734\) −0.998039 + 3.07165i −0.0368383 + 0.113377i
\(735\) −21.4865 + 16.2347i −0.792543 + 0.598826i
\(736\) 0.826257 + 2.54296i 0.0304562 + 0.0937346i
\(737\) −35.0454 68.7804i −1.29091 2.53356i
\(738\) −13.2140 13.3529i −0.486413 0.491526i
\(739\) −18.0916 + 5.87832i −0.665511 + 0.216238i −0.622241 0.782826i \(-0.713778\pi\)
−0.0432699 + 0.999063i \(0.513778\pi\)
\(740\) −1.70855 9.47333i −0.0628076 0.348247i
\(741\) 1.22389 + 0.197126i 0.0449606 + 0.00724159i
\(742\) −0.259872 1.64077i −0.00954019 0.0602344i
\(743\) −23.1938 23.1938i −0.850899 0.850899i 0.139345 0.990244i \(-0.455500\pi\)
−0.990244 + 0.139345i \(0.955500\pi\)
\(744\) 1.79777 3.50563i 0.0659094 0.128523i
\(745\) 10.4474 + 13.7522i 0.382763 + 0.503841i
\(746\) 6.36867 + 8.76572i 0.233174 + 0.320936i
\(747\) 2.26926 + 14.8289i 0.0830278 + 0.542562i
\(748\) 22.3178 + 11.3715i 0.816020 + 0.415783i
\(749\) −2.38506 −0.0871483
\(750\) 19.2764 + 1.84896i 0.703876 + 0.0675146i
\(751\) 35.1267 1.28179 0.640895 0.767628i \(-0.278563\pi\)
0.640895 + 0.767628i \(0.278563\pi\)
\(752\) −9.04558 4.60895i −0.329858 0.168071i
\(753\) 0.102386 39.1655i 0.00373115 1.42727i
\(754\) 8.20106 + 11.2878i 0.298665 + 0.411077i
\(755\) 20.0015 + 26.3285i 0.727929 + 0.958192i
\(756\) 0.184245 1.10701i 0.00670092 0.0402617i
\(757\) 20.0652 + 20.0652i 0.729283 + 0.729283i 0.970477 0.241194i \(-0.0775389\pi\)
−0.241194 + 0.970477i \(0.577539\pi\)