Properties

Label 150.2.h.b.19.1
Level 150
Weight 2
Character 150.19
Analytic conductor 1.198
Analytic rank 0
Dimension 16
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.h (of order \(10\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 19.1
Root \(-1.80334 - 0.309017i\)
Character \(\chi\) = 150.19
Dual form 150.2.h.b.79.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.951057 + 0.309017i) q^{2} +(0.587785 + 0.809017i) q^{3} +(0.809017 - 0.587785i) q^{4} +(-1.73558 + 1.40988i) q^{5} +(-0.809017 - 0.587785i) q^{6} +2.61995i q^{7} +(-0.587785 + 0.809017i) q^{8} +(-0.309017 + 0.951057i) q^{9} +O(q^{10})\) \(q+(-0.951057 + 0.309017i) q^{2} +(0.587785 + 0.809017i) q^{3} +(0.809017 - 0.587785i) q^{4} +(-1.73558 + 1.40988i) q^{5} +(-0.809017 - 0.587785i) q^{6} +2.61995i q^{7} +(-0.587785 + 0.809017i) q^{8} +(-0.309017 + 0.951057i) q^{9} +(1.21496 - 1.87720i) q^{10} +(-0.0883198 - 0.271820i) q^{11} +(0.951057 + 0.309017i) q^{12} +(2.66799 + 0.866884i) q^{13} +(-0.809610 - 2.49172i) q^{14} +(-2.16076 - 0.575410i) q^{15} +(0.309017 - 0.951057i) q^{16} +(-3.81615 + 5.25248i) q^{17} -1.00000i q^{18} +(-0.358647 - 0.260572i) q^{19} +(-0.575410 + 2.16076i) q^{20} +(-2.11959 + 1.53997i) q^{21} +(0.167994 + 0.231224i) q^{22} +(6.20562 - 2.01633i) q^{23} -1.00000 q^{24} +(1.02449 - 4.89392i) q^{25} -2.80530 q^{26} +(-0.951057 + 0.309017i) q^{27} +(1.53997 + 2.11959i) q^{28} +(5.87052 - 4.26518i) q^{29} +(2.23282 - 0.120465i) q^{30} +(-2.93409 - 2.13174i) q^{31} +1.00000i q^{32} +(0.167994 - 0.231224i) q^{33} +(2.00627 - 6.17466i) q^{34} +(-3.69381 - 4.54714i) q^{35} +(0.309017 + 0.951057i) q^{36} +(4.31691 + 1.40265i) q^{37} +(0.421615 + 0.136991i) q^{38} +(0.866884 + 2.66799i) q^{39} +(-0.120465 - 2.23282i) q^{40} +(1.64523 - 5.06349i) q^{41} +(1.53997 - 2.11959i) q^{42} -8.05390i q^{43} +(-0.231224 - 0.167994i) q^{44} +(-0.804549 - 2.08631i) q^{45} +(-5.27882 + 3.83529i) q^{46} +(-5.28799 - 7.27829i) q^{47} +(0.951057 - 0.309017i) q^{48} +0.135854 q^{49} +(0.537954 + 4.97098i) q^{50} -6.49242 q^{51} +(2.66799 - 0.866884i) q^{52} +(8.17947 + 11.2581i) q^{53} +(0.809017 - 0.587785i) q^{54} +(0.536520 + 0.347247i) q^{55} +(-2.11959 - 1.53997i) q^{56} -0.443312i q^{57} +(-4.26518 + 5.87052i) q^{58} +(1.15784 - 3.56347i) q^{59} +(-2.08631 + 0.804549i) q^{60} +(4.02308 + 12.3818i) q^{61} +(3.44923 + 1.12072i) q^{62} +(-2.49172 - 0.809610i) q^{63} +(-0.309017 - 0.951057i) q^{64} +(-5.85272 + 2.25700i) q^{65} +(-0.0883198 + 0.271820i) q^{66} +(-6.01453 + 8.27829i) q^{67} +6.49242i q^{68} +(5.27882 + 3.83529i) q^{69} +(4.91817 + 3.18314i) q^{70} +(3.89771 - 2.83185i) q^{71} +(-0.587785 - 0.809017i) q^{72} +(-11.2098 + 3.64230i) q^{73} -4.53906 q^{74} +(4.56144 - 2.04774i) q^{75} -0.443312 q^{76} +(0.712156 - 0.231394i) q^{77} +(-1.64891 - 2.26953i) q^{78} +(-6.32216 + 4.59332i) q^{79} +(0.804549 + 2.08631i) q^{80} +(-0.809017 - 0.587785i) q^{81} +5.32407i q^{82} +(3.03407 - 4.17604i) q^{83} +(-0.809610 + 2.49172i) q^{84} +(-0.782111 - 14.4964i) q^{85} +(2.48879 + 7.65972i) q^{86} +(6.90121 + 2.24234i) q^{87} +(0.271820 + 0.0883198i) q^{88} +(1.90527 + 5.86383i) q^{89} +(1.40988 + 1.73558i) q^{90} +(-2.27119 + 6.99002i) q^{91} +(3.83529 - 5.27882i) q^{92} -3.62674i q^{93} +(7.27829 + 5.28799i) q^{94} +(0.989836 - 0.0534036i) q^{95} +(-0.809017 + 0.587785i) q^{96} +(-3.20367 - 4.40947i) q^{97} +(-0.129205 + 0.0419811i) q^{98} +0.285809 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 4q^{4} + 4q^{5} - 4q^{6} + 4q^{9} + O(q^{10}) \) \( 16q + 4q^{4} + 4q^{5} - 4q^{6} + 4q^{9} + 2q^{10} + 2q^{11} + 20q^{13} + 2q^{14} - 2q^{15} - 4q^{16} - 30q^{17} - 4q^{20} - 2q^{21} - 20q^{22} - 10q^{23} - 16q^{24} + 24q^{25} + 4q^{26} - 10q^{29} - 6q^{30} - 18q^{31} - 20q^{33} + 12q^{34} - 34q^{35} - 4q^{36} + 20q^{37} + 10q^{38} - 4q^{39} - 2q^{40} + 22q^{41} + 8q^{44} - 4q^{45} - 6q^{46} - 50q^{47} - 52q^{49} + 12q^{50} + 28q^{51} + 20q^{52} + 30q^{53} + 4q^{54} + 18q^{55} - 2q^{56} - 30q^{58} + 20q^{59} + 2q^{60} + 12q^{61} + 50q^{62} + 10q^{63} + 4q^{64} - 8q^{65} + 2q^{66} - 50q^{67} + 6q^{69} - 12q^{70} - 28q^{71} + 20q^{73} + 12q^{74} + 28q^{75} + 20q^{76} + 100q^{77} - 20q^{79} + 4q^{80} - 4q^{81} - 30q^{83} + 2q^{84} - 4q^{85} - 6q^{86} + 10q^{87} + 70q^{89} + 8q^{90} + 12q^{91} - 30q^{92} + 2q^{94} - 30q^{95} - 4q^{96} - 10q^{97} + 60q^{98} - 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.951057 + 0.309017i −0.672499 + 0.218508i
\(3\) 0.587785 + 0.809017i 0.339358 + 0.467086i
\(4\) 0.809017 0.587785i 0.404508 0.293893i
\(5\) −1.73558 + 1.40988i −0.776176 + 0.630516i
\(6\) −0.809017 0.587785i −0.330280 0.239962i
\(7\) 2.61995i 0.990249i 0.868822 + 0.495124i \(0.164877\pi\)
−0.868822 + 0.495124i \(0.835123\pi\)
\(8\) −0.587785 + 0.809017i −0.207813 + 0.286031i
\(9\) −0.309017 + 0.951057i −0.103006 + 0.317019i
\(10\) 1.21496 1.87720i 0.384204 0.593622i
\(11\) −0.0883198 0.271820i −0.0266294 0.0819569i 0.936859 0.349708i \(-0.113719\pi\)
−0.963488 + 0.267752i \(0.913719\pi\)
\(12\) 0.951057 + 0.309017i 0.274546 + 0.0892055i
\(13\) 2.66799 + 0.866884i 0.739968 + 0.240430i 0.654659 0.755924i \(-0.272812\pi\)
0.0853093 + 0.996355i \(0.472812\pi\)
\(14\) −0.809610 2.49172i −0.216377 0.665941i
\(15\) −2.16076 0.575410i −0.557907 0.148570i
\(16\) 0.309017 0.951057i 0.0772542 0.237764i
\(17\) −3.81615 + 5.25248i −0.925553 + 1.27391i 0.0360165 + 0.999351i \(0.488533\pi\)
−0.961569 + 0.274563i \(0.911467\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −0.358647 0.260572i −0.0822792 0.0597794i 0.545885 0.837860i \(-0.316193\pi\)
−0.628164 + 0.778081i \(0.716193\pi\)
\(20\) −0.575410 + 2.16076i −0.128666 + 0.483162i
\(21\) −2.11959 + 1.53997i −0.462531 + 0.336049i
\(22\) 0.167994 + 0.231224i 0.0358165 + 0.0492972i
\(23\) 6.20562 2.01633i 1.29396 0.420434i 0.420485 0.907299i \(-0.361860\pi\)
0.873477 + 0.486866i \(0.161860\pi\)
\(24\) −1.00000 −0.204124
\(25\) 1.02449 4.89392i 0.204898 0.978783i
\(26\) −2.80530 −0.550164
\(27\) −0.951057 + 0.309017i −0.183031 + 0.0594703i
\(28\) 1.53997 + 2.11959i 0.291027 + 0.400564i
\(29\) 5.87052 4.26518i 1.09013 0.792024i 0.110707 0.993853i \(-0.464689\pi\)
0.979421 + 0.201829i \(0.0646886\pi\)
\(30\) 2.23282 0.120465i 0.407655 0.0219938i
\(31\) −2.93409 2.13174i −0.526979 0.382872i 0.292248 0.956343i \(-0.405597\pi\)
−0.819226 + 0.573470i \(0.805597\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0.167994 0.231224i 0.0292440 0.0402510i
\(34\) 2.00627 6.17466i 0.344072 1.05895i
\(35\) −3.69381 4.54714i −0.624368 0.768607i
\(36\) 0.309017 + 0.951057i 0.0515028 + 0.158509i
\(37\) 4.31691 + 1.40265i 0.709695 + 0.230594i 0.641550 0.767082i \(-0.278292\pi\)
0.0681453 + 0.997675i \(0.478292\pi\)
\(38\) 0.421615 + 0.136991i 0.0683949 + 0.0222229i
\(39\) 0.866884 + 2.66799i 0.138813 + 0.427221i
\(40\) −0.120465 2.23282i −0.0190472 0.353040i
\(41\) 1.64523 5.06349i 0.256941 0.790784i −0.736500 0.676438i \(-0.763523\pi\)
0.993441 0.114346i \(-0.0364774\pi\)
\(42\) 1.53997 2.11959i 0.237622 0.327059i
\(43\) 8.05390i 1.22821i −0.789225 0.614104i \(-0.789517\pi\)
0.789225 0.614104i \(-0.210483\pi\)
\(44\) −0.231224 0.167994i −0.0348584 0.0253261i
\(45\) −0.804549 2.08631i −0.119935 0.311009i
\(46\) −5.27882 + 3.83529i −0.778319 + 0.565482i
\(47\) −5.28799 7.27829i −0.771332 1.06165i −0.996186 0.0872549i \(-0.972191\pi\)
0.224854 0.974392i \(-0.427809\pi\)
\(48\) 0.951057 0.309017i 0.137273 0.0446028i
\(49\) 0.135854 0.0194077
\(50\) 0.537954 + 4.97098i 0.0760782 + 0.703002i
\(51\) −6.49242 −0.909121
\(52\) 2.66799 0.866884i 0.369984 0.120215i
\(53\) 8.17947 + 11.2581i 1.12354 + 1.54642i 0.799797 + 0.600270i \(0.204940\pi\)
0.323740 + 0.946146i \(0.395060\pi\)
\(54\) 0.809017 0.587785i 0.110093 0.0799874i
\(55\) 0.536520 + 0.347247i 0.0723443 + 0.0468227i
\(56\) −2.11959 1.53997i −0.283242 0.205787i
\(57\) 0.443312i 0.0587181i
\(58\) −4.26518 + 5.87052i −0.560046 + 0.770837i
\(59\) 1.15784 3.56347i 0.150738 0.463924i −0.846966 0.531647i \(-0.821573\pi\)
0.997704 + 0.0677230i \(0.0215734\pi\)
\(60\) −2.08631 + 0.804549i −0.269342 + 0.103867i
\(61\) 4.02308 + 12.3818i 0.515102 + 1.58532i 0.783096 + 0.621901i \(0.213639\pi\)
−0.267994 + 0.963421i \(0.586361\pi\)
\(62\) 3.44923 + 1.12072i 0.438053 + 0.142332i
\(63\) −2.49172 0.809610i −0.313927 0.102001i
\(64\) −0.309017 0.951057i −0.0386271 0.118882i
\(65\) −5.85272 + 2.25700i −0.725941 + 0.279946i
\(66\) −0.0883198 + 0.271820i −0.0108714 + 0.0334588i
\(67\) −6.01453 + 8.27829i −0.734792 + 1.01135i 0.264110 + 0.964493i \(0.414922\pi\)
−0.998901 + 0.0468612i \(0.985078\pi\)
\(68\) 6.49242i 0.787322i
\(69\) 5.27882 + 3.83529i 0.635495 + 0.461714i
\(70\) 4.91817 + 3.18314i 0.587833 + 0.380458i
\(71\) 3.89771 2.83185i 0.462573 0.336079i −0.331967 0.943291i \(-0.607712\pi\)
0.794540 + 0.607212i \(0.207712\pi\)
\(72\) −0.587785 0.809017i −0.0692712 0.0953436i
\(73\) −11.2098 + 3.64230i −1.31201 + 0.426298i −0.879744 0.475447i \(-0.842286\pi\)
−0.432267 + 0.901745i \(0.642286\pi\)
\(74\) −4.53906 −0.527655
\(75\) 4.56144 2.04774i 0.526710 0.236453i
\(76\) −0.443312 −0.0508514
\(77\) 0.712156 0.231394i 0.0811577 0.0263698i
\(78\) −1.64891 2.26953i −0.186702 0.256974i
\(79\) −6.32216 + 4.59332i −0.711299 + 0.516789i −0.883592 0.468257i \(-0.844882\pi\)
0.172294 + 0.985046i \(0.444882\pi\)
\(80\) 0.804549 + 2.08631i 0.0899513 + 0.233257i
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 5.32407i 0.587945i
\(83\) 3.03407 4.17604i 0.333032 0.458380i −0.609358 0.792895i \(-0.708573\pi\)
0.942390 + 0.334516i \(0.108573\pi\)
\(84\) −0.809610 + 2.49172i −0.0883356 + 0.271869i
\(85\) −0.782111 14.4964i −0.0848318 1.57236i
\(86\) 2.48879 + 7.65972i 0.268373 + 0.825968i
\(87\) 6.90121 + 2.24234i 0.739887 + 0.240404i
\(88\) 0.271820 + 0.0883198i 0.0289762 + 0.00941492i
\(89\) 1.90527 + 5.86383i 0.201959 + 0.621565i 0.999825 + 0.0187300i \(0.00596230\pi\)
−0.797866 + 0.602835i \(0.794038\pi\)
\(90\) 1.40988 + 1.73558i 0.148614 + 0.182946i
\(91\) −2.27119 + 6.99002i −0.238086 + 0.732753i
\(92\) 3.83529 5.27882i 0.399856 0.550355i
\(93\) 3.62674i 0.376075i
\(94\) 7.27829 + 5.28799i 0.750698 + 0.545414i
\(95\) 0.989836 0.0534036i 0.101555 0.00547910i
\(96\) −0.809017 + 0.587785i −0.0825700 + 0.0599906i
\(97\) −3.20367 4.40947i −0.325283 0.447714i 0.614788 0.788692i \(-0.289242\pi\)
−0.940071 + 0.340979i \(0.889242\pi\)
\(98\) −0.129205 + 0.0419811i −0.0130516 + 0.00424073i
\(99\) 0.285809 0.0287249
\(100\) −2.04774 4.56144i −0.204774 0.456144i
\(101\) 10.7765 1.07230 0.536152 0.844121i \(-0.319877\pi\)
0.536152 + 0.844121i \(0.319877\pi\)
\(102\) 6.17466 2.00627i 0.611383 0.198650i
\(103\) −10.5308 14.4945i −1.03763 1.42818i −0.899058 0.437829i \(-0.855748\pi\)
−0.138576 0.990352i \(-0.544252\pi\)
\(104\) −2.26953 + 1.64891i −0.222546 + 0.161689i
\(105\) 1.50755 5.66110i 0.147122 0.552467i
\(106\) −11.2581 8.17947i −1.09348 0.794461i
\(107\) 3.81291i 0.368608i 0.982869 + 0.184304i \(0.0590030\pi\)
−0.982869 + 0.184304i \(0.940997\pi\)
\(108\) −0.587785 + 0.809017i −0.0565597 + 0.0778477i
\(109\) −2.46160 + 7.57602i −0.235778 + 0.725651i 0.761239 + 0.648472i \(0.224591\pi\)
−0.997017 + 0.0771796i \(0.975409\pi\)
\(110\) −0.617566 0.164457i −0.0588826 0.0156804i
\(111\) 1.40265 + 4.31691i 0.133133 + 0.409743i
\(112\) 2.49172 + 0.809610i 0.235446 + 0.0765009i
\(113\) −4.99319 1.62239i −0.469720 0.152621i 0.0645865 0.997912i \(-0.479427\pi\)
−0.534306 + 0.845291i \(0.679427\pi\)
\(114\) 0.136991 + 0.421615i 0.0128304 + 0.0394878i
\(115\) −7.92759 + 12.2487i −0.739252 + 1.14219i
\(116\) 2.24234 6.90121i 0.208196 0.640761i
\(117\) −1.64891 + 2.26953i −0.152442 + 0.209818i
\(118\) 3.74685i 0.344926i
\(119\) −13.7612 9.99813i −1.26149 0.916527i
\(120\) 1.73558 1.40988i 0.158436 0.128704i
\(121\) 8.83310 6.41762i 0.803009 0.583420i
\(122\) −7.65235 10.5326i −0.692811 0.953572i
\(123\) 5.06349 1.64523i 0.456560 0.148345i
\(124\) −3.62674 −0.325691
\(125\) 5.12173 + 9.93820i 0.458102 + 0.888900i
\(126\) 2.61995 0.233404
\(127\) 17.7838 5.77832i 1.57806 0.512743i 0.616505 0.787351i \(-0.288548\pi\)
0.961556 + 0.274608i \(0.0885481\pi\)
\(128\) 0.587785 + 0.809017i 0.0519534 + 0.0715077i
\(129\) 6.51574 4.73397i 0.573679 0.416802i
\(130\) 4.86882 3.95512i 0.427024 0.346887i
\(131\) −3.68219 2.67527i −0.321714 0.233739i 0.415192 0.909734i \(-0.363714\pi\)
−0.736907 + 0.675995i \(0.763714\pi\)
\(132\) 0.285809i 0.0248765i
\(133\) 0.682687 0.939637i 0.0591964 0.0814769i
\(134\) 3.16202 9.73171i 0.273157 0.840692i
\(135\) 1.21496 1.87720i 0.104567 0.161563i
\(136\) −2.00627 6.17466i −0.172036 0.529473i
\(137\) −14.7832 4.80334i −1.26301 0.410377i −0.400444 0.916321i \(-0.631144\pi\)
−0.862566 + 0.505944i \(0.831144\pi\)
\(138\) −6.20562 2.01633i −0.528258 0.171641i
\(139\) 2.78145 + 8.56041i 0.235919 + 0.726085i 0.996998 + 0.0774254i \(0.0246700\pi\)
−0.761079 + 0.648659i \(0.775330\pi\)
\(140\) −5.66110 1.50755i −0.478450 0.127411i
\(141\) 2.78006 8.55614i 0.234123 0.720557i
\(142\) −2.83185 + 3.89771i −0.237644 + 0.327089i
\(143\) 0.801778i 0.0670481i
\(144\) 0.809017 + 0.587785i 0.0674181 + 0.0489821i
\(145\) −4.17538 + 15.6793i −0.346747 + 1.30209i
\(146\) 9.53565 6.92806i 0.789176 0.573370i
\(147\) 0.0798529 + 0.109908i 0.00658615 + 0.00906506i
\(148\) 4.31691 1.40265i 0.354847 0.115297i
\(149\) 7.87441 0.645097 0.322548 0.946553i \(-0.395460\pi\)
0.322548 + 0.946553i \(0.395460\pi\)
\(150\) −3.70540 + 3.35708i −0.302545 + 0.274104i
\(151\) 17.7660 1.44578 0.722888 0.690965i \(-0.242814\pi\)
0.722888 + 0.690965i \(0.242814\pi\)
\(152\) 0.421615 0.136991i 0.0341975 0.0111114i
\(153\) −3.81615 5.25248i −0.308518 0.424638i
\(154\) −0.605796 + 0.440137i −0.0488165 + 0.0354672i
\(155\) 8.09786 0.436896i 0.650435 0.0350923i
\(156\) 2.26953 + 1.64891i 0.181708 + 0.132019i
\(157\) 20.1191i 1.60568i −0.596194 0.802840i \(-0.703321\pi\)
0.596194 0.802840i \(-0.296679\pi\)
\(158\) 4.59332 6.32216i 0.365425 0.502964i
\(159\) −4.30020 + 13.2347i −0.341028 + 1.04958i
\(160\) −1.40988 1.73558i −0.111461 0.137210i
\(161\) 5.28269 + 16.2584i 0.416334 + 1.28134i
\(162\) 0.951057 + 0.309017i 0.0747221 + 0.0242787i
\(163\) −2.01084 0.653363i −0.157501 0.0511753i 0.229205 0.973378i \(-0.426387\pi\)
−0.386707 + 0.922203i \(0.626387\pi\)
\(164\) −1.64523 5.06349i −0.128471 0.395392i
\(165\) 0.0344300 + 0.638160i 0.00268037 + 0.0496807i
\(166\) −1.59510 + 4.90923i −0.123804 + 0.381030i
\(167\) −11.4476 + 15.7563i −0.885844 + 1.21926i 0.0889243 + 0.996038i \(0.471657\pi\)
−0.974768 + 0.223221i \(0.928343\pi\)
\(168\) 2.61995i 0.202134i
\(169\) −4.15052 3.01553i −0.319270 0.231964i
\(170\) 5.22347 + 13.5452i 0.400622 + 1.03887i
\(171\) 0.358647 0.260572i 0.0274264 0.0199265i
\(172\) −4.73397 6.51574i −0.360961 0.496821i
\(173\) −3.14874 + 1.02309i −0.239394 + 0.0777838i −0.426257 0.904602i \(-0.640168\pi\)
0.186863 + 0.982386i \(0.440168\pi\)
\(174\) −7.25636 −0.550103
\(175\) 12.8218 + 2.68412i 0.969239 + 0.202900i
\(176\) −0.285809 −0.0215437
\(177\) 3.56347 1.15784i 0.267847 0.0870286i
\(178\) −3.62405 4.98807i −0.271634 0.373872i
\(179\) −10.0806 + 7.32398i −0.753459 + 0.547420i −0.896897 0.442239i \(-0.854184\pi\)
0.143438 + 0.989659i \(0.454184\pi\)
\(180\) −1.87720 1.21496i −0.139918 0.0905578i
\(181\) −4.90060 3.56050i −0.364259 0.264650i 0.390567 0.920574i \(-0.372279\pi\)
−0.754826 + 0.655925i \(0.772279\pi\)
\(182\) 7.34974i 0.544799i
\(183\) −7.65235 + 10.5326i −0.565678 + 0.778589i
\(184\) −2.01633 + 6.20562i −0.148646 + 0.457485i
\(185\) −9.46991 + 3.65190i −0.696241 + 0.268493i
\(186\) 1.12072 + 3.44923i 0.0821754 + 0.252910i
\(187\) 1.76477 + 0.573410i 0.129053 + 0.0419319i
\(188\) −8.55614 2.78006i −0.624021 0.202757i
\(189\) −0.809610 2.49172i −0.0588904 0.181246i
\(190\) −0.924887 + 0.356666i −0.0670984 + 0.0258753i
\(191\) 7.22123 22.2247i 0.522510 1.60812i −0.246678 0.969098i \(-0.579339\pi\)
0.769188 0.639023i \(-0.220661\pi\)
\(192\) 0.587785 0.809017i 0.0424197 0.0583858i
\(193\) 2.13291i 0.153530i 0.997049 + 0.0767650i \(0.0244591\pi\)
−0.997049 + 0.0767650i \(0.975541\pi\)
\(194\) 4.40947 + 3.20367i 0.316581 + 0.230010i
\(195\) −5.26609 3.40832i −0.377113 0.244075i
\(196\) 0.109908 0.0798529i 0.00785057 0.00570378i
\(197\) −9.67275 13.3134i −0.689155 0.948540i 0.310843 0.950461i \(-0.399389\pi\)
−0.999998 + 0.00192101i \(0.999389\pi\)
\(198\) −0.271820 + 0.0883198i −0.0193174 + 0.00627662i
\(199\) −1.66552 −0.118065 −0.0590327 0.998256i \(-0.518802\pi\)
−0.0590327 + 0.998256i \(0.518802\pi\)
\(200\) 3.35708 + 3.70540i 0.237381 + 0.262012i
\(201\) −10.2325 −0.721747
\(202\) −10.2491 + 3.33013i −0.721123 + 0.234307i
\(203\) 11.1746 + 15.3805i 0.784301 + 1.07950i
\(204\) −5.25248 + 3.81615i −0.367747 + 0.267184i
\(205\) 4.28347 + 11.1077i 0.299171 + 0.775794i
\(206\) 14.4945 + 10.5308i 1.00988 + 0.733718i
\(207\) 6.52498i 0.453517i
\(208\) 1.64891 2.26953i 0.114331 0.157364i
\(209\) −0.0391532 + 0.120501i −0.00270829 + 0.00833525i
\(210\) 0.315613 + 5.84988i 0.0217794 + 0.403680i
\(211\) −3.63522 11.1881i −0.250259 0.770218i −0.994727 0.102559i \(-0.967297\pi\)
0.744468 0.667658i \(-0.232703\pi\)
\(212\) 13.2347 + 4.30020i 0.908961 + 0.295339i
\(213\) 4.58203 + 1.48879i 0.313956 + 0.102010i
\(214\) −1.17825 3.62629i −0.0805437 0.247888i
\(215\) 11.3550 + 13.9782i 0.774406 + 0.953306i
\(216\) 0.309017 0.951057i 0.0210259 0.0647112i
\(217\) 5.58506 7.68718i 0.379139 0.521840i
\(218\) 7.96590i 0.539519i
\(219\) −9.53565 6.92806i −0.644360 0.468155i
\(220\) 0.638160 0.0344300i 0.0430247 0.00232127i
\(221\) −14.7348 + 10.7054i −0.991167 + 0.720125i
\(222\) −2.66799 3.67218i −0.179064 0.246461i
\(223\) 9.05554 2.94232i 0.606404 0.197033i 0.0103094 0.999947i \(-0.496718\pi\)
0.596095 + 0.802914i \(0.296718\pi\)
\(224\) −2.61995 −0.175053
\(225\) 4.33781 + 2.48665i 0.289187 + 0.165777i
\(226\) 5.25015 0.349235
\(227\) 15.5187 5.04232i 1.03001 0.334671i 0.255216 0.966884i \(-0.417853\pi\)
0.774794 + 0.632213i \(0.217853\pi\)
\(228\) −0.260572 0.358647i −0.0172568 0.0237520i
\(229\) −0.431759 + 0.313691i −0.0285314 + 0.0207293i −0.601960 0.798527i \(-0.705613\pi\)
0.573428 + 0.819256i \(0.305613\pi\)
\(230\) 3.75454 14.0989i 0.247567 0.929657i
\(231\) 0.605796 + 0.440137i 0.0398585 + 0.0289589i
\(232\) 7.25636i 0.476403i
\(233\) −6.43141 + 8.85208i −0.421336 + 0.579919i −0.965937 0.258776i \(-0.916681\pi\)
0.544602 + 0.838695i \(0.316681\pi\)
\(234\) 0.866884 2.66799i 0.0566700 0.174412i
\(235\) 19.4392 + 5.17666i 1.26808 + 0.337688i
\(236\) −1.15784 3.56347i −0.0753690 0.231962i
\(237\) −7.43215 2.41485i −0.482770 0.156861i
\(238\) 16.1773 + 5.25633i 1.04862 + 0.340717i
\(239\) −1.86591 5.74268i −0.120696 0.371463i 0.872397 0.488798i \(-0.162565\pi\)
−0.993092 + 0.117336i \(0.962565\pi\)
\(240\) −1.21496 + 1.87720i −0.0784254 + 0.121173i
\(241\) 0.682003 2.09899i 0.0439317 0.135208i −0.926685 0.375839i \(-0.877354\pi\)
0.970617 + 0.240631i \(0.0773545\pi\)
\(242\) −6.41762 + 8.83310i −0.412540 + 0.567813i
\(243\) 1.00000i 0.0641500i
\(244\) 10.5326 + 7.65235i 0.674277 + 0.489891i
\(245\) −0.235785 + 0.191537i −0.0150638 + 0.0122369i
\(246\) −4.30726 + 3.12941i −0.274621 + 0.199524i
\(247\) −0.730982 1.00611i −0.0465113 0.0640173i
\(248\) 3.44923 1.12072i 0.219027 0.0711660i
\(249\) 5.16187 0.327120
\(250\) −7.94213 7.86909i −0.502304 0.497685i
\(251\) −0.151651 −0.00957211 −0.00478606 0.999989i \(-0.501523\pi\)
−0.00478606 + 0.999989i \(0.501523\pi\)
\(252\) −2.49172 + 0.809610i −0.156964 + 0.0510006i
\(253\) −1.09616 1.50873i −0.0689149 0.0948533i
\(254\) −15.1278 + 10.9910i −0.949205 + 0.689638i
\(255\) 11.2681 9.15352i 0.705638 0.573216i
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) 10.4462i 0.651614i 0.945436 + 0.325807i \(0.105636\pi\)
−0.945436 + 0.325807i \(0.894364\pi\)
\(258\) −4.73397 + 6.51574i −0.294724 + 0.405652i
\(259\) −3.67487 + 11.3101i −0.228345 + 0.702774i
\(260\) −3.40832 + 5.26609i −0.211375 + 0.326589i
\(261\) 2.24234 + 6.90121i 0.138797 + 0.427174i
\(262\) 4.32867 + 1.40647i 0.267426 + 0.0868920i
\(263\) −20.8854 6.78608i −1.28785 0.418448i −0.416511 0.909131i \(-0.636747\pi\)
−0.871338 + 0.490683i \(0.836747\pi\)
\(264\) 0.0883198 + 0.271820i 0.00543571 + 0.0167294i
\(265\) −30.0687 8.00727i −1.84710 0.491883i
\(266\) −0.358910 + 1.10461i −0.0220062 + 0.0677280i
\(267\) −3.62405 + 4.98807i −0.221788 + 0.305265i
\(268\) 10.2325i 0.625051i
\(269\) −11.4313 8.30535i −0.696981 0.506386i 0.181967 0.983305i \(-0.441754\pi\)
−0.878948 + 0.476918i \(0.841754\pi\)
\(270\) −0.575410 + 2.16076i −0.0350184 + 0.131500i
\(271\) −22.2714 + 16.1811i −1.35289 + 0.982934i −0.354031 + 0.935234i \(0.615189\pi\)
−0.998862 + 0.0477007i \(0.984811\pi\)
\(272\) 3.81615 + 5.25248i 0.231388 + 0.318478i
\(273\) −6.99002 + 2.27119i −0.423055 + 0.137459i
\(274\) 15.5439 0.939043
\(275\) −1.42075 + 0.153752i −0.0856744 + 0.00927160i
\(276\) 6.52498 0.392758
\(277\) 22.4411 7.29155i 1.34835 0.438107i 0.456216 0.889869i \(-0.349205\pi\)
0.892138 + 0.451763i \(0.149205\pi\)
\(278\) −5.29063 7.28192i −0.317311 0.436741i
\(279\) 2.93409 2.13174i 0.175660 0.127624i
\(280\) 5.84988 0.315613i 0.349597 0.0188615i
\(281\) −5.80174 4.21521i −0.346103 0.251458i 0.401130 0.916021i \(-0.368618\pi\)
−0.747232 + 0.664563i \(0.768618\pi\)
\(282\) 8.99646i 0.535731i
\(283\) 13.5380 18.6334i 0.804748 1.10764i −0.187365 0.982290i \(-0.559995\pi\)
0.992113 0.125350i \(-0.0400054\pi\)
\(284\) 1.48879 4.58203i 0.0883436 0.271894i
\(285\) 0.625015 + 0.769404i 0.0370227 + 0.0455756i
\(286\) 0.247763 + 0.762537i 0.0146505 + 0.0450897i
\(287\) 13.2661 + 4.31042i 0.783073 + 0.254436i
\(288\) −0.951057 0.309017i −0.0560415 0.0182090i
\(289\) −7.77227 23.9206i −0.457192 1.40709i
\(290\) −0.874138 16.2021i −0.0513312 0.951423i
\(291\) 1.68427 5.18364i 0.0987335 0.303871i
\(292\) −6.92806 + 9.53565i −0.405434 + 0.558032i
\(293\) 16.3851i 0.957230i 0.878025 + 0.478615i \(0.158861\pi\)
−0.878025 + 0.478615i \(0.841139\pi\)
\(294\) −0.109908 0.0798529i −0.00640997 0.00465711i
\(295\) 3.01452 + 7.81710i 0.175512 + 0.455129i
\(296\) −3.67218 + 2.66799i −0.213441 + 0.155074i
\(297\) 0.167994 + 0.231224i 0.00974802 + 0.0134170i
\(298\) −7.48901 + 2.43333i −0.433827 + 0.140959i
\(299\) 18.3045 1.05858
\(300\) 2.48665 4.33781i 0.143567 0.250443i
\(301\) 21.1008 1.21623
\(302\) −16.8965 + 5.48999i −0.972282 + 0.315914i
\(303\) 6.33428 + 8.71839i 0.363895 + 0.500858i
\(304\) −0.358647 + 0.260572i −0.0205698 + 0.0149448i
\(305\) −24.4391 15.8175i −1.39938 0.905708i
\(306\) 5.25248 + 3.81615i 0.300264 + 0.218155i
\(307\) 18.6027i 1.06171i −0.847461 0.530857i \(-0.821870\pi\)
0.847461 0.530857i \(-0.178130\pi\)
\(308\) 0.440137 0.605796i 0.0250791 0.0345185i
\(309\) 5.53639 17.0392i 0.314954 0.969329i
\(310\) −7.56651 + 2.91789i −0.429749 + 0.165725i
\(311\) −4.30073 13.2363i −0.243872 0.750561i −0.995820 0.0913384i \(-0.970886\pi\)
0.751948 0.659223i \(-0.229114\pi\)
\(312\) −2.66799 0.866884i −0.151045 0.0490776i
\(313\) 14.6277 + 4.75282i 0.826805 + 0.268645i 0.691699 0.722186i \(-0.256863\pi\)
0.135106 + 0.990831i \(0.456863\pi\)
\(314\) 6.21715 + 19.1344i 0.350854 + 1.07982i
\(315\) 5.46604 2.10788i 0.307976 0.118766i
\(316\) −2.41485 + 7.43215i −0.135846 + 0.418091i
\(317\) 3.77620 5.19749i 0.212092 0.291920i −0.689695 0.724100i \(-0.742255\pi\)
0.901787 + 0.432180i \(0.142255\pi\)
\(318\) 13.9158i 0.780357i
\(319\) −1.67785 1.21903i −0.0939413 0.0682524i
\(320\) 1.87720 + 1.21496i 0.104939 + 0.0679184i
\(321\) −3.08471 + 2.24117i −0.172172 + 0.125090i
\(322\) −10.0483 13.8303i −0.559968 0.770730i
\(323\) 2.73730 0.889403i 0.152308 0.0494877i
\(324\) −1.00000 −0.0555556
\(325\) 6.97579 12.1688i 0.386947 0.675005i
\(326\) 2.11433 0.117102
\(327\) −7.57602 + 2.46160i −0.418955 + 0.136127i
\(328\) 3.12941 + 4.30726i 0.172793 + 0.237829i
\(329\) 19.0688 13.8543i 1.05129 0.763810i
\(330\) −0.229947 0.596287i −0.0126582 0.0328245i
\(331\) −14.6979 10.6786i −0.807868 0.586951i 0.105344 0.994436i \(-0.466406\pi\)
−0.913212 + 0.407485i \(0.866406\pi\)
\(332\) 5.16187i 0.283294i
\(333\) −2.66799 + 3.67218i −0.146205 + 0.201234i
\(334\) 6.01837 18.5226i 0.329311 1.01351i
\(335\) −1.23266 22.8474i −0.0673476 1.24829i
\(336\) 0.809610 + 2.49172i 0.0441678 + 0.135935i
\(337\) −2.26995 0.737552i −0.123652 0.0401770i 0.246537 0.969133i \(-0.420707\pi\)
−0.370189 + 0.928956i \(0.620707\pi\)
\(338\) 4.87922 + 1.58536i 0.265395 + 0.0862320i
\(339\) −1.62239 4.99319i −0.0881159 0.271193i
\(340\) −9.15352 11.2681i −0.496419 0.611101i
\(341\) −0.320313 + 0.985821i −0.0173459 + 0.0533852i
\(342\) −0.260572 + 0.358647i −0.0140901 + 0.0193934i
\(343\) 18.6956i 1.00947i
\(344\) 6.51574 + 4.73397i 0.351305 + 0.255238i
\(345\) −14.5691 + 0.786033i −0.784374 + 0.0423186i
\(346\) 2.67848 1.94603i 0.143996 0.104619i
\(347\) 15.2463 + 20.9848i 0.818466 + 1.12652i 0.989961 + 0.141337i \(0.0451403\pi\)
−0.171495 + 0.985185i \(0.554860\pi\)
\(348\) 6.90121 2.24234i 0.369943 0.120202i
\(349\) −0.246770 −0.0132093 −0.00660463 0.999978i \(-0.502102\pi\)
−0.00660463 + 0.999978i \(0.502102\pi\)
\(350\) −13.0237 + 1.40941i −0.696147 + 0.0753363i
\(351\) −2.80530 −0.149736
\(352\) 0.271820 0.0883198i 0.0144881 0.00470746i
\(353\) −11.2868 15.5350i −0.600738 0.826844i 0.395038 0.918665i \(-0.370731\pi\)
−0.995776 + 0.0918205i \(0.970731\pi\)
\(354\) −3.03127 + 2.20234i −0.161110 + 0.117053i
\(355\) −2.77223 + 10.4102i −0.147135 + 0.552516i
\(356\) 4.98807 + 3.62405i 0.264367 + 0.192074i
\(357\) 17.0098i 0.900256i
\(358\) 7.32398 10.0806i 0.387084 0.532776i
\(359\) −4.77188 + 14.6863i −0.251850 + 0.775116i 0.742584 + 0.669753i \(0.233600\pi\)
−0.994434 + 0.105362i \(0.966400\pi\)
\(360\) 2.16076 + 0.575410i 0.113882 + 0.0303268i
\(361\) −5.81059 17.8832i −0.305821 0.941219i
\(362\) 5.76100 + 1.87186i 0.302792 + 0.0983830i
\(363\) 10.3839 + 3.37394i 0.545015 + 0.177086i
\(364\) 2.27119 + 6.99002i 0.119043 + 0.366376i
\(365\) 14.3204 22.1260i 0.749564 1.15813i
\(366\) 4.02308 12.3818i 0.210290 0.647205i
\(367\) −14.6775 + 20.2019i −0.766160 + 1.05453i 0.230516 + 0.973068i \(0.425959\pi\)
−0.996677 + 0.0814607i \(0.974041\pi\)
\(368\) 6.52498i 0.340138i
\(369\) 4.30726 + 3.12941i 0.224227 + 0.162911i
\(370\) 7.87792 6.39952i 0.409553 0.332695i
\(371\) −29.4956 + 21.4298i −1.53134 + 1.11258i
\(372\) −2.13174 2.93409i −0.110526 0.152126i
\(373\) −17.7509 + 5.76763i −0.919109 + 0.298637i −0.730101 0.683339i \(-0.760527\pi\)
−0.189008 + 0.981976i \(0.560527\pi\)
\(374\) −1.85559 −0.0959504
\(375\) −5.02969 + 9.98510i −0.259732 + 0.515628i
\(376\) 8.99646 0.463957
\(377\) 19.3599 6.29042i 0.997087 0.323973i
\(378\) 1.53997 + 2.11959i 0.0792075 + 0.109020i
\(379\) 23.6622 17.1916i 1.21545 0.883073i 0.219732 0.975560i \(-0.429482\pi\)
0.995714 + 0.0924869i \(0.0294816\pi\)
\(380\) 0.769404 0.625015i 0.0394696 0.0320626i
\(381\) 15.1278 + 10.9910i 0.775023 + 0.563087i
\(382\) 23.3684i 1.19563i
\(383\) 6.09627 8.39079i 0.311505 0.428750i −0.624345 0.781149i \(-0.714634\pi\)
0.935850 + 0.352399i \(0.114634\pi\)
\(384\) −0.309017 + 0.951057i −0.0157695 + 0.0485334i
\(385\) −0.909769 + 1.40566i −0.0463661 + 0.0716389i
\(386\) −0.659104 2.02851i −0.0335475 0.103249i
\(387\) 7.65972 + 2.48879i 0.389365 + 0.126512i
\(388\) −5.18364 1.68427i −0.263160 0.0855057i
\(389\) 2.82831 + 8.70463i 0.143401 + 0.441342i 0.996802 0.0799126i \(-0.0254641\pi\)
−0.853401 + 0.521255i \(0.825464\pi\)
\(390\) 6.06158 + 1.61420i 0.306940 + 0.0817380i
\(391\) −13.0909 + 40.2895i −0.662034 + 2.03753i
\(392\) −0.0798529 + 0.109908i −0.00403318 + 0.00555119i
\(393\) 4.55143i 0.229589i
\(394\) 13.3134 + 9.67275i 0.670719 + 0.487306i
\(395\) 4.49662 16.8856i 0.226249 0.849605i
\(396\) 0.231224 0.167994i 0.0116195 0.00844203i
\(397\) 9.48983 + 13.0616i 0.476281 + 0.655544i 0.977785 0.209611i \(-0.0672198\pi\)
−0.501504 + 0.865155i \(0.667220\pi\)
\(398\) 1.58400 0.514674i 0.0793989 0.0257983i
\(399\) 1.16146 0.0581455
\(400\) −4.33781 2.48665i −0.216890 0.124333i
\(401\) −25.9388 −1.29532 −0.647662 0.761928i \(-0.724253\pi\)
−0.647662 + 0.761928i \(0.724253\pi\)
\(402\) 9.73171 3.16202i 0.485374 0.157707i
\(403\) −5.98017 8.23100i −0.297893 0.410015i
\(404\) 8.71839 6.33428i 0.433756 0.315142i
\(405\) 2.23282 0.120465i 0.110950 0.00598596i
\(406\) −15.3805 11.1746i −0.763320 0.554584i
\(407\) 1.29730i 0.0643050i
\(408\) 3.81615 5.25248i 0.188928 0.260037i
\(409\) −5.27338 + 16.2298i −0.260752 + 0.802512i 0.731890 + 0.681423i \(0.238639\pi\)
−0.992642 + 0.121089i \(0.961361\pi\)
\(410\) −7.50629 9.24036i −0.370709 0.456349i
\(411\) −4.80334 14.7832i −0.236931 0.729199i
\(412\) −17.0392 5.53639i −0.839464 0.272758i
\(413\) 9.33611 + 3.03349i 0.459400 + 0.149268i
\(414\) −2.01633 6.20562i −0.0990972 0.304990i
\(415\) 0.621825 + 11.5255i 0.0305242 + 0.565766i
\(416\) −0.866884 + 2.66799i −0.0425025 + 0.130809i
\(417\) −5.29063 + 7.28192i −0.259083 + 0.356597i
\(418\) 0.126703i 0.00619722i
\(419\) 11.1748 + 8.11899i 0.545926 + 0.396639i 0.826281 0.563258i \(-0.190452\pi\)
−0.280355 + 0.959896i \(0.590452\pi\)
\(420\) −2.10788 5.46604i −0.102854 0.266715i
\(421\) 1.68679 1.22553i 0.0822093 0.0597286i −0.545921 0.837836i \(-0.683820\pi\)
0.628131 + 0.778108i \(0.283820\pi\)
\(422\) 6.91460 + 9.51713i 0.336597 + 0.463287i
\(423\) 8.55614 2.78006i 0.416014 0.135171i
\(424\) −13.9158 −0.675809
\(425\) 21.7956 + 24.0570i 1.05724 + 1.16694i
\(426\) −4.81783 −0.233425
\(427\) −32.4396 + 10.5403i −1.56986 + 0.510079i
\(428\) 2.24117 + 3.08471i 0.108331 + 0.149105i
\(429\) 0.648652 0.471274i 0.0313172 0.0227533i
\(430\) −15.1188 9.78517i −0.729092 0.471883i
\(431\) −7.55310 5.48765i −0.363820 0.264331i 0.390824 0.920466i \(-0.372190\pi\)
−0.754644 + 0.656135i \(0.772190\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) −6.88534 + 9.47685i −0.330888 + 0.455429i −0.941752 0.336307i \(-0.890822\pi\)
0.610864 + 0.791735i \(0.290822\pi\)
\(434\) −2.93624 + 9.03682i −0.140944 + 0.433781i
\(435\) −15.1390 + 5.83809i −0.725861 + 0.279915i
\(436\) 2.46160 + 7.57602i 0.117889 + 0.362826i
\(437\) −2.75103 0.893863i −0.131599 0.0427593i
\(438\) 11.2098 + 3.64230i 0.535627 + 0.174036i
\(439\) −0.952391 2.93116i −0.0454552 0.139897i 0.925753 0.378128i \(-0.123432\pi\)
−0.971208 + 0.238232i \(0.923432\pi\)
\(440\) −0.596287 + 0.229947i −0.0284269 + 0.0109623i
\(441\) −0.0419811 + 0.129205i −0.00199910 + 0.00615260i
\(442\) 10.7054 14.7348i 0.509205 0.700861i
\(443\) 10.6355i 0.505309i −0.967557 0.252654i \(-0.918696\pi\)
0.967557 0.252654i \(-0.0813035\pi\)
\(444\) 3.67218 + 2.66799i 0.174274 + 0.126617i
\(445\) −11.5740 7.49096i −0.548662 0.355106i
\(446\) −7.70310 + 5.59663i −0.364753 + 0.265008i
\(447\) 4.62846 + 6.37053i 0.218919 + 0.301316i
\(448\) 2.49172 0.809610i 0.117723 0.0382505i
\(449\) 22.8276 1.07730 0.538651 0.842529i \(-0.318934\pi\)
0.538651 + 0.842529i \(0.318934\pi\)
\(450\) −4.89392 1.02449i −0.230701 0.0482950i
\(451\) −1.52167 −0.0716525
\(452\) −4.99319 + 1.62239i −0.234860 + 0.0763106i
\(453\) 10.4426 + 14.3730i 0.490635 + 0.675302i
\(454\) −13.2010 + 9.59107i −0.619552 + 0.450131i
\(455\) −5.91322 15.3339i −0.277216 0.718862i
\(456\) 0.358647 + 0.260572i 0.0167952 + 0.0122024i
\(457\) 25.7628i 1.20513i 0.798068 + 0.602567i \(0.205855\pi\)
−0.798068 + 0.602567i \(0.794145\pi\)
\(458\) 0.313691 0.431759i 0.0146578 0.0201748i
\(459\) 2.00627 6.17466i 0.0936446 0.288209i
\(460\) 0.786033 + 14.5691i 0.0366490 + 0.679288i
\(461\) 10.0189 + 30.8349i 0.466626 + 1.43613i 0.856926 + 0.515439i \(0.172371\pi\)
−0.390301 + 0.920688i \(0.627629\pi\)
\(462\) −0.712156 0.231394i −0.0331325 0.0107654i
\(463\) 17.8584 + 5.80256i 0.829952 + 0.269668i 0.693025 0.720914i \(-0.256278\pi\)
0.136927 + 0.990581i \(0.456278\pi\)
\(464\) −2.24234 6.90121i −0.104098 0.320380i
\(465\) 5.11326 + 6.29450i 0.237122 + 0.291901i
\(466\) 3.38119 10.4062i 0.156631 0.482060i
\(467\) −1.15330 + 1.58739i −0.0533686 + 0.0734555i −0.834867 0.550451i \(-0.814456\pi\)
0.781499 + 0.623907i \(0.214456\pi\)
\(468\) 2.80530i 0.129675i
\(469\) −21.6887 15.7578i −1.00149 0.727626i
\(470\) −20.0875 + 1.08376i −0.926566 + 0.0499901i
\(471\) 16.2767 11.8257i 0.749991 0.544900i
\(472\) 2.20234 + 3.03127i 0.101371 + 0.139525i
\(473\) −2.18922 + 0.711319i −0.100660 + 0.0327065i
\(474\) 7.81462 0.358938
\(475\) −1.64265 + 1.48823i −0.0753699 + 0.0682849i
\(476\) −17.0098 −0.779645
\(477\) −13.2347 + 4.30020i −0.605974 + 0.196893i
\(478\) 3.54917 + 4.88501i 0.162335 + 0.223435i
\(479\) −5.45583 + 3.96389i −0.249283 + 0.181115i −0.705409 0.708800i \(-0.749237\pi\)
0.456126 + 0.889915i \(0.349237\pi\)
\(480\) 0.575410 2.16076i 0.0262638 0.0986250i
\(481\) 10.3015 + 7.48451i 0.469710 + 0.341264i
\(482\) 2.20701i 0.100526i
\(483\) −10.0483 + 13.8303i −0.457212 + 0.629298i
\(484\) 3.37394 10.3839i 0.153361 0.471997i
\(485\) 11.7770 + 3.13622i 0.534768 + 0.142408i
\(486\) 0.309017 + 0.951057i 0.0140173 + 0.0431408i
\(487\) 1.10709 + 0.359717i 0.0501672 + 0.0163003i 0.333993 0.942576i \(-0.391604\pi\)
−0.283826 + 0.958876i \(0.591604\pi\)
\(488\) −12.3818 4.02308i −0.560496 0.182116i
\(489\) −0.653363 2.01084i −0.0295461 0.0909335i
\(490\) 0.165057 0.255024i 0.00745652 0.0115208i
\(491\) −2.59179 + 7.97671i −0.116966 + 0.359984i −0.992352 0.123441i \(-0.960607\pi\)
0.875386 + 0.483424i \(0.160607\pi\)
\(492\) 3.12941 4.30726i 0.141085 0.194186i
\(493\) 47.1113i 2.12179i
\(494\) 1.00611 + 0.730982i 0.0452670 + 0.0328884i
\(495\) −0.496045 + 0.402956i −0.0222956 + 0.0181115i
\(496\) −2.93409 + 2.13174i −0.131745 + 0.0957181i
\(497\) 7.41931 + 10.2118i 0.332802 + 0.458062i
\(498\) −4.90923 + 1.59510i −0.219988 + 0.0714783i
\(499\) −17.2590 −0.772620 −0.386310 0.922369i \(-0.626251\pi\)
−0.386310 + 0.922369i \(0.626251\pi\)
\(500\) 9.98510 + 5.02969i 0.446547 + 0.224935i
\(501\) −19.4759 −0.870117
\(502\) 0.144228 0.0468627i 0.00643723 0.00209158i
\(503\) 5.18659 + 7.13873i 0.231259 + 0.318300i 0.908838 0.417150i \(-0.136971\pi\)
−0.677579 + 0.735450i \(0.736971\pi\)
\(504\) 2.11959 1.53997i 0.0944138 0.0685957i
\(505\) −18.7035 + 15.1936i −0.832297 + 0.676105i
\(506\) 1.50873 + 1.09616i 0.0670714 + 0.0487302i
\(507\) 5.13032i 0.227845i
\(508\) 10.9910 15.1278i 0.487648 0.671189i
\(509\) 4.21361 12.9682i 0.186765 0.574804i −0.813209 0.581971i \(-0.802282\pi\)
0.999974 + 0.00716772i \(0.00228158\pi\)
\(510\) −7.88804 + 12.1876i −0.349288 + 0.539674i
\(511\) −9.54264 29.3692i −0.422141 1.29922i
\(512\) 0.951057 + 0.309017i 0.0420312 + 0.0136568i
\(513\) 0.421615 + 0.136991i 0.0186147 + 0.00604830i
\(514\) −3.22805 9.93490i −0.142383 0.438210i
\(515\) 38.7125 + 10.3091i 1.70588 + 0.454274i
\(516\) 2.48879 7.65972i 0.109563 0.337200i
\(517\) −1.51135 + 2.08020i −0.0664692 + 0.0914871i
\(518\) 11.8921i 0.522510i
\(519\) −2.67848 1.94603i −0.117572 0.0854211i
\(520\) 1.61420 6.06158i 0.0707872 0.265818i
\(521\) 10.9134 7.92905i 0.478125 0.347378i −0.322474 0.946578i \(-0.604515\pi\)
0.800599 + 0.599200i \(0.204515\pi\)
\(522\) −4.26518 5.87052i −0.186682 0.256946i
\(523\) −9.68125 + 3.14563i −0.423332 + 0.137549i −0.512932 0.858429i \(-0.671441\pi\)
0.0896008 + 0.995978i \(0.471441\pi\)
\(524\) −4.55143 −0.198830
\(525\) 5.36498 + 11.9508i 0.234147 + 0.521574i
\(526\) 21.9602 0.957511
\(527\) 22.3939 7.27621i 0.975493 0.316957i
\(528\) −0.167994 0.231224i −0.00731101 0.0100627i
\(529\) 15.8368 11.5061i 0.688556 0.500266i
\(530\) 31.0714 1.67636i 1.34965 0.0728166i
\(531\) 3.03127 + 2.20234i 0.131546 + 0.0955736i
\(532\) 1.16146i 0.0503555i
\(533\) 8.77892 12.0831i 0.380257 0.523379i
\(534\) 1.90527 5.86383i 0.0824493 0.253753i
\(535\) −5.37573 6.61761i −0.232413 0.286104i
\(536\) −3.16202 9.73171i −0.136579 0.420346i
\(537\) −11.8504 3.85044i −0.511385 0.166159i
\(538\) 13.4383 + 4.36638i 0.579368 + 0.188248i
\(539\) −0.0119986 0.0369278i −0.000516816 0.00159059i
\(540\) −0.120465 2.23282i −0.00518400 0.0960853i
\(541\) −3.58842 + 11.0440i −0.154278 + 0.474819i −0.998087 0.0618246i \(-0.980308\pi\)
0.843809 + 0.536644i \(0.180308\pi\)
\(542\) 16.1811 22.2714i 0.695039 0.956640i
\(543\) 6.05748i 0.259951i
\(544\) −5.25248 3.81615i −0.225198 0.163616i
\(545\) −6.40896 16.6194i −0.274529 0.711895i
\(546\) 5.94606 4.32007i 0.254468 0.184882i
\(547\) −11.8352 16.2897i −0.506035 0.696497i 0.477210 0.878789i \(-0.341648\pi\)
−0.983244 + 0.182293i \(0.941648\pi\)
\(548\) −14.7832 + 4.80334i −0.631505 + 0.205188i
\(549\) −13.0189 −0.555635
\(550\) 1.30370 0.585263i 0.0555900 0.0249557i
\(551\) −3.21683 −0.137042
\(552\) −6.20562 + 2.01633i −0.264129 + 0.0858207i
\(553\) −12.0343 16.5638i −0.511750 0.704363i
\(554\) −19.0895 + 13.8693i −0.811036 + 0.589252i
\(555\) −8.52072 5.51478i −0.361684 0.234090i
\(556\) 7.28192 + 5.29063i 0.308822 + 0.224373i
\(557\) 8.99374i 0.381077i −0.981680 0.190539i \(-0.938977\pi\)
0.981680 0.190539i \(-0.0610234\pi\)
\(558\) −2.13174 + 2.93409i −0.0902439 + 0.124210i
\(559\) 6.98180 21.4878i 0.295299 0.908836i
\(560\) −5.46604 + 2.10788i −0.230982 + 0.0890741i
\(561\) 0.573410 + 1.76477i 0.0242094 + 0.0745088i
\(562\) 6.82035 + 2.21607i 0.287699 + 0.0934791i
\(563\) −0.442435 0.143756i −0.0186464 0.00605858i 0.299679 0.954040i \(-0.403120\pi\)
−0.318325 + 0.947982i \(0.603120\pi\)
\(564\) −2.78006 8.55614i −0.117062 0.360278i
\(565\) 10.9535 4.22400i 0.460815 0.177705i
\(566\) −7.11732 + 21.9049i −0.299163 + 0.920730i
\(567\) 1.53997 2.11959i 0.0646726 0.0890142i
\(568\) 4.81783i 0.202152i
\(569\) −4.12851 2.99954i −0.173076 0.125747i 0.497875 0.867249i \(-0.334114\pi\)
−0.670951 + 0.741502i \(0.734114\pi\)
\(570\) −0.832184 0.538607i −0.0348564 0.0225597i
\(571\) 34.9562 25.3971i 1.46287 1.06284i 0.480266 0.877123i \(-0.340540\pi\)
0.982604 0.185714i \(-0.0594597\pi\)
\(572\) −0.471274 0.648652i −0.0197049 0.0271215i
\(573\) 22.2247 7.22123i 0.928449 0.301671i
\(574\) −13.9488 −0.582212
\(575\) −3.51014 32.4355i −0.146383 1.35265i
\(576\) 1.00000 0.0416667
\(577\) −14.6870 + 4.77209i −0.611427 + 0.198665i −0.598330 0.801249i \(-0.704169\pi\)
−0.0130969 + 0.999914i \(0.504169\pi\)
\(578\) 14.7837 + 20.3481i 0.614922 + 0.846367i
\(579\) −1.72556 + 1.25369i −0.0717117 + 0.0521016i
\(580\) 5.83809 + 15.1390i 0.242414 + 0.628614i
\(581\) 10.9410 + 7.94911i 0.453910 + 0.329785i
\(582\) 5.45040i 0.225927i
\(583\) 2.33777 3.21766i 0.0968204 0.133262i
\(584\) 3.64230 11.2098i 0.150719 0.463866i
\(585\) −0.337940 6.26372i −0.0139721 0.258973i
\(586\) −5.06328 15.5832i −0.209162 0.643735i
\(587\) −27.1662 8.82684i −1.12127 0.364323i −0.311018 0.950404i \(-0.600670\pi\)
−0.810252 + 0.586081i \(0.800670\pi\)
\(588\) 0.129205 + 0.0419811i 0.00532831 + 0.00173127i
\(589\) 0.496830 + 1.52909i 0.0204715 + 0.0630049i
\(590\) −5.28260 6.50297i −0.217481 0.267723i
\(591\) 5.08526 15.6508i 0.209180 0.643789i
\(592\) 2.66799 3.67218i 0.109654 0.150926i
\(593\) 31.6123i 1.29816i −0.760720 0.649080i \(-0.775154\pi\)
0.760720 0.649080i \(-0.224846\pi\)
\(594\) −0.231224 0.167994i −0.00948725 0.00689289i
\(595\) 37.9799 2.04909i 1.55702 0.0840046i
\(596\) 6.37053 4.62846i 0.260947 0.189589i
\(597\) −0.978967 1.34743i −0.0400665 0.0551468i
\(598\) −17.4086 + 5.65640i −0.711891 + 0.231307i
\(599\) −36.7361 −1.50099 −0.750497 0.660873i \(-0.770186\pi\)
−0.750497 + 0.660873i \(0.770186\pi\)
\(600\) −1.02449 + 4.89392i −0.0418247 + 0.199793i
\(601\) 45.3145 1.84842 0.924209 0.381887i \(-0.124726\pi\)
0.924209 + 0.381887i \(0.124726\pi\)
\(602\) −20.0681 + 6.52052i −0.817914 + 0.265756i
\(603\) −6.01453 8.27829i −0.244931 0.337118i
\(604\) 14.3730 10.4426i 0.584829 0.424903i
\(605\) −6.28251 + 23.5919i −0.255420 + 0.959147i
\(606\) −8.71839 6.33428i −0.354160 0.257313i
\(607\) 3.15730i 0.128151i −0.997945 0.0640754i \(-0.979590\pi\)
0.997945 0.0640754i \(-0.0204098\pi\)
\(608\) 0.260572 0.358647i 0.0105676 0.0145451i
\(609\) −5.87482 + 18.0808i −0.238060 + 0.732672i
\(610\) 28.1309 + 7.49124i 1.13899 + 0.303311i
\(611\) −7.79888 24.0025i −0.315509 0.971037i
\(612\) −6.17466 2.00627i −0.249596 0.0810986i
\(613\) 19.9336 + 6.47683i 0.805111 + 0.261596i 0.682526 0.730861i \(-0.260881\pi\)
0.122585 + 0.992458i \(0.460881\pi\)
\(614\) 5.74856 + 17.6923i 0.231993 + 0.714002i
\(615\) −6.46854 + 9.99433i −0.260837 + 0.403010i
\(616\) −0.231394 + 0.712156i −0.00932311 + 0.0286936i
\(617\) 21.5952 29.7233i 0.869391 1.19661i −0.109856 0.993947i \(-0.535039\pi\)
0.979248 0.202667i \(-0.0649609\pi\)
\(618\) 17.9161i 0.720692i
\(619\) −9.41595 6.84109i −0.378459 0.274967i 0.382251 0.924059i \(-0.375149\pi\)
−0.760710 + 0.649092i \(0.775149\pi\)
\(620\) 6.29450 5.11326i 0.252793 0.205353i
\(621\) −5.27882 + 3.83529i −0.211832 + 0.153905i
\(622\) 8.18047 + 11.2595i 0.328007 + 0.451463i
\(623\) −15.3630 + 4.99173i −0.615504 + 0.199989i
\(624\) 2.80530 0.112302
\(625\) −22.9008 10.0275i −0.916033 0.401102i
\(626\) −15.3804 −0.614726
\(627\) −0.120501 + 0.0391532i −0.00481236 + 0.00156363i
\(628\) −11.8257 16.2767i −0.471898 0.649511i
\(629\) −23.8413 + 17.3218i −0.950617 + 0.690663i
\(630\) −4.54714 + 3.69381i −0.181162 + 0.147165i
\(631\) −3.73919 2.71668i −0.148855 0.108149i 0.510865 0.859661i \(-0.329325\pi\)
−0.659720 + 0.751511i \(0.729325\pi\)
\(632\) 7.81462i 0.310849i
\(633\) 6.91460 9.51713i 0.274831 0.378272i
\(634\) −1.98526 + 6.11001i −0.0788449 + 0.242660i
\(635\) −22.7186 + 35.1018i −0.901560 + 1.39297i
\(636\) 4.30020 + 13.2347i 0.170514 + 0.524789i
\(637\) 0.362457 + 0.117769i 0.0143611 + 0.00466620i
\(638\) 1.97243 + 0.640880i 0.0780891 + 0.0253727i
\(639\) 1.48879 + 4.58203i 0.0588957 + 0.181262i
\(640\) −2.16076 0.575410i −0.0854117 0.0227451i
\(641\) 7.85079 24.1623i 0.310088 0.954352i −0.667642 0.744483i \(-0.732696\pi\)
0.977730 0.209869i \(-0.0673037\pi\)
\(642\) 2.24117 3.08471i 0.0884520 0.121744i
\(643\) 41.3338i 1.63005i −0.579429 0.815023i \(-0.696724\pi\)
0.579429 0.815023i \(-0.303276\pi\)
\(644\) 13.8303 + 10.0483i 0.544988 + 0.395957i
\(645\) −4.63430 + 17.4026i −0.182475 + 0.685226i
\(646\) −2.32849 + 1.69175i −0.0916131 + 0.0665608i
\(647\) −3.20446 4.41055i −0.125980 0.173397i 0.741368 0.671099i \(-0.234177\pi\)
−0.867348 + 0.497702i \(0.834177\pi\)
\(648\) 0.951057 0.309017i 0.0373610 0.0121393i
\(649\) −1.07088 −0.0420358
\(650\) −2.87400 + 13.7289i −0.112728 + 0.538491i
\(651\) 9.50188 0.372408
\(652\) −2.01084 + 0.653363i −0.0787507 + 0.0255877i
\(653\) −16.1526 22.2322i −0.632101 0.870013i 0.366062 0.930590i \(-0.380706\pi\)
−0.998163 + 0.0605775i \(0.980706\pi\)
\(654\) 6.44455 4.68224i 0.252002 0.183090i
\(655\) 10.1625 0.548289i 0.397083 0.0214234i
\(656\) −4.30726 3.12941i −0.168170 0.122183i
\(657\) 11.7867i 0.459844i
\(658\) −13.8543 + 19.0688i −0.540096 + 0.743378i
\(659\) −13.0534 + 40.1743i −0.508489 + 1.56497i 0.286336 + 0.958129i \(0.407563\pi\)
−0.794825 + 0.606839i \(0.792437\pi\)
\(660\) 0.402956 + 0.496045i 0.0156850 + 0.0193085i
\(661\) 1.96478 + 6.04696i 0.0764210 + 0.235200i 0.981968 0.189046i \(-0.0605394\pi\)
−0.905547 + 0.424245i \(0.860539\pi\)
\(662\) 17.2784 + 5.61409i 0.671544 + 0.218198i
\(663\) −17.3218 5.62818i −0.672721 0.218580i
\(664\) 1.59510 + 4.90923i 0.0619021 + 0.190515i
\(665\) 0.139915 + 2.59332i 0.00542567 + 0.100565i
\(666\) 1.40265 4.31691i 0.0543515 0.167277i
\(667\) 27.8302 38.3050i 1.07759 1.48318i
\(668\) 19.4759i 0.753544i
\(669\) 7.70310 + 5.59663i 0.297819 + 0.216378i
\(670\) 8.23257 + 21.3483i 0.318052 + 0.824755i
\(671\) 3.01030 2.18711i 0.116211 0.0844324i
\(672\) −1.53997 2.11959i −0.0594056 0.0817648i
\(673\) −19.3775 + 6.29612i −0.746947 + 0.242698i −0.657667 0.753309i \(-0.728457\pi\)
−0.0892798 + 0.996007i \(0.528457\pi\)
\(674\) 2.38677 0.0919349
\(675\) 0.537954 + 4.97098i 0.0207059 + 0.191333i
\(676\) −5.13032 −0.197320
\(677\) −5.99042 + 1.94641i −0.230231 + 0.0748065i −0.421860 0.906661i \(-0.638623\pi\)
0.191630 + 0.981467i \(0.438623\pi\)
\(678\) 3.08596 + 4.24746i 0.118516 + 0.163123i
\(679\) 11.5526 8.39345i 0.443348 0.322111i
\(680\) 12.1876 + 7.88804i 0.467372 + 0.302493i
\(681\) 13.2010 + 9.59107i 0.505862 + 0.367530i
\(682\) 1.03655i 0.0396917i
\(683\) −11.5797 + 15.9381i −0.443085 + 0.609855i −0.970894 0.239508i \(-0.923014\pi\)
0.527809 + 0.849363i \(0.323014\pi\)
\(684\) 0.136991 0.421615i 0.00523798 0.0161208i
\(685\) 32.4295 12.5058i 1.23907 0.477824i
\(686\) −5.77726 17.7806i −0.220577 0.678865i
\(687\) −0.507563 0.164917i −0.0193647 0.00629199i
\(688\) −7.65972 2.48879i −0.292024 0.0948843i
\(689\) 12.0633 + 37.1272i 0.459577 + 1.41443i
\(690\) 13.6131 5.24966i 0.518244 0.199851i
\(691\) −15.0733 + 46.3909i −0.573416 + 1.76479i 0.0680955 + 0.997679i \(0.478308\pi\)
−0.641511 + 0.767114i \(0.721692\pi\)
\(692\) −1.94603 + 2.67848i −0.0739768 + 0.101820i
\(693\) 0.748806i 0.0284448i
\(694\) −20.9848 15.2463i −0.796572 0.578743i
\(695\) −16.8966 10.9358i −0.640923 0.414819i
\(696\) −5.87052 + 4.26518i −0.222521 + 0.161671i
\(697\) 20.3175 + 27.9646i 0.769578 + 1.05923i
\(698\) 0.234692 0.0762560i 0.00888321 0.00288633i
\(699\) −10.9418 −0.413856
\(700\) 11.9508 5.36498i 0.451696 0.202777i
\(701\) −43.3213 −1.63622 −0.818111 0.575061i \(-0.804978\pi\)
−0.818111 + 0.575061i \(0.804978\pi\)
\(702\) 2.66799 0.866884i 0.100697 0.0327184i
\(703\) −1.18275 1.62792i −0.0446084 0.0613982i
\(704\) −0.231224 + 0.167994i −0.00871459 + 0.00633152i
\(705\) 7.23809 + 18.7694i 0.272602 + 0.706898i
\(706\) 15.5350 + 11.2868i 0.584667 + 0.424786i
\(707\) 28.2340i 1.06185i
\(708\) 2.20234 3.03127i 0.0827691 0.113922i
\(709\) −4.95136 + 15.2387i −0.185952 + 0.572302i −0.999963 0.00854727i \(-0.997279\pi\)
0.814011 + 0.580849i \(0.197279\pi\)
\(710\) −0.580381 10.7574i −0.0217813 0.403717i
\(711\) −2.41485 7.43215i −0.0905640 0.278727i
\(712\) −5.86383 1.90527i −0.219756 0.0714032i
\(713\) −22.5062 7.31270i −0.842863 0.273863i
\(714\) 5.25633 + 16.1773i 0.196713 + 0.605421i
\(715\) 1.13041 + 1.39155i 0.0422749 + 0.0520411i
\(716\) −3.85044 + 11.8504i −0.143898 + 0.442872i
\(717\) 3.54917 4.88501i 0.132546 0.182434i
\(718\) 15.4421i 0.576296i
\(719\) 22.4469 + 16.3087i 0.837130 + 0.608210i 0.921567 0.388218i \(-0.126909\pi\)
−0.0844377 + 0.996429i \(0.526909\pi\)
\(720\) −2.23282 + 0.120465i −0.0832123 + 0.00448947i
\(721\) 37.9748 27.5903i 1.41425 1.02752i
\(722\) 11.0524 + 15.2123i 0.411328 + 0.566144i
\(723\) 2.09899 0.682003i 0.0780623 0.0253640i
\(724\) −6.05748 −0.225124
\(725\) −14.8591 33.0995i −0.551855 1.22928i
\(726\) −10.9183 −0.405217
\(727\) −43.2427 + 14.0504i −1.60378 + 0.521101i −0.968039 0.250799i \(-0.919307\pi\)
−0.635744 + 0.771900i \(0.719307\pi\)
\(728\) −4.32007 5.94606i −0.160112 0.220376i
\(729\) 0.809017 0.587785i 0.0299636 0.0217698i
\(730\) −6.78220 + 25.4683i −0.251020 + 0.942625i
\(731\) 42.3030 + 30.7349i 1.56463 + 1.13677i
\(732\) 13.0189i 0.481194i
\(733\) 18.4749 25.4285i 0.682385 0.939223i −0.317574 0.948233i \(-0.602868\pi\)
0.999959 + 0.00901080i \(0.00286826\pi\)
\(734\) 7.71643 23.7487i 0.284819 0.876581i
\(735\) −0.293548 0.0781717i −0.0108277 0.00288341i
\(736\) 2.01633 + 6.20562i 0.0743229 + 0.228742i
\(737\) 2.78141 + 0.903735i 0.102455 + 0.0332895i
\(738\) −5.06349 1.64523i −0.186390 0.0605617i
\(739\) 5.26372 + 16.2001i 0.193629 + 0.595929i 0.999990 + 0.00450517i \(0.00143405\pi\)
−0.806361 + 0.591424i \(0.798566\pi\)
\(740\) −5.51478 + 8.52072i −0.202727 + 0.313228i
\(741\) 0.384300 1.18275i 0.0141176 0.0434495i
\(742\) 21.4298 29.4956i 0.786714 1.08282i
\(743\) 1.44429i 0.0529858i −0.999649 0.0264929i \(-0.991566\pi\)
0.999649 0.0264929i \(-0.00843393\pi\)
\(744\) 2.93409 + 2.13174i 0.107569 + 0.0781535i
\(745\) −13.6667 + 11.1020i −0.500709 + 0.406744i
\(746\) 15.0999 10.9707i 0.552845 0.401665i
\(747\) 3.03407 + 4.17604i 0.111011 + 0.152793i
\(748\) 1.76477 0.573410i 0.0645265 0.0209659i
\(749\) −9.98963 −0.365013
\(750\) 1.69796 11.0507i 0.0620007 0.403513i
\(751\) 22.1167 0.807051 0.403526 0.914968i \(-0.367785\pi\)
0.403526 + 0.914968i \(0.367785\pi\)
\(752\) −8.55614 + 2.78006i −0.312010 + 0.101378i
\(753\) −0.0891381 0.122688i −0.00324837 0.00447100i
\(754\) −16.4685 + 11.9651i −0.599748 + 0.435743i
\(755\) −30.8343 + 25.0479i −1.12218 + 0.911585i
\(756\) −2.11959 1.53997i −0.0770886 0.0560081i
\(757\) 18.0645i 0.656565i −0.944580 0.328283i \(-0.893530\pi\)
0.944580 0.328283i \(-0.106470\pi\)
\(758\) −17.1916 + 23.6622i −0.624427 + 0.859450i
\(759\) 0.576285 1.77362i 0.0209178 0.0643784i
\(760\) −0.538607 + 0.832184i −0.0195373 + 0.0301865i
\(761\) 4.42227 + 13.6103i 0.160307 + 0.493375i 0.998660 0.0517535i \(-0.0164810\pi\)
−0.838353 + 0.545128i \(0.816481\pi\)
\(762\) −17.7838 5.77832i −0.644241 0.209326i
\(763\) −19.8488 6.44927i −0.718575 0.233479i
\(764\) −7.22123 22.2247i −0.261255 0.804060i
\(765\) 14.0286 + 3.73581i 0.507205 + 0.135068i
\(766\) −3.20500 + 9.86397i −0.115801 + 0.356400i
\(767\) 6.17822 8.50359i 0.223083 0.307047i
\(768\) 1.00000i 0.0360844i