Properties

Label 150.2.l.a.17.1
Level 150
Weight 2
Character 150.17
Analytic conductor 1.198
Analytic rank 0
Dimension 80
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.l (of order \(20\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{20})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 17.1
Character \(\chi\) = 150.17
Dual form 150.2.l.a.53.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-0.891007 - 0.453990i) q^{2}\) \(+(-1.64867 - 0.530925i) q^{3}\) \(+(0.587785 + 0.809017i) q^{4}\) \(+(1.35266 + 1.78054i) q^{5}\) \(+(1.22794 + 1.22154i) q^{6}\) \(+(-0.152718 - 0.152718i) q^{7}\) \(+(-0.156434 - 0.987688i) q^{8}\) \(+(2.43624 + 1.75064i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-0.891007 - 0.453990i) q^{2}\) \(+(-1.64867 - 0.530925i) q^{3}\) \(+(0.587785 + 0.809017i) q^{4}\) \(+(1.35266 + 1.78054i) q^{5}\) \(+(1.22794 + 1.22154i) q^{6}\) \(+(-0.152718 - 0.152718i) q^{7}\) \(+(-0.156434 - 0.987688i) q^{8}\) \(+(2.43624 + 1.75064i) q^{9}\) \(+(-0.396880 - 2.20056i) q^{10}\) \(+(4.88609 - 1.58759i) q^{11}\) \(+(-0.539538 - 1.64587i) q^{12}\) \(+(0.674795 + 1.32436i) q^{13}\) \(+(0.0667401 + 0.205405i) q^{14}\) \(+(-1.28476 - 3.65368i) q^{15}\) \(+(-0.309017 + 0.951057i) q^{16}\) \(+(4.81543 - 0.762690i) q^{17}\) \(+(-1.37593 - 2.66586i) q^{18}\) \(+(0.283032 - 0.389560i) q^{19}\) \(+(-0.645413 + 2.14090i) q^{20}\) \(+(0.170700 + 0.332863i) q^{21}\) \(+(-5.07429 - 0.803689i) q^{22}\) \(+(-1.21389 + 2.38239i) q^{23}\) \(+(-0.266479 + 1.71143i) q^{24}\) \(+(-1.34063 + 4.81692i) q^{25}\) \(-1.48636i q^{26}\) \(+(-3.08710 - 4.17969i) q^{27}\) \(+(0.0337860 - 0.213317i) q^{28}\) \(+(-7.59423 + 5.51753i) q^{29}\) \(+(-0.514010 + 3.83872i) q^{30}\) \(+(-1.84019 - 1.33698i) q^{31}\) \(+(0.707107 - 0.707107i) q^{32}\) \(+(-8.89846 + 0.0232622i) q^{33}\) \(+(-4.63684 - 1.50660i) q^{34}\) \(+(0.0653448 - 0.478495i) q^{35}\) \(+(0.0156850 + 2.99996i) q^{36}\) \(+(3.83574 - 1.95441i) q^{37}\) \(+(-0.429039 + 0.218606i) q^{38}\) \(+(-0.409380 - 2.54170i) q^{39}\) \(+(1.54701 - 1.61454i) q^{40}\) \(+(5.95547 + 1.93505i) q^{41}\) \(+(-0.000977913 - 0.374079i) q^{42}\) \(+(-2.72225 + 2.72225i) q^{43}\) \(+(4.15636 + 3.01977i) q^{44}\) \(+(0.178312 + 6.70583i) q^{45}\) \(+(2.16317 - 1.57163i) q^{46}\) \(+(1.58814 - 10.0271i) q^{47}\) \(+(1.01441 - 1.40392i) q^{48}\) \(-6.95335i q^{49}\) \(+(3.38135 - 3.68327i) q^{50}\) \(+(-8.34400 - 1.29921i) q^{51}\) \(+(-0.674795 + 1.32436i) q^{52}\) \(+(-7.59700 - 1.20325i) q^{53}\) \(+(0.853081 + 5.12565i) q^{54}\) \(+(9.43598 + 6.55241i) q^{55}\) \(+(-0.126947 + 0.174728i) q^{56}\) \(+(-0.673453 + 0.491987i) q^{57}\) \(+(9.27141 - 1.46845i) q^{58}\) \(+(-1.54130 + 4.74363i) q^{59}\) \(+(2.20073 - 3.18697i) q^{60}\) \(+(-4.21680 - 12.9780i) q^{61}\) \(+(1.03265 + 2.02668i) q^{62}\) \(+(-0.104703 - 0.639411i) q^{63}\) \(+(-0.951057 + 0.309017i) q^{64}\) \(+(-1.44531 + 2.99291i) q^{65}\) \(+(7.93914 + 4.01909i) q^{66}\) \(+(2.35050 + 14.8405i) q^{67}\) \(+(3.44747 + 3.44747i) q^{68}\) \(+(3.26618 - 3.28330i) q^{69}\) \(+(-0.275455 + 0.396676i) q^{70}\) \(+(-7.13100 - 9.81498i) q^{71}\) \(+(1.34798 - 2.68010i) q^{72}\) \(+(8.36209 + 4.26070i) q^{73}\) \(-4.30495 q^{74}\) \(+(4.76768 - 7.22975i) q^{75}\) \(+0.481522 q^{76}\) \(+(-0.988647 - 0.503741i) q^{77}\) \(+(-0.789148 + 2.45053i) q^{78}\) \(+(-1.28502 - 1.76867i) q^{79}\) \(+(-2.11139 + 0.736238i) q^{80}\) \(+(2.87050 + 8.52996i) q^{81}\) \(+(-4.42787 - 4.42787i) q^{82}\) \(+(-0.782253 - 4.93895i) q^{83}\) \(+(-0.168957 + 0.333751i) q^{84}\) \(+(7.87163 + 7.54240i) q^{85}\) \(+(3.66142 - 1.18967i) q^{86}\) \(+(15.4498 - 5.06463i) q^{87}\) \(+(-2.33240 - 4.57759i) q^{88}\) \(+(-3.38311 - 10.4121i) q^{89}\) \(+(2.88551 - 6.05589i) q^{90}\) \(+(0.0992002 - 0.305307i) q^{91}\) \(+(-2.64090 + 0.418278i) q^{92}\) \(+(2.32404 + 3.18124i) q^{93}\) \(+(-5.96725 + 8.21321i) q^{94}\) \(+(1.07647 - 0.0229926i) q^{95}\) \(+(-1.54121 + 0.790366i) q^{96}\) \(+(-9.96799 - 1.57877i) q^{97}\) \(+(-3.15676 + 6.19548i) q^{98}\) \(+(14.6830 + 4.68606i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut -\mathstrut 4q^{10} \) \(\mathstrut -\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 8q^{15} \) \(\mathstrut +\mathstrut 20q^{16} \) \(\mathstrut -\mathstrut 8q^{18} \) \(\mathstrut -\mathstrut 40q^{19} \) \(\mathstrut -\mathstrut 36q^{22} \) \(\mathstrut -\mathstrut 104q^{25} \) \(\mathstrut +\mathstrut 4q^{27} \) \(\mathstrut -\mathstrut 16q^{28} \) \(\mathstrut +\mathstrut 12q^{30} \) \(\mathstrut +\mathstrut 4q^{33} \) \(\mathstrut -\mathstrut 40q^{34} \) \(\mathstrut -\mathstrut 24q^{37} \) \(\mathstrut -\mathstrut 40q^{39} \) \(\mathstrut -\mathstrut 8q^{40} \) \(\mathstrut -\mathstrut 4q^{42} \) \(\mathstrut -\mathstrut 24q^{43} \) \(\mathstrut -\mathstrut 72q^{45} \) \(\mathstrut -\mathstrut 4q^{48} \) \(\mathstrut -\mathstrut 12q^{55} \) \(\mathstrut -\mathstrut 64q^{57} \) \(\mathstrut +\mathstrut 20q^{58} \) \(\mathstrut +\mathstrut 24q^{60} \) \(\mathstrut +\mathstrut 64q^{63} \) \(\mathstrut +\mathstrut 96q^{67} \) \(\mathstrut +\mathstrut 140q^{69} \) \(\mathstrut +\mathstrut 76q^{70} \) \(\mathstrut +\mathstrut 8q^{72} \) \(\mathstrut +\mathstrut 100q^{73} \) \(\mathstrut +\mathstrut 132q^{75} \) \(\mathstrut +\mathstrut 100q^{78} \) \(\mathstrut +\mathstrut 80q^{79} \) \(\mathstrut -\mathstrut 40q^{81} \) \(\mathstrut +\mathstrut 96q^{82} \) \(\mathstrut +\mathstrut 60q^{84} \) \(\mathstrut +\mathstrut 32q^{85} \) \(\mathstrut +\mathstrut 80q^{87} \) \(\mathstrut +\mathstrut 4q^{88} \) \(\mathstrut +\mathstrut 52q^{90} \) \(\mathstrut +\mathstrut 12q^{93} \) \(\mathstrut -\mathstrut 32q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{13}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.891007 0.453990i −0.630037 0.321020i
\(3\) −1.64867 0.530925i −0.951861 0.306530i
\(4\) 0.587785 + 0.809017i 0.293893 + 0.404508i
\(5\) 1.35266 + 1.78054i 0.604927 + 0.796281i
\(6\) 1.22794 + 1.22154i 0.501305 + 0.498691i
\(7\) −0.152718 0.152718i −0.0577219 0.0577219i 0.677657 0.735379i \(-0.262996\pi\)
−0.735379 + 0.677657i \(0.762996\pi\)
\(8\) −0.156434 0.987688i −0.0553079 0.349201i
\(9\) 2.43624 + 1.75064i 0.812079 + 0.583547i
\(10\) −0.396880 2.20056i −0.125505 0.695880i
\(11\) 4.88609 1.58759i 1.47321 0.478676i 0.541136 0.840935i \(-0.317995\pi\)
0.932077 + 0.362259i \(0.117995\pi\)
\(12\) −0.539538 1.64587i −0.155751 0.475123i
\(13\) 0.674795 + 1.32436i 0.187155 + 0.367312i 0.965451 0.260586i \(-0.0839157\pi\)
−0.778296 + 0.627897i \(0.783916\pi\)
\(14\) 0.0667401 + 0.205405i 0.0178371 + 0.0548968i
\(15\) −1.28476 3.65368i −0.331723 0.943377i
\(16\) −0.309017 + 0.951057i −0.0772542 + 0.237764i
\(17\) 4.81543 0.762690i 1.16791 0.184979i 0.457793 0.889059i \(-0.348640\pi\)
0.710121 + 0.704080i \(0.248640\pi\)
\(18\) −1.37593 2.66586i −0.324309 0.628350i
\(19\) 0.283032 0.389560i 0.0649319 0.0893711i −0.775316 0.631574i \(-0.782409\pi\)
0.840248 + 0.542202i \(0.182409\pi\)
\(20\) −0.645413 + 2.14090i −0.144319 + 0.478719i
\(21\) 0.170700 + 0.332863i 0.0372498 + 0.0726367i
\(22\) −5.07429 0.803689i −1.08184 0.171347i
\(23\) −1.21389 + 2.38239i −0.253114 + 0.496763i −0.982243 0.187612i \(-0.939925\pi\)
0.729130 + 0.684376i \(0.239925\pi\)
\(24\) −0.266479 + 1.71143i −0.0543949 + 0.349344i
\(25\) −1.34063 + 4.81692i −0.268126 + 0.963384i
\(26\) 1.48636i 0.291500i
\(27\) −3.08710 4.17969i −0.594112 0.804382i
\(28\) 0.0337860 0.213317i 0.00638496 0.0403130i
\(29\) −7.59423 + 5.51753i −1.41021 + 1.02458i −0.416921 + 0.908943i \(0.636891\pi\)
−0.993292 + 0.115637i \(0.963109\pi\)
\(30\) −0.514010 + 3.83872i −0.0938449 + 0.700852i
\(31\) −1.84019 1.33698i −0.330508 0.240128i 0.410138 0.912023i \(-0.365480\pi\)
−0.740646 + 0.671895i \(0.765480\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) −8.89846 + 0.0232622i −1.54902 + 0.00404943i
\(34\) −4.63684 1.50660i −0.795211 0.258380i
\(35\) 0.0653448 0.478495i 0.0110453 0.0808804i
\(36\) 0.0156850 + 2.99996i 0.00261417 + 0.499993i
\(37\) 3.83574 1.95441i 0.630592 0.321303i −0.109320 0.994007i \(-0.534867\pi\)
0.739912 + 0.672704i \(0.234867\pi\)
\(38\) −0.429039 + 0.218606i −0.0695994 + 0.0354627i
\(39\) −0.409380 2.54170i −0.0655533 0.406998i
\(40\) 1.54701 1.61454i 0.244604 0.255282i
\(41\) 5.95547 + 1.93505i 0.930087 + 0.302204i 0.734598 0.678502i \(-0.237371\pi\)
0.195489 + 0.980706i \(0.437371\pi\)
\(42\) −0.000977913 0.374079i −0.000150895 0.0577217i
\(43\) −2.72225 + 2.72225i −0.415139 + 0.415139i −0.883524 0.468385i \(-0.844836\pi\)
0.468385 + 0.883524i \(0.344836\pi\)
\(44\) 4.15636 + 3.01977i 0.626595 + 0.455248i
\(45\) 0.178312 + 6.70583i 0.0265812 + 0.999647i
\(46\) 2.16317 1.57163i 0.318942 0.231725i
\(47\) 1.58814 10.0271i 0.231654 1.46260i −0.548046 0.836448i \(-0.684628\pi\)
0.779699 0.626154i \(-0.215372\pi\)
\(48\) 1.01441 1.40392i 0.146417 0.202638i
\(49\) 6.95335i 0.993336i
\(50\) 3.38135 3.68327i 0.478194 0.520894i
\(51\) −8.34400 1.29921i −1.16839 0.181926i
\(52\) −0.674795 + 1.32436i −0.0935773 + 0.183656i
\(53\) −7.59700 1.20325i −1.04353 0.165279i −0.388939 0.921264i \(-0.627158\pi\)
−0.654589 + 0.755985i \(0.727158\pi\)
\(54\) 0.853081 + 5.12565i 0.116090 + 0.697512i
\(55\) 9.43598 + 6.55241i 1.27235 + 0.883527i
\(56\) −0.126947 + 0.174728i −0.0169640 + 0.0233490i
\(57\) −0.673453 + 0.491987i −0.0892011 + 0.0651653i
\(58\) 9.27141 1.46845i 1.21740 0.192817i
\(59\) −1.54130 + 4.74363i −0.200660 + 0.617569i 0.799204 + 0.601061i \(0.205255\pi\)
−0.999864 + 0.0165081i \(0.994745\pi\)
\(60\) 2.20073 3.18697i 0.284113 0.411436i
\(61\) −4.21680 12.9780i −0.539906 1.66166i −0.732803 0.680440i \(-0.761789\pi\)
0.192898 0.981219i \(-0.438211\pi\)
\(62\) 1.03265 + 2.02668i 0.131146 + 0.257389i
\(63\) −0.104703 0.639411i −0.0131913 0.0805582i
\(64\) −0.951057 + 0.309017i −0.118882 + 0.0386271i
\(65\) −1.44531 + 2.99291i −0.179268 + 0.371224i
\(66\) 7.93914 + 4.01909i 0.977241 + 0.494716i
\(67\) 2.35050 + 14.8405i 0.287159 + 1.81305i 0.535673 + 0.844425i \(0.320058\pi\)
−0.248514 + 0.968628i \(0.579942\pi\)
\(68\) 3.44747 + 3.44747i 0.418067 + 0.418067i
\(69\) 3.26618 3.28330i 0.393202 0.395263i
\(70\) −0.275455 + 0.396676i −0.0329231 + 0.0474119i
\(71\) −7.13100 9.81498i −0.846294 1.16482i −0.984667 0.174444i \(-0.944187\pi\)
0.138373 0.990380i \(-0.455813\pi\)
\(72\) 1.34798 2.68010i 0.158861 0.315853i
\(73\) 8.36209 + 4.26070i 0.978708 + 0.498677i 0.868745 0.495259i \(-0.164927\pi\)
0.109963 + 0.993936i \(0.464927\pi\)
\(74\) −4.30495 −0.500441
\(75\) 4.76768 7.22975i 0.550524 0.834819i
\(76\) 0.481522 0.0552344
\(77\) −0.988647 0.503741i −0.112667 0.0574066i
\(78\) −0.789148 + 2.45053i −0.0893534 + 0.277468i
\(79\) −1.28502 1.76867i −0.144576 0.198991i 0.730588 0.682819i \(-0.239246\pi\)
−0.875163 + 0.483828i \(0.839246\pi\)
\(80\) −2.11139 + 0.736238i −0.236060 + 0.0823139i
\(81\) 2.87050 + 8.52996i 0.318945 + 0.947773i
\(82\) −4.42787 4.42787i −0.488976 0.488976i
\(83\) −0.782253 4.93895i −0.0858634 0.542120i −0.992697 0.120632i \(-0.961508\pi\)
0.906834 0.421488i \(-0.138492\pi\)
\(84\) −0.168957 + 0.333751i −0.0184347 + 0.0364152i
\(85\) 7.87163 + 7.54240i 0.853798 + 0.818088i
\(86\) 3.66142 1.18967i 0.394821 0.128285i
\(87\) 15.4498 5.06463i 1.65639 0.542985i
\(88\) −2.33240 4.57759i −0.248634 0.487972i
\(89\) −3.38311 10.4121i −0.358609 1.10368i −0.953887 0.300165i \(-0.902958\pi\)
0.595279 0.803519i \(-0.297042\pi\)
\(90\) 2.88551 6.05589i 0.304159 0.638347i
\(91\) 0.0992002 0.305307i 0.0103990 0.0320048i
\(92\) −2.64090 + 0.418278i −0.275333 + 0.0436085i
\(93\) 2.32404 + 3.18124i 0.240991 + 0.329879i
\(94\) −5.96725 + 8.21321i −0.615475 + 0.847128i
\(95\) 1.07647 0.0229926i 0.110444 0.00235899i
\(96\) −1.54121 + 0.790366i −0.157299 + 0.0806664i
\(97\) −9.96799 1.57877i −1.01210 0.160300i −0.371706 0.928350i \(-0.621227\pi\)
−0.640390 + 0.768050i \(0.721227\pi\)
\(98\) −3.15676 + 6.19548i −0.318881 + 0.625838i
\(99\) 14.6830 + 4.68606i 1.47570 + 0.470967i
\(100\) −4.68497 + 1.74672i −0.468497 + 0.174672i
\(101\) 9.53700i 0.948967i 0.880264 + 0.474483i \(0.157365\pi\)
−0.880264 + 0.474483i \(0.842635\pi\)
\(102\) 6.84473 + 4.94570i 0.677729 + 0.489697i
\(103\) 1.58215 9.98929i 0.155894 0.984274i −0.778400 0.627769i \(-0.783968\pi\)
0.934293 0.356505i \(-0.116032\pi\)
\(104\) 1.20249 0.873663i 0.117914 0.0856697i
\(105\) −0.361777 + 0.754188i −0.0353058 + 0.0736012i
\(106\) 6.22271 + 4.52106i 0.604403 + 0.439125i
\(107\) −7.80873 + 7.80873i −0.754898 + 0.754898i −0.975389 0.220491i \(-0.929234\pi\)
0.220491 + 0.975389i \(0.429234\pi\)
\(108\) 1.56689 4.95428i 0.150774 0.476725i
\(109\) −5.83194 1.89491i −0.558598 0.181500i 0.0160921 0.999871i \(-0.494877\pi\)
−0.574690 + 0.818371i \(0.694877\pi\)
\(110\) −5.43279 10.1221i −0.517996 0.965103i
\(111\) −7.36152 + 1.18569i −0.698725 + 0.112540i
\(112\) 0.192436 0.0980509i 0.0181835 0.00926494i
\(113\) 9.78864 4.98756i 0.920838 0.469190i 0.0717385 0.997423i \(-0.477145\pi\)
0.849099 + 0.528233i \(0.177145\pi\)
\(114\) 0.823409 0.132623i 0.0771193 0.0124212i
\(115\) −5.88392 + 1.06119i −0.548678 + 0.0989563i
\(116\) −8.92755 2.90074i −0.828902 0.269327i
\(117\) −0.674520 + 4.40778i −0.0623594 + 0.407500i
\(118\) 3.52687 3.52687i 0.324675 0.324675i
\(119\) −0.851879 0.618926i −0.0780916 0.0567369i
\(120\) −3.40772 + 1.84050i −0.311081 + 0.168014i
\(121\) 12.4543 9.04858i 1.13221 0.822598i
\(122\) −2.13468 + 13.4778i −0.193265 + 1.22023i
\(123\) −8.79124 6.35216i −0.792680 0.572755i
\(124\) 2.27460i 0.204265i
\(125\) −10.3901 + 4.12861i −0.929321 + 0.369274i
\(126\) −0.196996 + 0.617253i −0.0175498 + 0.0549893i
\(127\) −6.82658 + 13.3979i −0.605761 + 1.18887i 0.360850 + 0.932624i \(0.382487\pi\)
−0.966611 + 0.256249i \(0.917513\pi\)
\(128\) 0.987688 + 0.156434i 0.0873001 + 0.0138270i
\(129\) 5.93341 3.04279i 0.522407 0.267902i
\(130\) 2.64653 2.01054i 0.232116 0.176336i
\(131\) −5.12870 + 7.05905i −0.448097 + 0.616752i −0.971987 0.235034i \(-0.924480\pi\)
0.523891 + 0.851785i \(0.324480\pi\)
\(132\) −5.24920 7.18533i −0.456884 0.625403i
\(133\) −0.102717 + 0.0162687i −0.00890667 + 0.00141068i
\(134\) 4.64313 14.2901i 0.401105 1.23447i
\(135\) 3.26632 11.1504i 0.281120 0.959673i
\(136\) −1.50660 4.63684i −0.129190 0.397605i
\(137\) 1.28180 + 2.51567i 0.109511 + 0.214928i 0.939258 0.343212i \(-0.111515\pi\)
−0.829747 + 0.558140i \(0.811515\pi\)
\(138\) −4.40077 + 1.44263i −0.374619 + 0.122805i
\(139\) −6.62014 + 2.15102i −0.561513 + 0.182447i −0.576002 0.817448i \(-0.695388\pi\)
0.0144887 + 0.999895i \(0.495388\pi\)
\(140\) 0.425519 0.228387i 0.0359629 0.0193022i
\(141\) −7.94195 + 15.6882i −0.668833 + 1.32119i
\(142\) 1.89786 + 11.9826i 0.159265 + 1.00556i
\(143\) 5.39965 + 5.39965i 0.451542 + 0.451542i
\(144\) −2.41780 + 1.77602i −0.201483 + 0.148002i
\(145\) −20.0966 6.05848i −1.66893 0.503129i
\(146\) −5.51636 7.59261i −0.456537 0.628369i
\(147\) −3.69171 + 11.4638i −0.304487 + 0.945518i
\(148\) 3.83574 + 1.95441i 0.315296 + 0.160651i
\(149\) 7.72360 0.632742 0.316371 0.948635i \(-0.397535\pi\)
0.316371 + 0.948635i \(0.397535\pi\)
\(150\) −7.53027 + 4.27727i −0.614844 + 0.349237i
\(151\) −14.7868 −1.20333 −0.601667 0.798747i \(-0.705497\pi\)
−0.601667 + 0.798747i \(0.705497\pi\)
\(152\) −0.429039 0.218606i −0.0347997 0.0177313i
\(153\) 13.0667 + 6.57201i 1.05638 + 0.531315i
\(154\) 0.652197 + 0.897673i 0.0525556 + 0.0723365i
\(155\) −0.108612 5.08500i −0.00872392 0.408437i
\(156\) 1.81565 1.82517i 0.145369 0.146131i
\(157\) −11.5941 11.5941i −0.925312 0.925312i 0.0720863 0.997398i \(-0.477034\pi\)
−0.997398 + 0.0720863i \(0.977034\pi\)
\(158\) 0.341997 + 2.15928i 0.0272078 + 0.171783i
\(159\) 11.8861 + 6.01719i 0.942630 + 0.477194i
\(160\) 2.21550 + 0.302556i 0.175151 + 0.0239192i
\(161\) 0.549217 0.178451i 0.0432843 0.0140639i
\(162\) 1.31488 8.90343i 0.103307 0.699520i
\(163\) −1.84215 3.61543i −0.144289 0.283182i 0.807540 0.589813i \(-0.200798\pi\)
−0.951829 + 0.306630i \(0.900798\pi\)
\(164\) 1.93505 + 5.95547i 0.151102 + 0.465044i
\(165\) −12.0780 15.8126i −0.940270 1.23101i
\(166\) −1.54524 + 4.75577i −0.119934 + 0.369119i
\(167\) 13.6706 2.16520i 1.05786 0.167549i 0.396818 0.917897i \(-0.370114\pi\)
0.661042 + 0.750349i \(0.270114\pi\)
\(168\) 0.302062 0.220670i 0.0233046 0.0170250i
\(169\) 6.34263 8.72988i 0.487894 0.671529i
\(170\) −3.58950 10.2940i −0.275302 0.789512i
\(171\) 1.37151 0.453573i 0.104882 0.0346856i
\(172\) −3.80244 0.602248i −0.289934 0.0459210i
\(173\) −0.412278 + 0.809140i −0.0313449 + 0.0615178i −0.906148 0.422961i \(-0.860991\pi\)
0.874803 + 0.484479i \(0.160991\pi\)
\(174\) −16.0652 2.50144i −1.21790 0.189633i
\(175\) 0.940368 0.530891i 0.0710851 0.0401316i
\(176\) 5.13754i 0.387257i
\(177\) 5.05961 7.00238i 0.380304 0.526331i
\(178\) −1.71264 + 10.8132i −0.128368 + 0.810482i
\(179\) 9.58645 6.96496i 0.716525 0.520586i −0.168747 0.985659i \(-0.553972\pi\)
0.885272 + 0.465074i \(0.153972\pi\)
\(180\) −5.32032 + 4.08585i −0.396554 + 0.304541i
\(181\) 13.9076 + 10.1044i 1.03374 + 0.751057i 0.969054 0.246848i \(-0.0793949\pi\)
0.0646876 + 0.997906i \(0.479395\pi\)
\(182\) −0.226994 + 0.226994i −0.0168259 + 0.0168259i
\(183\) 0.0617869 + 23.6352i 0.00456742 + 1.74717i
\(184\) 2.54296 + 0.826257i 0.187469 + 0.0609125i
\(185\) 8.66835 + 4.18604i 0.637310 + 0.307764i
\(186\) −0.626479 3.88960i −0.0459357 0.285199i
\(187\) 22.3178 11.3715i 1.63204 0.831566i
\(188\) 9.04558 4.60895i 0.659716 0.336142i
\(189\) −0.166859 + 1.10977i −0.0121372 + 0.0807238i
\(190\) −0.969581 0.468221i −0.0703408 0.0339683i
\(191\) −4.70151 1.52761i −0.340189 0.110534i 0.133940 0.990989i \(-0.457237\pi\)
−0.474129 + 0.880455i \(0.657237\pi\)
\(192\) 1.73204 0.00452789i 0.125000 0.000326772i
\(193\) 2.38356 2.38356i 0.171572 0.171572i −0.616098 0.787670i \(-0.711287\pi\)
0.787670 + 0.616098i \(0.211287\pi\)
\(194\) 8.16479 + 5.93207i 0.586198 + 0.425898i
\(195\) 3.97184 4.16697i 0.284430 0.298403i
\(196\) 5.62538 4.08708i 0.401813 0.291934i
\(197\) −1.14693 + 7.24145i −0.0817156 + 0.515932i 0.912548 + 0.408970i \(0.134112\pi\)
−0.994263 + 0.106961i \(0.965888\pi\)
\(198\) −10.9552 10.8412i −0.778553 0.770454i
\(199\) 8.34182i 0.591336i 0.955291 + 0.295668i \(0.0955422\pi\)
−0.955291 + 0.295668i \(0.904458\pi\)
\(200\) 4.96734 + 0.570592i 0.351244 + 0.0403470i
\(201\) 4.00398 25.7150i 0.282419 1.81380i
\(202\) 4.32971 8.49753i 0.304637 0.597884i
\(203\) 2.00240 + 0.317149i 0.140541 + 0.0222595i
\(204\) −3.85340 7.51409i −0.269792 0.526092i
\(205\) 4.61029 + 13.2214i 0.321996 + 0.923422i
\(206\) −5.94475 + 8.18224i −0.414190 + 0.570084i
\(207\) −7.12804 + 3.67899i −0.495433 + 0.255707i
\(208\) −1.46807 + 0.232519i −0.101792 + 0.0161223i
\(209\) 0.764459 2.35276i 0.0528787 0.162744i
\(210\) 0.664740 0.507743i 0.0458714 0.0350376i
\(211\) 1.32487 + 4.07753i 0.0912078 + 0.280709i 0.986247 0.165279i \(-0.0528525\pi\)
−0.895039 + 0.445988i \(0.852852\pi\)
\(212\) −3.49196 6.85335i −0.239828 0.470690i
\(213\) 6.54566 + 19.9677i 0.448501 + 1.36817i
\(214\) 10.5027 3.41254i 0.717951 0.233276i
\(215\) −8.52934 1.16479i −0.581696 0.0794383i
\(216\) −3.64531 + 3.70294i −0.248032 + 0.251953i
\(217\) 0.0768498 + 0.485210i 0.00521690 + 0.0329382i
\(218\) 4.33602 + 4.33602i 0.293672 + 0.293672i
\(219\) −11.5242 11.4641i −0.778735 0.774674i
\(220\) 0.245317 + 11.4853i 0.0165393 + 0.774337i
\(221\) 4.25951 + 5.86271i 0.286525 + 0.394369i
\(222\) 7.09746 + 2.28561i 0.476350 + 0.153400i
\(223\) 0.651256 + 0.331831i 0.0436113 + 0.0222211i 0.475660 0.879629i \(-0.342209\pi\)
−0.432049 + 0.901850i \(0.642209\pi\)
\(224\) −0.215976 −0.0144305
\(225\) −11.6988 + 9.38820i −0.779920 + 0.625880i
\(226\) −10.9860 −0.730781
\(227\) −2.94981 1.50300i −0.195786 0.0997579i 0.353349 0.935492i \(-0.385043\pi\)
−0.549135 + 0.835734i \(0.685043\pi\)
\(228\) −0.793872 0.255652i −0.0525755 0.0169310i
\(229\) −6.20224 8.53665i −0.409855 0.564117i 0.553328 0.832964i \(-0.313358\pi\)
−0.963183 + 0.268846i \(0.913358\pi\)
\(230\) 5.72438 + 1.72572i 0.377455 + 0.113791i
\(231\) 1.36251 + 1.35540i 0.0896463 + 0.0891788i
\(232\) 6.63760 + 6.63760i 0.435780 + 0.435780i
\(233\) −1.96935 12.4340i −0.129016 0.814577i −0.964311 0.264774i \(-0.914703\pi\)
0.835294 0.549803i \(-0.185297\pi\)
\(234\) 2.60209 3.62114i 0.170104 0.236721i
\(235\) 20.0018 10.7355i 1.30478 0.700307i
\(236\) −4.74363 + 1.54130i −0.308784 + 0.100330i
\(237\) 1.17954 + 3.59821i 0.0766192 + 0.233729i
\(238\) 0.478043 + 0.938212i 0.0309869 + 0.0608152i
\(239\) 3.62951 + 11.1705i 0.234773 + 0.722558i 0.997151 + 0.0754263i \(0.0240318\pi\)
−0.762378 + 0.647132i \(0.775968\pi\)
\(240\) 3.87187 0.0928273i 0.249928 0.00599198i
\(241\) 0.375849 1.15675i 0.0242106 0.0745125i −0.938221 0.346036i \(-0.887527\pi\)
0.962432 + 0.271524i \(0.0875275\pi\)
\(242\) −15.2048 + 2.40821i −0.977403 + 0.154805i
\(243\) −0.203749 15.5871i −0.0130705 0.999915i
\(244\) 8.02083 11.0397i 0.513481 0.706746i
\(245\) 12.3807 9.40551i 0.790975 0.600896i
\(246\) 4.94923 + 9.65096i 0.315552 + 0.615323i
\(247\) 0.706906 + 0.111963i 0.0449793 + 0.00712403i
\(248\) −1.03265 + 2.02668i −0.0655732 + 0.128695i
\(249\) −1.33253 + 8.55802i −0.0844459 + 0.542343i
\(250\) 11.1320 + 1.03840i 0.704050 + 0.0656743i
\(251\) 22.6123i 1.42728i 0.700515 + 0.713638i \(0.252954\pi\)
−0.700515 + 0.713638i \(0.747046\pi\)
\(252\) 0.455752 0.460543i 0.0287097 0.0290115i
\(253\) −2.14892 + 13.5678i −0.135102 + 0.852998i
\(254\) 12.1651 8.83843i 0.763304 0.554573i
\(255\) −8.97329 16.6142i −0.561929 1.04042i
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) 2.98436 2.98436i 0.186159 0.186159i −0.607874 0.794033i \(-0.707978\pi\)
0.794033 + 0.607874i \(0.207978\pi\)
\(258\) −6.66810 + 0.0174316i −0.415138 + 0.00108525i
\(259\) −0.884259 0.287313i −0.0549452 0.0178528i
\(260\) −3.27084 + 0.589909i −0.202849 + 0.0365846i
\(261\) −28.1606 + 0.147235i −1.74309 + 0.00911361i
\(262\) 7.77445 3.96128i 0.480307 0.244729i
\(263\) −2.29146 + 1.16756i −0.141298 + 0.0719947i −0.523210 0.852204i \(-0.675266\pi\)
0.381912 + 0.924199i \(0.375266\pi\)
\(264\) 1.41500 + 8.78526i 0.0870873 + 0.540696i
\(265\) −8.13372 15.1543i −0.499650 0.930922i
\(266\) 0.0989071 + 0.0321369i 0.00606438 + 0.00197044i
\(267\) 0.0495712 + 18.9624i 0.00303371 + 1.16048i
\(268\) −10.6246 + 10.6246i −0.649002 + 0.649002i
\(269\) −19.5493 14.2034i −1.19194 0.865996i −0.198473 0.980106i \(-0.563598\pi\)
−0.993468 + 0.114110i \(0.963598\pi\)
\(270\) −7.97248 + 8.45219i −0.485190 + 0.514384i
\(271\) −9.36464 + 6.80381i −0.568861 + 0.413302i −0.834691 0.550718i \(-0.814354\pi\)
0.265830 + 0.964020i \(0.414354\pi\)
\(272\) −0.762690 + 4.81543i −0.0462448 + 0.291978i
\(273\) −0.325644 + 0.450683i −0.0197088 + 0.0272766i
\(274\) 2.82340i 0.170568i
\(275\) 1.09684 + 25.6643i 0.0661420 + 1.54762i
\(276\) 4.57606 + 0.712519i 0.275446 + 0.0428886i
\(277\) 3.42126 6.71461i 0.205564 0.403442i −0.765090 0.643924i \(-0.777305\pi\)
0.970654 + 0.240482i \(0.0773055\pi\)
\(278\) 6.87513 + 1.08891i 0.412343 + 0.0653087i
\(279\) −2.14257 6.47871i −0.128273 0.387870i
\(280\) −0.482826 + 0.0103128i −0.0288544 + 0.000616308i
\(281\) 13.8790 19.1028i 0.827952 1.13958i −0.160349 0.987060i \(-0.551262\pi\)
0.988301 0.152517i \(-0.0487380\pi\)
\(282\) 14.1986 10.3727i 0.845516 0.617687i
\(283\) 9.72347 1.54005i 0.578000 0.0915463i 0.139412 0.990234i \(-0.455479\pi\)
0.438588 + 0.898688i \(0.355479\pi\)
\(284\) 3.74899 11.5382i 0.222462 0.684667i
\(285\) −1.78695 0.533618i −0.105850 0.0316088i
\(286\) −2.35974 7.26252i −0.139534 0.429442i
\(287\) −0.613989 1.20502i −0.0362426 0.0711302i
\(288\) 2.96057 0.484789i 0.174453 0.0285665i
\(289\) 6.43873 2.09207i 0.378749 0.123063i
\(290\) 15.1557 + 14.5218i 0.889972 + 0.852749i
\(291\) 15.5957 + 7.89513i 0.914238 + 0.462821i
\(292\) 1.46814 + 9.26944i 0.0859161 + 0.542453i
\(293\) −3.33944 3.33944i −0.195092 0.195092i 0.602800 0.797892i \(-0.294052\pi\)
−0.797892 + 0.602800i \(0.794052\pi\)
\(294\) 8.49379 8.53832i 0.495368 0.497965i
\(295\) −10.5311 + 3.67217i −0.613143 + 0.213802i
\(296\) −2.53039 3.48278i −0.147076 0.202433i
\(297\) −21.7195 15.5213i −1.26029 0.900640i
\(298\) −6.88178 3.50644i −0.398651 0.203123i
\(299\) −3.97428 −0.229838
\(300\) 8.65136 0.392402i 0.499486 0.0226554i
\(301\) 0.831472 0.0479252
\(302\) 13.1751 + 6.71307i 0.758145 + 0.386294i
\(303\) 5.06343 15.7234i 0.290887 0.903285i
\(304\) 0.283032 + 0.389560i 0.0162330 + 0.0223428i
\(305\) 17.4039 25.0629i 0.996543 1.43510i
\(306\) −8.65891 11.7879i −0.494997 0.673868i
\(307\) −11.8133 11.8133i −0.674221 0.674221i 0.284465 0.958686i \(-0.408184\pi\)
−0.958686 + 0.284465i \(0.908184\pi\)
\(308\) −0.173577 1.09592i −0.00989048 0.0624460i
\(309\) −7.91201 + 15.6291i −0.450098 + 0.889106i
\(310\) −2.21177 + 4.58008i −0.125620 + 0.260131i
\(311\) 28.7239 9.33296i 1.62878 0.529224i 0.654791 0.755810i \(-0.272756\pi\)
0.973991 + 0.226586i \(0.0727564\pi\)
\(312\) −2.44637 + 0.801950i −0.138498 + 0.0454015i
\(313\) −7.57278 14.8624i −0.428039 0.840073i −0.999807 0.0196580i \(-0.993742\pi\)
0.571768 0.820415i \(-0.306258\pi\)
\(314\) 5.06682 + 15.5941i 0.285937 + 0.880024i
\(315\) 0.996869 1.05133i 0.0561672 0.0592358i
\(316\) 0.675573 2.07920i 0.0380040 0.116964i
\(317\) −10.7129 + 1.69675i −0.601695 + 0.0952991i −0.449848 0.893105i \(-0.648522\pi\)
−0.151847 + 0.988404i \(0.548522\pi\)
\(318\) −7.85886 10.7575i −0.440703 0.603253i
\(319\) −28.3466 + 39.0157i −1.58710 + 2.18446i
\(320\) −1.83667 1.27540i −0.102673 0.0712969i
\(321\) 17.0199 8.72818i 0.949957 0.487160i
\(322\) −0.570371 0.0903379i −0.0317855 0.00503433i
\(323\) 1.06581 2.09176i 0.0593031 0.116389i
\(324\) −5.21364 + 7.33607i −0.289647 + 0.407559i
\(325\) −7.28399 + 1.47496i −0.404043 + 0.0818159i
\(326\) 4.05769i 0.224735i
\(327\) 8.60889 + 6.22041i 0.476073 + 0.343989i
\(328\) 0.979584 6.18485i 0.0540885 0.341501i
\(329\) −1.77385 + 1.28878i −0.0977957 + 0.0710527i
\(330\) 3.58281 + 19.5724i 0.197227 + 1.07743i
\(331\) −7.79472 5.66319i −0.428436 0.311277i 0.352587 0.935779i \(-0.385302\pi\)
−0.781023 + 0.624502i \(0.785302\pi\)
\(332\) 3.53590 3.53590i 0.194058 0.194058i
\(333\) 12.7662 + 1.95361i 0.699586 + 0.107057i
\(334\) −13.1635 4.27710i −0.720277 0.234032i
\(335\) −23.2446 + 24.2593i −1.26999 + 1.32543i
\(336\) −0.369321 + 0.0594848i −0.0201481 + 0.00324516i
\(337\) −25.0858 + 12.7818i −1.36651 + 0.696272i −0.974646 0.223752i \(-0.928170\pi\)
−0.391864 + 0.920023i \(0.628170\pi\)
\(338\) −9.61460 + 4.89888i −0.522965 + 0.266464i
\(339\) −18.7863 + 3.02582i −1.02033 + 0.164340i
\(340\) −1.47510 + 10.8016i −0.0799986 + 0.585799i
\(341\) −11.1139 3.61113i −0.601852 0.195554i
\(342\) −1.42794 0.218517i −0.0772143 0.0118161i
\(343\) −2.13093 + 2.13093i −0.115059 + 0.115059i
\(344\) 3.11459 + 2.26288i 0.167927 + 0.122006i
\(345\) 10.2641 + 1.37437i 0.552599 + 0.0739936i
\(346\) 0.734684 0.533779i 0.0394969 0.0286962i
\(347\) 3.02097 19.0736i 0.162174 1.02393i −0.763556 0.645742i \(-0.776548\pi\)
0.925730 0.378185i \(-0.123452\pi\)
\(348\) 13.1785 + 9.52222i 0.706443 + 0.510445i
\(349\) 14.4119i 0.771451i −0.922614 0.385725i \(-0.873951\pi\)
0.922614 0.385725i \(-0.126049\pi\)
\(350\) −1.07889 + 0.0461098i −0.0576693 + 0.00246467i
\(351\) 3.45226 6.90887i 0.184268 0.368768i
\(352\) 2.33240 4.57759i 0.124317 0.243986i
\(353\) −34.5802 5.47696i −1.84052 0.291509i −0.863448 0.504438i \(-0.831700\pi\)
−0.977068 + 0.212929i \(0.931700\pi\)
\(354\) −7.68716 + 3.94215i −0.408568 + 0.209523i
\(355\) 7.83014 25.9733i 0.415581 1.37852i
\(356\) 6.43505 8.85709i 0.341057 0.469425i
\(357\) 1.07586 + 1.47269i 0.0569408 + 0.0779430i
\(358\) −11.7036 + 1.85367i −0.618555 + 0.0979695i
\(359\) −10.6846 + 32.8840i −0.563914 + 1.73555i 0.107242 + 0.994233i \(0.465798\pi\)
−0.671156 + 0.741316i \(0.734202\pi\)
\(360\) 6.59538 1.22514i 0.347607 0.0645706i
\(361\) 5.79967 + 17.8496i 0.305246 + 0.939450i
\(362\) −7.80442 15.3170i −0.410191 0.805045i
\(363\) −25.3372 + 8.30583i −1.32986 + 0.435943i
\(364\) 0.305307 0.0992002i 0.0160024 0.00519950i
\(365\) 3.72472 + 20.6523i 0.194961 + 1.08099i
\(366\) 10.6751 21.0872i 0.557997 1.10224i
\(367\) 0.505240 + 3.18996i 0.0263733 + 0.166514i 0.997360 0.0726205i \(-0.0231362\pi\)
−0.970986 + 0.239135i \(0.923136\pi\)
\(368\) −1.89068 1.89068i −0.0985584 0.0985584i
\(369\) 11.1214 + 15.1401i 0.578954 + 0.788163i
\(370\) −5.82313 7.66513i −0.302730 0.398491i
\(371\) 0.976440 + 1.34395i 0.0506942 + 0.0697746i
\(372\) −1.20764 + 3.75007i −0.0626134 + 0.194432i
\(373\) 9.65408 + 4.91900i 0.499869 + 0.254696i 0.685698 0.727886i \(-0.259497\pi\)
−0.185829 + 0.982582i \(0.559497\pi\)
\(374\) −25.0479 −1.29519
\(375\) 19.3219 1.29034i 0.997778 0.0666328i
\(376\) −10.1521 −0.523554
\(377\) −12.4317 6.33429i −0.640268 0.326233i
\(378\) 0.652497 0.913058i 0.0335608 0.0469627i
\(379\) 19.6854 + 27.0946i 1.01117 + 1.39176i 0.918213 + 0.396087i \(0.129632\pi\)
0.0929573 + 0.995670i \(0.470368\pi\)
\(380\) 0.651335 + 0.857368i 0.0334128 + 0.0439821i
\(381\) 18.3681 18.4644i 0.941025 0.945958i
\(382\) 3.49555 + 3.49555i 0.178848 + 0.178848i
\(383\) −2.54182 16.0484i −0.129881 0.820034i −0.963503 0.267699i \(-0.913737\pi\)
0.833622 0.552335i \(-0.186263\pi\)
\(384\) −1.54532 0.782298i −0.0788592 0.0399215i
\(385\) −0.440372 2.44171i −0.0224434 0.124441i
\(386\) −3.20588 + 1.04165i −0.163175 + 0.0530187i
\(387\) −11.3977 + 1.86636i −0.579379 + 0.0948724i
\(388\) −4.58178 8.99225i −0.232605 0.456512i
\(389\) −0.804900 2.47723i −0.0408101 0.125600i 0.928576 0.371143i \(-0.121034\pi\)
−0.969386 + 0.245542i \(0.921034\pi\)
\(390\) −5.43070 + 1.90962i −0.274994 + 0.0966973i
\(391\) −4.02838 + 12.3981i −0.203724 + 0.626998i
\(392\) −6.86775 + 1.08774i −0.346874 + 0.0549394i
\(393\) 12.2034 8.91510i 0.615578 0.449707i
\(394\) 4.30947 5.93148i 0.217108 0.298824i
\(395\) 1.41100 4.68043i 0.0709952 0.235498i
\(396\) 4.83934 + 14.6332i 0.243186 + 0.735345i
\(397\) 1.86357 + 0.295160i 0.0935298 + 0.0148137i 0.203024 0.979174i \(-0.434923\pi\)
−0.109494 + 0.993987i \(0.534923\pi\)
\(398\) 3.78711 7.43262i 0.189831 0.372563i
\(399\) 0.177984 + 0.0277131i 0.00891032 + 0.00138739i
\(400\) −4.16689 2.76352i −0.208344 0.138176i
\(401\) 7.16880i 0.357993i 0.983850 + 0.178996i \(0.0572850\pi\)
−0.983850 + 0.178996i \(0.942715\pi\)
\(402\) −15.2419 + 21.0945i −0.760199 + 1.05210i
\(403\) 0.528887 3.33926i 0.0263458 0.166341i
\(404\) −7.71559 + 5.60571i −0.383865 + 0.278894i
\(405\) −11.3051 + 16.6492i −0.561755 + 0.827304i
\(406\) −1.64017 1.19165i −0.0814002 0.0591407i
\(407\) 15.6390 15.6390i 0.775197 0.775197i
\(408\) 0.0220755 + 8.44451i 0.00109290 + 0.418066i
\(409\) 15.2838 + 4.96600i 0.755734 + 0.245553i 0.661447 0.749992i \(-0.269943\pi\)
0.0942874 + 0.995545i \(0.469943\pi\)
\(410\) 1.89459 13.8734i 0.0935672 0.685157i
\(411\) −0.777631 4.82805i −0.0383577 0.238150i
\(412\) 9.01147 4.59157i 0.443963 0.226211i
\(413\) 0.959822 0.489054i 0.0472297 0.0240648i
\(414\) 8.02136 0.0419389i 0.394228 0.00206119i
\(415\) 7.73586 8.07354i 0.379739 0.396315i
\(416\) 1.41362 + 0.459312i 0.0693083 + 0.0225196i
\(417\) 12.0565 0.0315179i 0.590408 0.00154344i
\(418\) −1.74927 + 1.74927i −0.0855596 + 0.0855596i
\(419\) 1.81333 + 1.31746i 0.0885872 + 0.0643624i 0.631197 0.775622i \(-0.282564\pi\)
−0.542610 + 0.839985i \(0.682564\pi\)
\(420\) −0.822798 + 0.150617i −0.0401484 + 0.00734934i
\(421\) 2.09500 1.52210i 0.102104 0.0741828i −0.535562 0.844496i \(-0.679900\pi\)
0.637666 + 0.770313i \(0.279900\pi\)
\(422\) 0.670692 4.23458i 0.0326488 0.206136i
\(423\) 21.4229 21.6481i 1.04162 1.05257i
\(424\) 7.69169i 0.373542i
\(425\) −2.78190 + 24.2180i −0.134942 + 1.17475i
\(426\) 3.23292 20.7630i 0.156636 1.00597i
\(427\) −1.33799 + 2.62595i −0.0647498 + 0.127079i
\(428\) −10.9072 1.72754i −0.527222 0.0835037i
\(429\) −6.03545 11.7691i −0.291394 0.568216i
\(430\) 7.07089 + 4.91008i 0.340989 + 0.236785i
\(431\) −0.661426 + 0.910375i −0.0318598 + 0.0438512i −0.824650 0.565644i \(-0.808628\pi\)
0.792790 + 0.609495i \(0.208628\pi\)
\(432\) 4.92909 1.64441i 0.237151 0.0791165i
\(433\) 20.2750 3.21125i 0.974355 0.154323i 0.351097 0.936339i \(-0.385809\pi\)
0.623258 + 0.782016i \(0.285809\pi\)
\(434\) 0.151807 0.467215i 0.00728698 0.0224270i
\(435\) 29.9160 + 20.6582i 1.43436 + 0.990485i
\(436\) −1.89491 5.83194i −0.0907498 0.279299i
\(437\) 0.584515 + 1.14718i 0.0279611 + 0.0548768i
\(438\) 5.06355 + 15.4465i 0.241946 + 0.738062i
\(439\) 22.3736 7.26963i 1.06783 0.346960i 0.278191 0.960526i \(-0.410265\pi\)
0.789644 + 0.613565i \(0.210265\pi\)
\(440\) 4.99563 10.3448i 0.238157 0.493170i
\(441\) 12.1728 16.9400i 0.579659 0.806668i
\(442\) −1.13363 7.15749i −0.0539215 0.340447i
\(443\) −13.6168 13.6168i −0.646952 0.646952i 0.305303 0.952255i \(-0.401242\pi\)
−0.952255 + 0.305303i \(0.901242\pi\)
\(444\) −5.28624 5.25867i −0.250874 0.249565i
\(445\) 13.9630 20.1078i 0.661910 0.953202i
\(446\) −0.429625 0.591328i −0.0203433 0.0280002i
\(447\) −12.7337 4.10066i −0.602283 0.193954i
\(448\) 0.192436 + 0.0980509i 0.00909173 + 0.00463247i
\(449\) 19.2184 0.906973 0.453487 0.891263i \(-0.350180\pi\)
0.453487 + 0.891263i \(0.350180\pi\)
\(450\) 14.6859 3.05380i 0.692298 0.143958i
\(451\) 32.1710 1.51487
\(452\) 9.78864 + 4.98756i 0.460419 + 0.234595i
\(453\) 24.3786 + 7.85069i 1.14541 + 0.368858i
\(454\) 1.94595 + 2.67837i 0.0913281 + 0.125702i
\(455\) 0.677794 0.236346i 0.0317755 0.0110801i
\(456\) 0.591281 + 0.588198i 0.0276893 + 0.0275449i
\(457\) 15.9563 + 15.9563i 0.746405 + 0.746405i 0.973802 0.227397i \(-0.0730215\pi\)
−0.227397 + 0.973802i \(0.573021\pi\)
\(458\) 1.65068 + 10.4220i 0.0771311 + 0.486986i
\(459\) −18.0535 17.7725i −0.842666 0.829551i
\(460\) −4.31700 4.13644i −0.201281 0.192863i
\(461\) 15.2184 4.94475i 0.708790 0.230300i 0.0676337 0.997710i \(-0.478455\pi\)
0.641156 + 0.767410i \(0.278455\pi\)
\(462\) −0.598662 1.82624i −0.0278523 0.0849642i
\(463\) −2.81092 5.51675i −0.130635 0.256385i 0.816419 0.577460i \(-0.195956\pi\)
−0.947054 + 0.321075i \(0.895956\pi\)
\(464\) −2.90074 8.92755i −0.134663 0.414451i
\(465\) −2.52069 + 8.44117i −0.116894 + 0.391450i
\(466\) −3.89021 + 11.9728i −0.180210 + 0.554630i
\(467\) 22.9270 3.63127i 1.06093 0.168035i 0.398509 0.917164i \(-0.369528\pi\)
0.662424 + 0.749129i \(0.269528\pi\)
\(468\) −3.96244 + 2.04513i −0.183164 + 0.0945362i
\(469\) 1.90744 2.62537i 0.0880775 0.121228i
\(470\) −22.6956 + 0.484761i −1.04687 + 0.0223604i
\(471\) 12.9593 + 25.2705i 0.597133 + 1.16440i
\(472\) 4.92635 + 0.780256i 0.226753 + 0.0359142i
\(473\) −8.97936 + 17.6230i −0.412871 + 0.810305i
\(474\) 0.582577 3.74153i 0.0267587 0.171854i
\(475\) 1.49704 + 1.88560i 0.0686888 + 0.0865171i
\(476\) 1.05298i 0.0482633i
\(477\) −16.4016 16.2310i −0.750979 0.743167i
\(478\) 1.83738 11.6007i 0.0840396 0.530605i
\(479\) −18.1330 + 13.1744i −0.828519 + 0.601954i −0.919140 0.393931i \(-0.871115\pi\)
0.0906212 + 0.995885i \(0.471115\pi\)
\(480\) −3.49200 1.67508i −0.159387 0.0764567i
\(481\) 5.17668 + 3.76108i 0.236036 + 0.171491i
\(482\) −0.860035 + 0.860035i −0.0391735 + 0.0391735i
\(483\) −1.00022 + 0.00261477i −0.0455117 + 0.000118976i
\(484\) 14.6409 + 4.75712i 0.665496 + 0.216233i
\(485\) −10.6722 19.8839i −0.484600 0.902882i
\(486\) −6.89486 + 13.9807i −0.312757 + 0.634179i
\(487\) 18.8976 9.62881i 0.856332 0.436323i 0.0300294 0.999549i \(-0.490440\pi\)
0.826303 + 0.563226i \(0.190440\pi\)
\(488\) −12.1585 + 6.19509i −0.550391 + 0.280438i
\(489\) 1.11758 + 6.93870i 0.0505389 + 0.313779i
\(490\) −15.3013 + 2.75965i −0.691243 + 0.124668i
\(491\) −29.6177 9.62339i −1.33663 0.434297i −0.448456 0.893805i \(-0.648026\pi\)
−0.888174 + 0.459507i \(0.848026\pi\)
\(492\) −0.0283534 10.8460i −0.00127827 0.488974i
\(493\) −32.3613 + 32.3613i −1.45748 + 1.45748i
\(494\) −0.579028 0.420688i −0.0260517 0.0189277i
\(495\) 11.5174 + 32.4823i 0.517667 + 1.45997i
\(496\) 1.84019 1.33698i 0.0826270 0.0600320i
\(497\) −0.409892 + 2.58795i −0.0183862 + 0.116086i
\(498\) 5.07256 7.02030i 0.227307 0.314587i
\(499\) 1.25659i 0.0562528i −0.999604 0.0281264i \(-0.991046\pi\)
0.999604 0.0281264i \(-0.00895410\pi\)
\(500\) −9.44727 5.97905i −0.422495 0.267391i
\(501\) −23.6878 3.68833i −1.05829 0.164783i
\(502\) 10.2658 20.1477i 0.458184 0.899236i
\(503\) 25.9752 + 4.11407i 1.15818 + 0.183437i 0.705815 0.708397i \(-0.250581\pi\)
0.452363 + 0.891834i \(0.350581\pi\)
\(504\) −0.615160 + 0.203439i −0.0274014 + 0.00906191i
\(505\) −16.9810 + 12.9003i −0.755644 + 0.574056i
\(506\) 8.07434 11.1134i 0.358948 0.494050i
\(507\) −15.0918 + 11.0252i −0.670251 + 0.489648i
\(508\) −14.8517 + 2.35228i −0.658938 + 0.104366i
\(509\) −5.31690 + 16.3637i −0.235668 + 0.725310i 0.761365 + 0.648324i \(0.224530\pi\)
−0.997032 + 0.0769863i \(0.975470\pi\)
\(510\) 0.452575 + 18.8771i 0.0200404 + 0.835894i
\(511\) −0.626355 1.92772i −0.0277083 0.0852775i
\(512\) 0.453990 + 0.891007i 0.0200637 + 0.0393773i
\(513\) −2.50199 + 0.0196223i −0.110465 + 0.000866347i
\(514\) −4.01395 + 1.30421i −0.177048 + 0.0575263i
\(515\) 19.9264 10.6950i 0.878063 0.471279i
\(516\) 5.94923 + 3.01172i 0.261900 + 0.132584i
\(517\) −8.15912 51.5147i −0.358838 2.26561i
\(518\) 0.657443 + 0.657443i 0.0288864 + 0.0288864i
\(519\) 1.10930 1.11512i 0.0486930 0.0489483i
\(520\) 3.18215 + 0.959319i 0.139547 + 0.0420689i
\(521\) 7.91212 + 10.8901i 0.346636 + 0.477104i 0.946365 0.323099i \(-0.104725\pi\)
−0.599729 + 0.800203i \(0.704725\pi\)
\(522\) 25.1581 + 12.6534i 1.10114 + 0.553826i
\(523\) −22.9585 11.6979i −1.00390 0.511514i −0.126858 0.991921i \(-0.540489\pi\)
−0.877046 + 0.480407i \(0.840489\pi\)
\(524\) −8.72546 −0.381174
\(525\) −1.83222 + 0.376001i −0.0799647 + 0.0164100i
\(526\) 2.57177 0.112134
\(527\) −9.88101 5.03463i −0.430424 0.219312i
\(528\) 2.72765 8.47012i 0.118706 0.368615i
\(529\) 9.31679 + 12.8235i 0.405078 + 0.557542i
\(530\) 0.367277 + 17.1952i 0.0159535 + 0.746913i
\(531\) −12.0594 + 8.85835i −0.523333 + 0.384420i
\(532\) −0.0735370 0.0735370i −0.00318823 0.00318823i
\(533\) 1.45602 + 9.19295i 0.0630672 + 0.398191i
\(534\) 8.56457 16.9181i 0.370625 0.732118i
\(535\) −24.4663 3.34119i −1.05777 0.144452i
\(536\) 14.2901 4.64313i 0.617237 0.200553i
\(537\) −19.5028 + 6.39325i −0.841607 + 0.275889i
\(538\) 10.9703 + 21.5305i 0.472965 + 0.928246i
\(539\) −11.0391 33.9747i −0.475486 1.46340i
\(540\) 10.9407 3.91153i 0.470815 0.168325i
\(541\) −6.47364 + 19.9238i −0.278323 + 0.856591i 0.709998 + 0.704204i \(0.248696\pi\)
−0.988321 + 0.152387i \(0.951304\pi\)
\(542\) 11.4328 1.81078i 0.491082 0.0777797i
\(543\) −17.5643 24.0428i −0.753757 1.03177i
\(544\) 2.86572 3.94433i 0.122867 0.169112i
\(545\) −4.51466 12.9472i −0.193387 0.554595i
\(546\) 0.494756 0.253722i 0.0211736 0.0108583i
\(547\) 43.0967 + 6.82585i 1.84268 + 0.291852i 0.977709 0.209965i \(-0.0673349\pi\)
0.864974 + 0.501817i \(0.167335\pi\)
\(548\) −1.28180 + 2.51567i −0.0547557 + 0.107464i
\(549\) 12.4467 38.9995i 0.531211 1.66446i
\(550\) 10.6741 23.3650i 0.455143 0.996287i
\(551\) 4.52004i 0.192560i
\(552\) −3.75382 2.71235i −0.159773 0.115445i
\(553\) −0.0738630 + 0.466353i −0.00314098 + 0.0198313i
\(554\) −6.09674 + 4.42954i −0.259025 + 0.188193i
\(555\) −12.0688 11.5036i −0.512292 0.488302i
\(556\) −5.63143 4.09147i −0.238826 0.173517i
\(557\) −20.7979 + 20.7979i −0.881236 + 0.881236i −0.993660 0.112424i \(-0.964139\pi\)
0.112424 + 0.993660i \(0.464139\pi\)
\(558\) −1.03223 + 6.74528i −0.0436976 + 0.285551i
\(559\) −5.44220 1.76828i −0.230181 0.0747902i
\(560\) 0.434883 + 0.210010i 0.0183772 + 0.00887453i
\(561\) −42.8322 + 6.89878i −1.80838 + 0.291267i
\(562\) −21.0388 + 10.7198i −0.887467 + 0.452187i
\(563\) 14.0139 7.14045i 0.590616 0.300934i −0.133022 0.991113i \(-0.542468\pi\)
0.723639 + 0.690179i \(0.242468\pi\)
\(564\) −17.3602 + 2.79613i −0.730996 + 0.117738i
\(565\) 22.1212 + 10.6826i 0.930647 + 0.449419i
\(566\) −9.36284 3.04217i −0.393550 0.127872i
\(567\) 0.864300 1.74105i 0.0362972 0.0731174i
\(568\) −8.57861 + 8.57861i −0.359950 + 0.359950i
\(569\) −3.20445 2.32817i −0.134338 0.0976021i 0.518587 0.855025i \(-0.326458\pi\)
−0.652925 + 0.757423i \(0.726458\pi\)
\(570\) 1.34993 + 1.28672i 0.0565424 + 0.0538947i
\(571\) −31.7943 + 23.0999i −1.33055 + 0.966702i −0.330815 + 0.943696i \(0.607324\pi\)
−0.999735 + 0.0230060i \(0.992676\pi\)
\(572\) −1.19457 + 7.54225i −0.0499477 + 0.315357i
\(573\) 6.94020 + 5.01468i 0.289931 + 0.209491i
\(574\) 1.35243i 0.0564492i
\(575\) −9.84842 9.04112i −0.410708 0.377041i
\(576\) −2.85798 0.912121i −0.119082 0.0380050i
\(577\) −8.56788 + 16.8154i −0.356685 + 0.700034i −0.997721 0.0674769i \(-0.978505\pi\)
0.641036 + 0.767511i \(0.278505\pi\)
\(578\) −6.68673 1.05907i −0.278131 0.0440517i
\(579\) −5.19519 + 2.66421i −0.215905 + 0.110721i
\(580\) −6.91106 19.8195i −0.286966 0.822962i
\(581\) −0.634802 + 0.873729i −0.0263360 + 0.0362484i
\(582\) −10.3116 14.1149i −0.427429 0.585083i
\(583\) −39.0299 + 6.18173i −1.61645 + 0.256021i
\(584\) 2.90012 8.92565i 0.120008 0.369346i
\(585\) −8.76062 + 4.76122i −0.362207 + 0.196852i
\(586\) 1.45939 + 4.49153i 0.0602867 + 0.185543i
\(587\) 2.11434 + 4.14963i 0.0872683 + 0.171274i 0.930516 0.366252i \(-0.119359\pi\)
−0.843247 + 0.537526i \(0.819359\pi\)
\(588\) −11.4443 + 3.75160i −0.471957 + 0.154713i
\(589\) −1.04166 + 0.338457i −0.0429210 + 0.0139459i
\(590\) 11.0504 + 1.50908i 0.454937 + 0.0621277i
\(591\) 5.73558 11.3298i 0.235930 0.466047i
\(592\) 0.673443 + 4.25195i 0.0276783 + 0.174754i
\(593\) 32.4687 + 32.4687i 1.33333 + 1.33333i 0.902371 + 0.430960i \(0.141825\pi\)
0.430960 + 0.902371i \(0.358175\pi\)
\(594\) 12.3057 + 23.6901i 0.504907 + 0.972015i
\(595\) −0.0502797 2.35400i −0.00206127 0.0965045i
\(596\) 4.53982 + 6.24853i 0.185958 + 0.255950i
\(597\) 4.42888 13.7529i 0.181262 0.562870i
\(598\) 3.54111 + 1.80428i 0.144807 + 0.0737826i
\(599\) 18.2921 0.747393 0.373697 0.927551i \(-0.378090\pi\)
0.373697 + 0.927551i \(0.378090\pi\)
\(600\) −7.88656 3.57800i −0.321968 0.146071i
\(601\) −0.981781 −0.0400477 −0.0200238 0.999800i \(-0.506374\pi\)
−0.0200238 + 0.999800i \(0.506374\pi\)
\(602\) −0.740847 0.377480i −0.0301947 0.0153850i
\(603\) −20.2540 + 40.2698i −0.824807 + 1.63991i
\(604\) −8.69147 11.9628i −0.353651 0.486759i
\(605\) 32.9577 + 9.93571i 1.33992 + 0.403944i
\(606\) −11.6498 + 11.7109i −0.473241 + 0.475722i
\(607\) −2.39455 2.39455i −0.0971917 0.0971917i 0.656839 0.754031i \(-0.271893\pi\)
−0.754031 + 0.656839i \(0.771893\pi\)
\(608\) −0.0753267 0.475594i −0.00305490 0.0192879i
\(609\) −3.13292 1.58600i −0.126952 0.0642679i
\(610\) −26.8853 + 14.4300i −1.08855 + 0.584255i
\(611\) 14.3512 4.66298i 0.580586 0.188644i
\(612\) 2.36357 + 14.4341i 0.0955415 + 0.583465i
\(613\) 6.24017 + 12.2470i 0.252038 + 0.494653i 0.982011 0.188823i \(-0.0604673\pi\)
−0.729973 + 0.683476i \(0.760467\pi\)
\(614\) 5.16261 + 15.8889i 0.208346 + 0.641223i
\(615\) −0.581280 24.2454i −0.0234395 0.977671i
\(616\) −0.342880 + 1.05528i −0.0138150 + 0.0425183i
\(617\) −10.1292 + 1.60431i −0.407787 + 0.0645872i −0.356959 0.934120i \(-0.616186\pi\)
−0.0508287 + 0.998707i \(0.516186\pi\)
\(618\) 14.1451 10.3336i 0.568999 0.415679i
\(619\) 27.3325 37.6199i 1.09859 1.51207i 0.261338 0.965247i \(-0.415836\pi\)
0.837247 0.546825i \(-0.184164\pi\)
\(620\) 4.05001 3.07676i 0.162652 0.123566i
\(621\) 13.7051 2.28099i 0.549966 0.0915329i
\(622\) −29.8303 4.72465i −1.19608 0.189441i
\(623\) −1.07346 + 2.10678i −0.0430072 + 0.0844063i
\(624\) 2.54381 + 0.396086i 0.101834 + 0.0158561i
\(625\) −21.4054 12.9154i −0.856217 0.516616i
\(626\) 16.6805i 0.666686i
\(627\) −2.50948 + 3.47306i −0.100219 + 0.138701i
\(628\) 2.56499 16.1947i 0.102354 0.646239i
\(629\) 16.9802 12.3368i 0.677043 0.491900i
\(630\) −1.36551 + 0.484175i −0.0544033 + 0.0192900i
\(631\) −20.6748 15.0211i −0.823051 0.597981i 0.0945340 0.995522i \(-0.469864\pi\)
−0.917585 + 0.397540i \(0.869864\pi\)
\(632\) −1.54588 + 1.54588i −0.0614917 + 0.0614917i
\(633\) −0.0194127 7.42591i −0.000771586 0.295153i
\(634\) 10.3155 + 3.35172i 0.409683 + 0.133114i
\(635\) −33.0895 + 5.96783i −1.31312 + 0.236826i
\(636\) 2.11847 + 13.1529i 0.0840030 + 0.521546i
\(637\) 9.20875 4.69209i 0.364864 0.185907i
\(638\) 42.9697 21.8942i 1.70119 0.866798i
\(639\) −0.190290 36.3955i −0.00752777 1.43978i
\(640\) 1.05747 + 1.97022i 0.0418001 + 0.0778797i
\(641\) 0.702023 + 0.228101i 0.0277282 + 0.00900945i 0.322848 0.946451i \(-0.395360\pi\)
−0.295120 + 0.955460i \(0.595360\pi\)
\(642\) −19.1273 + 0.0500024i −0.754896 + 0.00197344i
\(643\) 17.1573 17.1573i 0.676616 0.676616i −0.282617 0.959233i \(-0.591203\pi\)
0.959233 + 0.282617i \(0.0912025\pi\)
\(644\) 0.467192 + 0.339435i 0.0184099 + 0.0133756i
\(645\) 13.4437 + 6.44880i 0.529344 + 0.253921i
\(646\) −1.89928 + 1.37991i −0.0747262 + 0.0542918i
\(647\) −0.943217 + 5.95524i −0.0370817 + 0.234125i −0.999267 0.0382696i \(-0.987815\pi\)
0.962186 + 0.272394i \(0.0878154\pi\)
\(648\) 7.97590 4.16954i 0.313323 0.163795i
\(649\) 25.6248i 1.00586i
\(650\) 7.15970 + 1.99266i 0.280826 + 0.0781587i
\(651\) 0.130910 0.840754i 0.00513078 0.0329517i
\(652\) 1.84215 3.61543i 0.0721443 0.141591i
\(653\) −9.97451 1.57981i −0.390333 0.0618226i −0.0418163 0.999125i \(-0.513314\pi\)
−0.348516 + 0.937303i \(0.613314\pi\)
\(654\) −4.84657 9.45078i −0.189516 0.369555i
\(655\) −19.5063 + 0.416640i −0.762174 + 0.0162795i
\(656\) −3.68068 + 5.06602i −0.143706 + 0.197795i
\(657\) 12.9131 + 25.0191i 0.503787 + 0.976087i
\(658\) 2.16561 0.342999i 0.0844242 0.0133715i
\(659\) 3.59331 11.0591i 0.139975 0.430800i −0.856355 0.516387i \(-0.827277\pi\)
0.996331 + 0.0855871i \(0.0272766\pi\)
\(660\) 5.69337 19.0657i 0.221614 0.742131i
\(661\) 12.8291 + 39.4838i 0.498993 + 1.53574i 0.810641 + 0.585544i \(0.199119\pi\)
−0.311648 + 0.950197i \(0.600881\pi\)
\(662\) 4.37411 + 8.58467i 0.170005 + 0.333653i
\(663\) −3.90987 11.9272i −0.151847 0.463213i
\(664\) −4.75577 + 1.54524i −0.184560 + 0.0599671i
\(665\) −0.167908 0.160885i −0.00651118 0.00623885i
\(666\) −10.4879 7.53643i −0.406397 0.292031i
\(667\) −3.92637 24.7901i −0.152030 0.959877i
\(668\) 9.78704 + 9.78704i 0.378672 + 0.378672i
\(669\) −0.897530 0.892849i −0.0347005 0.0345195i
\(670\) 31.7246 11.0623i 1.22563 0.427375i
\(671\) −41.2074 56.7171i −1.59079 2.18954i
\(672\) 0.356073 + 0.114667i 0.0137358 + 0.00442337i
\(673\) −23.9046 12.1800i −0.921454 0.469504i −0.0721411 0.997394i \(-0.522983\pi\)
−0.849313 + 0.527890i \(0.822983\pi\)
\(674\) 28.1544 1.08447
\(675\) 24.2719 9.26687i 0.934226 0.356682i
\(676\) 10.7907 0.415028
\(677\) 19.6621 + 10.0184i 0.755677 + 0.385037i 0.788988 0.614408i \(-0.210605\pi\)
−0.0333112 + 0.999445i \(0.510605\pi\)
\(678\) 18.1124 + 5.83277i 0.695602 + 0.224006i
\(679\) 1.28118 + 1.76340i 0.0491673 + 0.0676729i
\(680\) 6.21815 8.95461i 0.238455 0.343394i
\(681\) 4.06529 + 4.04409i 0.155782 + 0.154970i
\(682\) 8.26315 + 8.26315i 0.316413 + 0.316413i
\(683\) 3.06282 + 19.3379i 0.117196 + 0.739944i 0.974376 + 0.224927i \(0.0722144\pi\)
−0.857180 + 0.515017i \(0.827786\pi\)
\(684\) 1.17310 + 0.842973i 0.0448547 + 0.0322319i
\(685\) −2.74541 + 5.68513i −0.104897 + 0.217218i
\(686\) 2.86609 0.931249i 0.109428 0.0355552i
\(687\) 5.69313 + 17.3670i 0.217207 + 0.662594i
\(688\) −1.74779 3.43023i −0.0666339 0.130776i
\(689\) −3.53289 10.8731i −0.134592 0.414232i
\(690\) −8.52140 5.88436i −0.324404 0.224014i
\(691\) 12.6136 38.8206i 0.479843 1.47681i −0.359469 0.933157i \(-0.617042\pi\)
0.839313 0.543649i \(-0.182958\pi\)
\(692\) −0.896939 + 0.142061i −0.0340965 + 0.00540036i
\(693\) −1.52671 2.95800i −0.0579949 0.112365i
\(694\) −11.3510 + 15.6232i −0.430876 + 0.593050i
\(695\) −12.7848 8.87783i −0.484954 0.336755i
\(696\) −7.41915 14.4673i −0.281222 0.548381i
\(697\) 30.1540 + 4.77592i 1.14216 + 0.180901i
\(698\) −6.54286 + 12.8411i −0.247651 + 0.486042i
\(699\) −3.35470 + 21.5451i −0.126886 + 0.814912i
\(700\) 0.982234 + 0.448723i 0.0371250 + 0.0169601i
\(701\) 1.34594i 0.0508356i 0.999677 + 0.0254178i \(0.00809161\pi\)
−0.999677 + 0.0254178i \(0.991908\pi\)
\(702\) −6.21255 + 4.58855i −0.234478 + 0.173184i
\(703\) 0.324278 2.04741i 0.0122304 0.0772195i
\(704\) −4.15636 + 3.01977i −0.156649 + 0.113812i
\(705\) −38.6762 + 7.07985i −1.45663 + 0.266642i
\(706\) 28.3247 + 20.5791i 1.06601 + 0.774503i
\(707\) 1.45647 1.45647i 0.0547762 0.0547762i
\(708\) 8.63901 0.0225840i 0.324674 0.000848758i
\(709\) −5.99345 1.94739i −0.225089 0.0731358i 0.194301 0.980942i \(-0.437756\pi\)
−0.419390 + 0.907806i \(0.637756\pi\)
\(710\) −18.7684 + 19.5876i −0.704364 + 0.735110i
\(711\) −0.0342906 6.55851i −0.00128600 0.245963i
\(712\) −9.75471 + 4.97027i −0.365573 + 0.186269i
\(713\) 5.41900 2.76112i 0.202943 0.103405i
\(714\) −0.290016 1.80061i −0.0108536 0.0673861i
\(715\) −2.31040 + 16.9182i −0.0864041 + 0.632704i
\(716\) 11.2695 + 3.66170i 0.421163 + 0.136844i
\(717\) −0.0531816 20.3435i −0.00198610 0.759740i
\(718\) 24.4491 24.4491i 0.912432 0.912432i
\(719\) 15.2779 + 11.1001i 0.569770 + 0.413962i 0.835022 0.550217i \(-0.185455\pi\)
−0.265251 + 0.964179i \(0.585455\pi\)
\(720\) −6.43273 1.90263i −0.239734 0.0709069i
\(721\) −1.76717 + 1.28392i −0.0658127 + 0.0478157i
\(722\) 2.93598 18.5371i 0.109266 0.689878i
\(723\) −1.23380 + 1.70755i −0.0458854 + 0.0635043i
\(724\) 17.1907i 0.638888i
\(725\) −16.3964 43.9777i −0.608949 1.63329i
\(726\) 26.3463 + 4.10228i 0.977805 + 0.152250i
\(727\) −5.62601 + 11.0417i −0.208657 + 0.409513i −0.971489 0.237084i \(-0.923808\pi\)
0.762832 + 0.646597i \(0.223808\pi\)
\(728\) −0.317066 0.0502184i −0.0117513 0.00186122i
\(729\) −7.93968 + 25.8062i −0.294062 + 0.955786i
\(730\) 6.05719 20.0923i 0.224187 0.743649i
\(731\) −11.0326 + 15.1850i −0.408055 + 0.561639i
\(732\) −19.0850 + 13.9424i −0.705401 + 0.515327i
\(733\) 9.27418 1.46889i 0.342550 0.0542545i 0.0172103 0.999852i \(-0.494522\pi\)
0.325339 + 0.945597i \(0.394522\pi\)
\(734\) 0.998039 3.07165i 0.0368383 0.113377i
\(735\) −25.4054 + 8.93338i −0.937090 + 0.329513i
\(736\) 0.826257 + 2.54296i 0.0304562 + 0.0937346i
\(737\) 35.0454 + 68.7804i 1.29091 + 2.53356i
\(738\) −3.03572 18.5389i −0.111746 0.682428i
\(739\) −18.0916 + 5.87832i −0.665511 + 0.216238i −0.622241 0.782826i \(-0.713778\pi\)
−0.0432699 + 0.999063i \(0.513778\pi\)
\(740\) 1.70855 + 9.47333i 0.0628076 + 0.348247i
\(741\) −1.10601 0.559904i −0.0406304 0.0205686i
\(742\) −0.259872 1.64077i −0.00954019 0.0602344i
\(743\) 23.1938 + 23.1938i 0.850899 + 0.850899i 0.990244 0.139345i \(-0.0444997\pi\)
−0.139345 + 0.990244i \(0.544500\pi\)
\(744\) 2.77851 2.79308i 0.101865 0.102399i
\(745\) 10.4474 + 13.7522i 0.382763 + 0.503841i
\(746\) −6.36867 8.76572i −0.233174 0.320936i
\(747\) 6.74058 13.4019i 0.246625 0.490350i
\(748\) 22.3178 + 11.3715i 0.816020 + 0.415783i
\(749\) 2.38506 0.0871483
\(750\) −17.8017 7.62225i −0.650027 0.278325i
\(751\) 35.1267 1.28179 0.640895 0.767628i \(-0.278563\pi\)
0.640895 + 0.767628i \(0.278563\pi\)
\(752\) 9.04558 + 4.60895i 0.329858 + 0.168071i
\(753\) 12.0054 37.2803i 0.437502 1.35857i
\(754\) 8.20106 + 11.2878i 0.298665 + 0.411077i
\(755\) −20.0015 26.3285i −0.727929 0.958192i
\(756\) −0.995899 + 0.517314i −0.0362205 + 0.0188145i
\(757\) 20.0652 + 20.0652i 0.729283 + 0.729283i 0.970477 0.241194i \(-0.0775389\pi\)
−0.241194 + 0.970477i \(0.577539\pi\)