Properties

Label 150.2.h.b.139.4
Level 150
Weight 2
Character 150.139
Analytic conductor 1.198
Analytic rank 0
Dimension 16
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.h (of order \(10\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 139.4
Root \(-1.16141 - 0.809017i\)
Character \(\chi\) = 150.139
Dual form 150.2.h.b.109.4

$q$-expansion

\(f(q)\) \(=\) \(q+(0.587785 + 0.809017i) q^{2} +(0.951057 + 0.309017i) q^{3} +(-0.309017 + 0.951057i) q^{4} +(1.86682 - 1.23085i) q^{5} +(0.309017 + 0.951057i) q^{6} -2.70913i q^{7} +(-0.951057 + 0.309017i) q^{8} +(0.809017 + 0.587785i) q^{9} +O(q^{10})\) \(q+(0.587785 + 0.809017i) q^{2} +(0.951057 + 0.309017i) q^{3} +(-0.309017 + 0.951057i) q^{4} +(1.86682 - 1.23085i) q^{5} +(0.309017 + 0.951057i) q^{6} -2.70913i q^{7} +(-0.951057 + 0.309017i) q^{8} +(0.809017 + 0.587785i) q^{9} +(2.09307 + 0.786811i) q^{10} +(-4.54704 + 3.30361i) q^{11} +(-0.587785 + 0.809017i) q^{12} +(-2.84536 + 3.91630i) q^{13} +(2.19173 - 1.59239i) q^{14} +(2.15580 - 0.593730i) q^{15} +(-0.809017 - 0.587785i) q^{16} +(0.994499 - 0.323132i) q^{17} +1.00000i q^{18} +(-2.59109 - 7.97455i) q^{19} +(0.593730 + 2.15580i) q^{20} +(0.837167 - 2.57654i) q^{21} +(-5.34536 - 1.73681i) q^{22} +(3.11219 + 4.28357i) q^{23} -1.00000 q^{24} +(1.97002 - 4.59555i) q^{25} -4.84082 q^{26} +(0.587785 + 0.809017i) q^{27} +(2.57654 + 0.837167i) q^{28} +(-1.29490 + 3.98530i) q^{29} +(1.74749 + 1.39510i) q^{30} +(-1.72444 - 5.30729i) q^{31} -1.00000i q^{32} +(-5.34536 + 1.73681i) q^{33} +(0.845972 + 0.614634i) q^{34} +(-3.33453 - 5.05745i) q^{35} +(-0.809017 + 0.587785i) q^{36} +(1.75853 - 2.42041i) q^{37} +(4.92854 - 6.78356i) q^{38} +(-3.91630 + 2.84536i) q^{39} +(-1.39510 + 1.74749i) q^{40} +(1.27617 + 0.927190i) q^{41} +(2.57654 - 0.837167i) q^{42} +3.29669i q^{43} +(-1.73681 - 5.34536i) q^{44} +(2.23376 + 0.101509i) q^{45} +(-1.63618 + 5.03563i) q^{46} +(2.92330 + 0.949838i) q^{47} +(-0.587785 - 0.809017i) q^{48} -0.339383 q^{49} +(4.87582 - 1.10742i) q^{50} +1.04568 q^{51} +(-2.84536 - 3.91630i) q^{52} +(5.87478 + 1.90883i) q^{53} +(-0.309017 + 0.951057i) q^{54} +(-4.42223 + 11.7640i) q^{55} +(0.837167 + 2.57654i) q^{56} -8.38494i q^{57} +(-3.98530 + 1.29490i) q^{58} +(-11.4780 - 8.33925i) q^{59} +(-0.101509 + 2.23376i) q^{60} +(-0.218911 + 0.159048i) q^{61} +(3.28009 - 4.51465i) q^{62} +(1.59239 - 2.19173i) q^{63} +(0.809017 - 0.587785i) q^{64} +(-0.491387 + 10.8132i) q^{65} +(-4.54704 - 3.30361i) q^{66} +(6.00099 - 1.94984i) q^{67} +1.04568i q^{68} +(1.63618 + 5.03563i) q^{69} +(2.13157 - 5.67039i) q^{70} +(-1.40070 + 4.31091i) q^{71} +(-0.951057 - 0.309017i) q^{72} +(4.79691 + 6.60237i) q^{73} +2.99179 q^{74} +(3.29370 - 3.76186i) q^{75} +8.38494 q^{76} +(8.94992 + 12.3185i) q^{77} +(-4.60389 - 1.49589i) q^{78} +(-3.85697 + 11.8705i) q^{79} +(-2.23376 - 0.101509i) q^{80} +(0.309017 + 0.951057i) q^{81} +1.57743i q^{82} +(0.127938 - 0.0415695i) q^{83} +(2.19173 + 1.59239i) q^{84} +(1.45882 - 1.82731i) q^{85} +(-2.66708 + 1.93775i) q^{86} +(-2.46305 + 3.39010i) q^{87} +(3.30361 - 4.54704i) q^{88} +(9.53844 - 6.93008i) q^{89} +(1.23085 + 1.86682i) q^{90} +(10.6098 + 7.70845i) q^{91} +(-5.03563 + 1.63618i) q^{92} -5.58042i q^{93} +(0.949838 + 2.92330i) q^{94} +(-14.6526 - 11.6978i) q^{95} +(0.309017 - 0.951057i) q^{96} +(2.51108 + 0.815900i) q^{97} +(-0.199485 - 0.274567i) q^{98} -5.62045 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 4q^{4} + 4q^{5} - 4q^{6} + 4q^{9} + O(q^{10}) \) \( 16q + 4q^{4} + 4q^{5} - 4q^{6} + 4q^{9} + 2q^{10} + 2q^{11} + 20q^{13} + 2q^{14} - 2q^{15} - 4q^{16} - 30q^{17} - 4q^{20} - 2q^{21} - 20q^{22} - 10q^{23} - 16q^{24} + 24q^{25} + 4q^{26} - 10q^{29} - 6q^{30} - 18q^{31} - 20q^{33} + 12q^{34} - 34q^{35} - 4q^{36} + 20q^{37} + 10q^{38} - 4q^{39} - 2q^{40} + 22q^{41} + 8q^{44} - 4q^{45} - 6q^{46} - 50q^{47} - 52q^{49} + 12q^{50} + 28q^{51} + 20q^{52} + 30q^{53} + 4q^{54} + 18q^{55} - 2q^{56} - 30q^{58} + 20q^{59} + 2q^{60} + 12q^{61} + 50q^{62} + 10q^{63} + 4q^{64} - 8q^{65} + 2q^{66} - 50q^{67} + 6q^{69} - 12q^{70} - 28q^{71} + 20q^{73} + 12q^{74} + 28q^{75} + 20q^{76} + 100q^{77} - 20q^{79} + 4q^{80} - 4q^{81} - 30q^{83} + 2q^{84} - 4q^{85} - 6q^{86} + 10q^{87} + 70q^{89} + 8q^{90} + 12q^{91} - 30q^{92} + 2q^{94} - 30q^{95} - 4q^{96} - 10q^{97} + 60q^{98} - 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.587785 + 0.809017i 0.415627 + 0.572061i
\(3\) 0.951057 + 0.309017i 0.549093 + 0.178411i
\(4\) −0.309017 + 0.951057i −0.154508 + 0.475528i
\(5\) 1.86682 1.23085i 0.834866 0.550453i
\(6\) 0.309017 + 0.951057i 0.126156 + 0.388267i
\(7\) 2.70913i 1.02395i −0.858999 0.511977i \(-0.828913\pi\)
0.858999 0.511977i \(-0.171087\pi\)
\(8\) −0.951057 + 0.309017i −0.336249 + 0.109254i
\(9\) 0.809017 + 0.587785i 0.269672 + 0.195928i
\(10\) 2.09307 + 0.786811i 0.661886 + 0.248812i
\(11\) −4.54704 + 3.30361i −1.37098 + 0.996077i −0.373323 + 0.927701i \(0.621782\pi\)
−0.997660 + 0.0683760i \(0.978218\pi\)
\(12\) −0.587785 + 0.809017i −0.169679 + 0.233543i
\(13\) −2.84536 + 3.91630i −0.789161 + 1.08619i 0.205051 + 0.978751i \(0.434264\pi\)
−0.994212 + 0.107436i \(0.965736\pi\)
\(14\) 2.19173 1.59239i 0.585765 0.425583i
\(15\) 2.15580 0.593730i 0.556626 0.153300i
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 0.994499 0.323132i 0.241202 0.0783711i −0.185922 0.982565i \(-0.559527\pi\)
0.427123 + 0.904193i \(0.359527\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −2.59109 7.97455i −0.594437 1.82949i −0.557510 0.830170i \(-0.688243\pi\)
−0.0369263 0.999318i \(-0.511757\pi\)
\(20\) 0.593730 + 2.15580i 0.132762 + 0.482052i
\(21\) 0.837167 2.57654i 0.182685 0.562246i
\(22\) −5.34536 1.73681i −1.13963 0.370290i
\(23\) 3.11219 + 4.28357i 0.648937 + 0.893185i 0.999053 0.0435212i \(-0.0138576\pi\)
−0.350115 + 0.936707i \(0.613858\pi\)
\(24\) −1.00000 −0.204124
\(25\) 1.97002 4.59555i 0.394003 0.919109i
\(26\) −4.84082 −0.949362
\(27\) 0.587785 + 0.809017i 0.113119 + 0.155695i
\(28\) 2.57654 + 0.837167i 0.486919 + 0.158210i
\(29\) −1.29490 + 3.98530i −0.240457 + 0.740051i 0.755893 + 0.654695i \(0.227203\pi\)
−0.996350 + 0.0853563i \(0.972797\pi\)
\(30\) 1.74749 + 1.39510i 0.319046 + 0.254708i
\(31\) −1.72444 5.30729i −0.309719 0.953218i −0.977874 0.209195i \(-0.932916\pi\)
0.668155 0.744022i \(-0.267084\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −5.34536 + 1.73681i −0.930508 + 0.302340i
\(34\) 0.845972 + 0.614634i 0.145083 + 0.105409i
\(35\) −3.33453 5.05745i −0.563639 0.854865i
\(36\) −0.809017 + 0.587785i −0.134836 + 0.0979642i
\(37\) 1.75853 2.42041i 0.289101 0.397913i −0.639621 0.768690i \(-0.720909\pi\)
0.928722 + 0.370778i \(0.120909\pi\)
\(38\) 4.92854 6.78356i 0.799516 1.10044i
\(39\) −3.91630 + 2.84536i −0.627110 + 0.455622i
\(40\) −1.39510 + 1.74749i −0.220584 + 0.276302i
\(41\) 1.27617 + 0.927190i 0.199304 + 0.144803i 0.682961 0.730455i \(-0.260692\pi\)
−0.483657 + 0.875258i \(0.660692\pi\)
\(42\) 2.57654 0.837167i 0.397568 0.129178i
\(43\) 3.29669i 0.502741i 0.967891 + 0.251370i \(0.0808812\pi\)
−0.967891 + 0.251370i \(0.919119\pi\)
\(44\) −1.73681 5.34536i −0.261834 0.805843i
\(45\) 2.23376 + 0.101509i 0.332990 + 0.0151321i
\(46\) −1.63618 + 5.03563i −0.241241 + 0.742464i
\(47\) 2.92330 + 0.949838i 0.426407 + 0.138548i 0.514356 0.857577i \(-0.328031\pi\)
−0.0879484 + 0.996125i \(0.528031\pi\)
\(48\) −0.587785 0.809017i −0.0848395 0.116772i
\(49\) −0.339383 −0.0484833
\(50\) 4.87582 1.10742i 0.689545 0.156613i
\(51\) 1.04568 0.146424
\(52\) −2.84536 3.91630i −0.394581 0.543094i
\(53\) 5.87478 + 1.90883i 0.806962 + 0.262198i 0.683311 0.730128i \(-0.260539\pi\)
0.123652 + 0.992326i \(0.460539\pi\)
\(54\) −0.309017 + 0.951057i −0.0420519 + 0.129422i
\(55\) −4.42223 + 11.7640i −0.596293 + 1.58625i
\(56\) 0.837167 + 2.57654i 0.111871 + 0.344304i
\(57\) 8.38494i 1.11061i
\(58\) −3.98530 + 1.29490i −0.523295 + 0.170029i
\(59\) −11.4780 8.33925i −1.49431 1.08568i −0.972581 0.232565i \(-0.925288\pi\)
−0.521726 0.853113i \(-0.674712\pi\)
\(60\) −0.101509 + 2.23376i −0.0131048 + 0.288378i
\(61\) −0.218911 + 0.159048i −0.0280286 + 0.0203640i −0.601711 0.798714i \(-0.705514\pi\)
0.573683 + 0.819078i \(0.305514\pi\)
\(62\) 3.28009 4.51465i 0.416571 0.573361i
\(63\) 1.59239 2.19173i 0.200622 0.276132i
\(64\) 0.809017 0.587785i 0.101127 0.0734732i
\(65\) −0.491387 + 10.8132i −0.0609490 + 1.34122i
\(66\) −4.54704 3.30361i −0.559701 0.406647i
\(67\) 6.00099 1.94984i 0.733137 0.238211i 0.0814275 0.996679i \(-0.474052\pi\)
0.651710 + 0.758469i \(0.274052\pi\)
\(68\) 1.04568i 0.126807i
\(69\) 1.63618 + 5.03563i 0.196973 + 0.606219i
\(70\) 2.13157 5.67039i 0.254772 0.677741i
\(71\) −1.40070 + 4.31091i −0.166233 + 0.511611i −0.999125 0.0418237i \(-0.986683\pi\)
0.832892 + 0.553435i \(0.186683\pi\)
\(72\) −0.951057 0.309017i −0.112083 0.0364180i
\(73\) 4.79691 + 6.60237i 0.561435 + 0.772749i 0.991508 0.130045i \(-0.0415121\pi\)
−0.430073 + 0.902794i \(0.641512\pi\)
\(74\) 2.99179 0.347788
\(75\) 3.29370 3.76186i 0.380323 0.434382i
\(76\) 8.38494 0.961819
\(77\) 8.94992 + 12.3185i 1.01994 + 1.40382i
\(78\) −4.60389 1.49589i −0.521288 0.169377i
\(79\) −3.85697 + 11.8705i −0.433943 + 1.33554i 0.460223 + 0.887804i \(0.347770\pi\)
−0.894166 + 0.447736i \(0.852230\pi\)
\(80\) −2.23376 0.101509i −0.249742 0.0113491i
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 1.57743i 0.174198i
\(83\) 0.127938 0.0415695i 0.0140430 0.00456285i −0.301987 0.953312i \(-0.597650\pi\)
0.316030 + 0.948749i \(0.397650\pi\)
\(84\) 2.19173 + 1.59239i 0.239138 + 0.173744i
\(85\) 1.45882 1.82731i 0.158231 0.198200i
\(86\) −2.66708 + 1.93775i −0.287599 + 0.208953i
\(87\) −2.46305 + 3.39010i −0.264067 + 0.363456i
\(88\) 3.30361 4.54704i 0.352167 0.484716i
\(89\) 9.53844 6.93008i 1.01107 0.734587i 0.0466385 0.998912i \(-0.485149\pi\)
0.964434 + 0.264325i \(0.0851491\pi\)
\(90\) 1.23085 + 1.86682i 0.129743 + 0.196780i
\(91\) 10.6098 + 7.70845i 1.11221 + 0.808065i
\(92\) −5.03563 + 1.63618i −0.525001 + 0.170583i
\(93\) 5.58042i 0.578662i
\(94\) 0.949838 + 2.92330i 0.0979683 + 0.301516i
\(95\) −14.6526 11.6978i −1.50332 1.20017i
\(96\) 0.309017 0.951057i 0.0315389 0.0970668i
\(97\) 2.51108 + 0.815900i 0.254962 + 0.0828421i 0.433709 0.901053i \(-0.357205\pi\)
−0.178748 + 0.983895i \(0.557205\pi\)
\(98\) −0.199485 0.274567i −0.0201510 0.0277354i
\(99\) −5.62045 −0.564876
\(100\) 3.76186 + 3.29370i 0.376186 + 0.329370i
\(101\) −3.82844 −0.380944 −0.190472 0.981693i \(-0.561002\pi\)
−0.190472 + 0.981693i \(0.561002\pi\)
\(102\) 0.614634 + 0.845972i 0.0608579 + 0.0837637i
\(103\) −5.60479 1.82111i −0.552256 0.179439i 0.0195778 0.999808i \(-0.493768\pi\)
−0.571834 + 0.820369i \(0.693768\pi\)
\(104\) 1.49589 4.60389i 0.146685 0.451449i
\(105\) −1.60849 5.84035i −0.156973 0.569960i
\(106\) 1.90883 + 5.87478i 0.185402 + 0.570609i
\(107\) 5.90758i 0.571108i 0.958363 + 0.285554i \(0.0921775\pi\)
−0.958363 + 0.285554i \(0.907822\pi\)
\(108\) −0.951057 + 0.309017i −0.0915155 + 0.0297352i
\(109\) 4.56128 + 3.31397i 0.436892 + 0.317420i 0.784399 0.620257i \(-0.212972\pi\)
−0.347507 + 0.937677i \(0.612972\pi\)
\(110\) −12.1166 + 3.33703i −1.15527 + 0.318173i
\(111\) 2.42041 1.75853i 0.229735 0.166912i
\(112\) −1.59239 + 2.19173i −0.150466 + 0.207099i
\(113\) 2.97826 4.09923i 0.280171 0.385623i −0.645619 0.763659i \(-0.723401\pi\)
0.925791 + 0.378037i \(0.123401\pi\)
\(114\) 6.78356 4.92854i 0.635339 0.461601i
\(115\) 11.0823 + 4.16599i 1.03343 + 0.388481i
\(116\) −3.39010 2.46305i −0.314763 0.228688i
\(117\) −4.60389 + 1.49589i −0.425630 + 0.138296i
\(118\) 14.1876i 1.30607i
\(119\) −0.875408 2.69423i −0.0802485 0.246979i
\(120\) −1.86682 + 1.23085i −0.170416 + 0.112361i
\(121\) 6.36248 19.5817i 0.578407 1.78015i
\(122\) −0.257345 0.0836164i −0.0232989 0.00757027i
\(123\) 0.927190 + 1.27617i 0.0836019 + 0.115068i
\(124\) 5.58042 0.501136
\(125\) −1.97877 11.0038i −0.176987 0.984213i
\(126\) 2.70913 0.241348
\(127\) −5.60106 7.70919i −0.497013 0.684080i 0.484649 0.874709i \(-0.338947\pi\)
−0.981662 + 0.190628i \(0.938947\pi\)
\(128\) 0.951057 + 0.309017i 0.0840623 + 0.0273135i
\(129\) −1.01873 + 3.13534i −0.0896945 + 0.276051i
\(130\) −9.03692 + 5.95832i −0.792591 + 0.522579i
\(131\) 0.0460083 + 0.141599i 0.00401976 + 0.0123716i 0.953046 0.302825i \(-0.0979297\pi\)
−0.949027 + 0.315196i \(0.897930\pi\)
\(132\) 5.62045i 0.489197i
\(133\) −21.6041 + 7.01960i −1.87331 + 0.608676i
\(134\) 5.10474 + 3.70881i 0.440983 + 0.320393i
\(135\) 2.09307 + 0.786811i 0.180142 + 0.0677179i
\(136\) −0.845972 + 0.614634i −0.0725415 + 0.0527045i
\(137\) −5.30429 + 7.30072i −0.453176 + 0.623743i −0.973076 0.230484i \(-0.925969\pi\)
0.519900 + 0.854227i \(0.325969\pi\)
\(138\) −3.11219 + 4.28357i −0.264927 + 0.364641i
\(139\) 5.75420 4.18067i 0.488065 0.354600i −0.316375 0.948634i \(-0.602466\pi\)
0.804440 + 0.594034i \(0.202466\pi\)
\(140\) 5.84035 1.60849i 0.493600 0.135942i
\(141\) 2.48671 + 1.80670i 0.209419 + 0.152152i
\(142\) −4.31091 + 1.40070i −0.361764 + 0.117544i
\(143\) 27.2075i 2.27521i
\(144\) −0.309017 0.951057i −0.0257514 0.0792547i
\(145\) 2.48796 + 9.03365i 0.206614 + 0.750204i
\(146\) −2.52188 + 7.76156i −0.208712 + 0.642351i
\(147\) −0.322773 0.104875i −0.0266218 0.00864996i
\(148\) 1.75853 + 2.42041i 0.144550 + 0.198956i
\(149\) −15.4351 −1.26449 −0.632246 0.774768i \(-0.717867\pi\)
−0.632246 + 0.774768i \(0.717867\pi\)
\(150\) 4.97939 + 0.453494i 0.406566 + 0.0370276i
\(151\) −7.99801 −0.650868 −0.325434 0.945565i \(-0.605510\pi\)
−0.325434 + 0.945565i \(0.605510\pi\)
\(152\) 4.92854 + 6.78356i 0.399758 + 0.550219i
\(153\) 0.994499 + 0.323132i 0.0804005 + 0.0261237i
\(154\) −4.70525 + 14.4813i −0.379160 + 1.16693i
\(155\) −9.75170 7.78521i −0.783276 0.625323i
\(156\) −1.49589 4.60389i −0.119767 0.368606i
\(157\) 15.6147i 1.24619i 0.782146 + 0.623095i \(0.214125\pi\)
−0.782146 + 0.623095i \(0.785875\pi\)
\(158\) −11.8705 + 3.85697i −0.944369 + 0.306844i
\(159\) 4.99738 + 3.63081i 0.396318 + 0.287942i
\(160\) −1.23085 1.86682i −0.0973073 0.147585i
\(161\) 11.6047 8.43133i 0.914581 0.664482i
\(162\) −0.587785 + 0.809017i −0.0461808 + 0.0635624i
\(163\) 2.14970 2.95881i 0.168378 0.231752i −0.716487 0.697601i \(-0.754251\pi\)
0.884864 + 0.465849i \(0.154251\pi\)
\(164\) −1.27617 + 0.927190i −0.0996519 + 0.0724014i
\(165\) −7.84106 + 9.82165i −0.610425 + 0.764615i
\(166\) 0.108830 + 0.0790699i 0.00844688 + 0.00613702i
\(167\) 5.99458 1.94776i 0.463874 0.150722i −0.0677496 0.997702i \(-0.521582\pi\)
0.531624 + 0.846980i \(0.321582\pi\)
\(168\) 2.70913i 0.209014i
\(169\) −3.22413 9.92286i −0.248010 0.763297i
\(170\) 2.33580 + 0.106146i 0.179148 + 0.00814101i
\(171\) 2.59109 7.97455i 0.198146 0.609829i
\(172\) −3.13534 1.01873i −0.239068 0.0776777i
\(173\) 6.25725 + 8.61237i 0.475730 + 0.654786i 0.977677 0.210112i \(-0.0673829\pi\)
−0.501947 + 0.864898i \(0.667383\pi\)
\(174\) −4.19039 −0.317673
\(175\) −12.4499 5.33703i −0.941126 0.403441i
\(176\) 5.62045 0.423657
\(177\) −8.33925 11.4780i −0.626816 0.862739i
\(178\) 11.2131 + 3.64336i 0.840458 + 0.273081i
\(179\) 0.246999 0.760184i 0.0184615 0.0568188i −0.941401 0.337288i \(-0.890490\pi\)
0.959863 + 0.280470i \(0.0904902\pi\)
\(180\) −0.786811 + 2.09307i −0.0586455 + 0.156008i
\(181\) −5.04439 15.5250i −0.374946 1.15397i −0.943515 0.331330i \(-0.892503\pi\)
0.568568 0.822636i \(-0.307497\pi\)
\(182\) 13.1144i 0.972104i
\(183\) −0.257345 + 0.0836164i −0.0190235 + 0.00618110i
\(184\) −4.28357 3.11219i −0.315789 0.229434i
\(185\) 0.303694 6.68295i 0.0223280 0.491340i
\(186\) 4.51465 3.28009i 0.331030 0.240508i
\(187\) −3.45452 + 4.75474i −0.252619 + 0.347701i
\(188\) −1.80670 + 2.48671i −0.131767 + 0.181362i
\(189\) 2.19173 1.59239i 0.159425 0.115829i
\(190\) 0.851147 18.7300i 0.0617487 1.35881i
\(191\) 12.5641 + 9.12835i 0.909106 + 0.660504i 0.940789 0.338994i \(-0.110087\pi\)
−0.0316826 + 0.999498i \(0.510087\pi\)
\(192\) 0.951057 0.309017i 0.0686366 0.0223014i
\(193\) 21.0202i 1.51307i −0.653956 0.756533i \(-0.726892\pi\)
0.653956 0.756533i \(-0.273108\pi\)
\(194\) 0.815900 + 2.51108i 0.0585782 + 0.180285i
\(195\) −3.80881 + 10.1322i −0.272755 + 0.725579i
\(196\) 0.104875 0.322773i 0.00749109 0.0230552i
\(197\) −22.9751 7.46505i −1.63691 0.531863i −0.661062 0.750331i \(-0.729894\pi\)
−0.975844 + 0.218468i \(0.929894\pi\)
\(198\) −3.30361 4.54704i −0.234778 0.323144i
\(199\) 25.4930 1.80715 0.903574 0.428432i \(-0.140934\pi\)
0.903574 + 0.428432i \(0.140934\pi\)
\(200\) −0.453494 + 4.97939i −0.0320669 + 0.352096i
\(201\) 6.30981 0.445060
\(202\) −2.25030 3.09727i −0.158331 0.217923i
\(203\) 10.7967 + 3.50806i 0.757779 + 0.246217i
\(204\) −0.323132 + 0.994499i −0.0226238 + 0.0696289i
\(205\) 3.52360 + 0.160123i 0.246099 + 0.0111835i
\(206\) −1.82111 5.60479i −0.126882 0.390504i
\(207\) 5.29478i 0.368013i
\(208\) 4.60389 1.49589i 0.319222 0.103722i
\(209\) 38.1266 + 27.7006i 2.63727 + 1.91609i
\(210\) 3.77949 4.73417i 0.260810 0.326689i
\(211\) −4.24669 + 3.08540i −0.292354 + 0.212408i −0.724288 0.689498i \(-0.757831\pi\)
0.431934 + 0.901905i \(0.357831\pi\)
\(212\) −3.63081 + 4.99738i −0.249365 + 0.343222i
\(213\) −2.66429 + 3.66708i −0.182554 + 0.251264i
\(214\) −4.77934 + 3.47239i −0.326709 + 0.237368i
\(215\) 4.05774 + 6.15432i 0.276735 + 0.419721i
\(216\) −0.809017 0.587785i −0.0550466 0.0399937i
\(217\) −14.3781 + 4.67174i −0.976052 + 0.317139i
\(218\) 5.63805i 0.381857i
\(219\) 2.52188 + 7.76156i 0.170413 + 0.524477i
\(220\) −9.82165 7.84106i −0.662176 0.528644i
\(221\) −1.56423 + 4.81419i −0.105221 + 0.323837i
\(222\) 2.84536 + 0.924514i 0.190968 + 0.0620493i
\(223\) 8.69743 + 11.9710i 0.582423 + 0.801637i 0.993958 0.109757i \(-0.0350073\pi\)
−0.411535 + 0.911394i \(0.635007\pi\)
\(224\) −2.70913 −0.181011
\(225\) 4.29497 2.55993i 0.286331 0.170662i
\(226\) 5.06692 0.337047
\(227\) 6.98197 + 9.60986i 0.463410 + 0.637829i 0.975211 0.221275i \(-0.0710218\pi\)
−0.511802 + 0.859104i \(0.671022\pi\)
\(228\) 7.97455 + 2.59109i 0.528128 + 0.171599i
\(229\) −5.64177 + 17.3636i −0.372819 + 1.14742i 0.572119 + 0.820170i \(0.306121\pi\)
−0.944938 + 0.327248i \(0.893879\pi\)
\(230\) 3.14367 + 11.4145i 0.207287 + 0.752650i
\(231\) 4.70525 + 14.4813i 0.309583 + 0.952798i
\(232\) 4.19039i 0.275113i
\(233\) 2.71852 0.883301i 0.178096 0.0578669i −0.218611 0.975812i \(-0.570153\pi\)
0.396708 + 0.917945i \(0.370153\pi\)
\(234\) −3.91630 2.84536i −0.256017 0.186007i
\(235\) 6.62638 1.82497i 0.432257 0.119048i
\(236\) 11.4780 8.33925i 0.747154 0.542839i
\(237\) −7.33640 + 10.0977i −0.476550 + 0.655915i
\(238\) 1.66512 2.29185i 0.107934 0.148558i
\(239\) 13.2548 9.63014i 0.857379 0.622922i −0.0697919 0.997562i \(-0.522234\pi\)
0.927171 + 0.374640i \(0.122234\pi\)
\(240\) −2.09307 0.786811i −0.135107 0.0507885i
\(241\) −21.2995 15.4750i −1.37202 0.996831i −0.997576 0.0695808i \(-0.977834\pi\)
−0.374443 0.927250i \(-0.622166\pi\)
\(242\) 19.5817 6.36248i 1.25876 0.408995i
\(243\) 1.00000i 0.0641500i
\(244\) −0.0836164 0.257345i −0.00535299 0.0164748i
\(245\) −0.633567 + 0.417730i −0.0404771 + 0.0266878i
\(246\) −0.487453 + 1.50022i −0.0310788 + 0.0956508i
\(247\) 38.6034 + 12.5430i 2.45627 + 0.798091i
\(248\) 3.28009 + 4.51465i 0.208286 + 0.286681i
\(249\) 0.134522 0.00852497
\(250\) 7.73920 8.06875i 0.489470 0.510313i
\(251\) −13.8356 −0.873295 −0.436647 0.899633i \(-0.643834\pi\)
−0.436647 + 0.899633i \(0.643834\pi\)
\(252\) 1.59239 + 2.19173i 0.100311 + 0.138066i
\(253\) −28.3025 9.19604i −1.77936 0.578150i
\(254\) 2.94465 9.06270i 0.184764 0.568644i
\(255\) 1.95209 1.28707i 0.122245 0.0805997i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 28.6204i 1.78529i −0.450756 0.892647i \(-0.648846\pi\)
0.450756 0.892647i \(-0.351154\pi\)
\(258\) −3.13534 + 1.01873i −0.195198 + 0.0634236i
\(259\) −6.55720 4.76409i −0.407445 0.296026i
\(260\) −10.1322 3.80881i −0.628369 0.236212i
\(261\) −3.39010 + 2.46305i −0.209842 + 0.152459i
\(262\) −0.0875130 + 0.120451i −0.00540657 + 0.00744150i
\(263\) 1.83569 2.52661i 0.113194 0.155798i −0.748661 0.662953i \(-0.769303\pi\)
0.861855 + 0.507155i \(0.169303\pi\)
\(264\) 4.54704 3.30361i 0.279851 0.203323i
\(265\) 13.3166 3.66753i 0.818033 0.225295i
\(266\) −18.3775 13.3521i −1.12680 0.818668i
\(267\) 11.2131 3.64336i 0.686231 0.222970i
\(268\) 6.30981i 0.385433i
\(269\) −2.85284 8.78015i −0.173941 0.535335i 0.825643 0.564194i \(-0.190813\pi\)
−0.999584 + 0.0288583i \(0.990813\pi\)
\(270\) 0.593730 + 2.15580i 0.0361332 + 0.131198i
\(271\) −6.70088 + 20.6232i −0.407050 + 1.25277i 0.512122 + 0.858913i \(0.328860\pi\)
−0.919172 + 0.393857i \(0.871140\pi\)
\(272\) −0.994499 0.323132i −0.0603004 0.0195928i
\(273\) 7.70845 + 10.6098i 0.466537 + 0.642133i
\(274\) −9.02419 −0.545171
\(275\) 6.22418 + 27.4043i 0.375332 + 1.65254i
\(276\) −5.29478 −0.318708
\(277\) −6.05129 8.32889i −0.363587 0.500434i 0.587557 0.809183i \(-0.300090\pi\)
−0.951144 + 0.308749i \(0.900090\pi\)
\(278\) 6.76447 + 2.19791i 0.405706 + 0.131822i
\(279\) 1.72444 5.30729i 0.103240 0.317739i
\(280\) 4.73417 + 3.77949i 0.282921 + 0.225868i
\(281\) −0.246763 0.759459i −0.0147207 0.0453055i 0.943426 0.331582i \(-0.107582\pi\)
−0.958147 + 0.286277i \(0.907582\pi\)
\(282\) 3.07374i 0.183039i
\(283\) −0.694882 + 0.225781i −0.0413064 + 0.0134213i −0.329597 0.944122i \(-0.606913\pi\)
0.288291 + 0.957543i \(0.406913\pi\)
\(284\) −3.66708 2.66429i −0.217601 0.158097i
\(285\) −10.3206 15.6532i −0.611340 0.927213i
\(286\) 22.0114 15.9922i 1.30156 0.945638i
\(287\) 2.51188 3.45730i 0.148271 0.204078i
\(288\) 0.587785 0.809017i 0.0346356 0.0476718i
\(289\) −12.8687 + 9.34964i −0.756981 + 0.549979i
\(290\) −5.84599 + 7.32265i −0.343289 + 0.430001i
\(291\) 2.13605 + 1.55193i 0.125218 + 0.0909759i
\(292\) −7.76156 + 2.52188i −0.454211 + 0.147582i
\(293\) 18.4842i 1.07986i 0.841711 + 0.539929i \(0.181549\pi\)
−0.841711 + 0.539929i \(0.818451\pi\)
\(294\) −0.104875 0.322773i −0.00611645 0.0188245i
\(295\) −31.6917 1.44017i −1.84516 0.0838498i
\(296\) −0.924514 + 2.84536i −0.0537363 + 0.165383i
\(297\) −5.34536 1.73681i −0.310169 0.100780i
\(298\) −9.07251 12.4872i −0.525557 0.723367i
\(299\) −25.6311 −1.48228
\(300\) 2.55993 + 4.29497i 0.147798 + 0.247970i
\(301\) 8.93117 0.514784
\(302\) −4.70111 6.47052i −0.270518 0.372337i
\(303\) −3.64106 1.18305i −0.209173 0.0679646i
\(304\) −2.59109 + 7.97455i −0.148609 + 0.457372i
\(305\) −0.212902 + 0.566359i −0.0121907 + 0.0324296i
\(306\) 0.323132 + 0.994499i 0.0184723 + 0.0568518i
\(307\) 14.1923i 0.809998i −0.914317 0.404999i \(-0.867272\pi\)
0.914317 0.404999i \(-0.132728\pi\)
\(308\) −14.4813 + 4.70525i −0.825147 + 0.268107i
\(309\) −4.76772 3.46395i −0.271226 0.197057i
\(310\) 0.566463 12.4653i 0.0321729 0.707983i
\(311\) −8.18254 + 5.94496i −0.463989 + 0.337108i −0.795094 0.606486i \(-0.792579\pi\)
0.331105 + 0.943594i \(0.392579\pi\)
\(312\) 2.84536 3.91630i 0.161087 0.221717i
\(313\) 4.11476 5.66348i 0.232580 0.320119i −0.676735 0.736226i \(-0.736606\pi\)
0.909316 + 0.416107i \(0.136606\pi\)
\(314\) −12.6326 + 9.17810i −0.712898 + 0.517950i
\(315\) 0.275001 6.05155i 0.0154946 0.340966i
\(316\) −10.0977 7.33640i −0.568039 0.412704i
\(317\) −14.5878 + 4.73987i −0.819333 + 0.266218i −0.688546 0.725193i \(-0.741751\pi\)
−0.130788 + 0.991410i \(0.541751\pi\)
\(318\) 6.17710i 0.346395i
\(319\) −7.27792 22.3991i −0.407485 1.25411i
\(320\) 0.786811 2.09307i 0.0439841 0.117006i
\(321\) −1.82554 + 5.61845i −0.101892 + 0.313591i
\(322\) 13.6422 + 4.43261i 0.760249 + 0.247020i
\(323\) −5.15367 7.09342i −0.286758 0.394689i
\(324\) −1.00000 −0.0555556
\(325\) 12.3921 + 20.7912i 0.687393 + 1.15329i
\(326\) 3.65730 0.202559
\(327\) 3.31397 + 4.56128i 0.183263 + 0.252239i
\(328\) −1.50022 0.487453i −0.0828361 0.0269151i
\(329\) 2.57324 7.91960i 0.141867 0.436622i
\(330\) −12.5547 0.570526i −0.691116 0.0314064i
\(331\) 7.30737 + 22.4898i 0.401650 + 1.23615i 0.923661 + 0.383212i \(0.125182\pi\)
−0.522011 + 0.852939i \(0.674818\pi\)
\(332\) 0.134522i 0.00738284i
\(333\) 2.84536 0.924514i 0.155925 0.0506630i
\(334\) 5.09929 + 3.70485i 0.279021 + 0.202721i
\(335\) 8.80279 11.0263i 0.480948 0.602431i
\(336\) −2.19173 + 1.59239i −0.119569 + 0.0868718i
\(337\) 16.2888 22.4196i 0.887306 1.22127i −0.0870374 0.996205i \(-0.527740\pi\)
0.974343 0.225067i \(-0.0722600\pi\)
\(338\) 6.13266 8.44089i 0.333573 0.459124i
\(339\) 4.09923 2.97826i 0.222639 0.161757i
\(340\) 1.28707 + 1.95209i 0.0698014 + 0.105867i
\(341\) 25.3744 + 18.4355i 1.37410 + 0.998341i
\(342\) 7.97455 2.59109i 0.431214 0.140110i
\(343\) 18.0445i 0.974310i
\(344\) −1.01873 3.13534i −0.0549265 0.169046i
\(345\) 9.25256 + 7.38672i 0.498141 + 0.397688i
\(346\) −3.28963 + 10.1244i −0.176852 + 0.544294i
\(347\) −25.3799 8.24643i −1.36246 0.442692i −0.465600 0.884996i \(-0.654161\pi\)
−0.896865 + 0.442304i \(0.854161\pi\)
\(348\) −2.46305 3.39010i −0.132033 0.181728i
\(349\) 5.73576 0.307028 0.153514 0.988146i \(-0.450941\pi\)
0.153514 + 0.988146i \(0.450941\pi\)
\(350\) −3.00014 13.2092i −0.160364 0.706063i
\(351\) −4.84082 −0.258384
\(352\) 3.30361 + 4.54704i 0.176083 + 0.242358i
\(353\) −27.6785 8.99327i −1.47318 0.478664i −0.541109 0.840952i \(-0.681996\pi\)
−0.932066 + 0.362288i \(0.881996\pi\)
\(354\) 4.38420 13.4932i 0.233018 0.717155i
\(355\) 2.69124 + 9.77174i 0.142836 + 0.518630i
\(356\) 3.64336 + 11.2131i 0.193098 + 0.594293i
\(357\) 2.83288i 0.149932i
\(358\) 0.760184 0.246999i 0.0401770 0.0130543i
\(359\) −10.5088 7.63506i −0.554631 0.402963i 0.274859 0.961485i \(-0.411369\pi\)
−0.829490 + 0.558521i \(0.811369\pi\)
\(360\) −2.15580 + 0.593730i −0.113621 + 0.0312923i
\(361\) −41.5084 + 30.1576i −2.18465 + 1.58724i
\(362\) 9.59500 13.2064i 0.504302 0.694112i
\(363\) 12.1021 16.6572i 0.635198 0.874275i
\(364\) −10.6098 + 7.70845i −0.556103 + 0.404033i
\(365\) 17.0815 + 6.42116i 0.894086 + 0.336099i
\(366\) −0.218911 0.159048i −0.0114426 0.00831356i
\(367\) −3.50756 + 1.13968i −0.183093 + 0.0594906i −0.399129 0.916895i \(-0.630687\pi\)
0.216035 + 0.976386i \(0.430687\pi\)
\(368\) 5.29478i 0.276009i
\(369\) 0.487453 + 1.50022i 0.0253758 + 0.0780986i
\(370\) 5.58513 3.68244i 0.290357 0.191441i
\(371\) 5.17127 15.9155i 0.268479 0.826293i
\(372\) 5.30729 + 1.72444i 0.275170 + 0.0894083i
\(373\) 15.2853 + 21.0383i 0.791440 + 1.08932i 0.993927 + 0.110039i \(0.0350976\pi\)
−0.202487 + 0.979285i \(0.564902\pi\)
\(374\) −5.87718 −0.303902
\(375\) 1.51845 11.0767i 0.0784125 0.572001i
\(376\) −3.07374 −0.158516
\(377\) −11.9232 16.4108i −0.614074 0.845201i
\(378\) 2.57654 + 0.837167i 0.132523 + 0.0430592i
\(379\) 9.32153 28.6887i 0.478815 1.47364i −0.361929 0.932206i \(-0.617882\pi\)
0.840743 0.541434i \(-0.182118\pi\)
\(380\) 15.6532 10.3206i 0.802990 0.529436i
\(381\) −2.94465 9.06270i −0.150859 0.464296i
\(382\) 15.5301i 0.794588i
\(383\) 12.7109 4.13001i 0.649495 0.211034i 0.0343033 0.999411i \(-0.489079\pi\)
0.615191 + 0.788378i \(0.289079\pi\)
\(384\) 0.809017 + 0.587785i 0.0412850 + 0.0299953i
\(385\) 31.8701 + 11.9804i 1.62425 + 0.610578i
\(386\) 17.0057 12.3554i 0.865567 0.628871i
\(387\) −1.93775 + 2.66708i −0.0985012 + 0.135575i
\(388\) −1.55193 + 2.13605i −0.0787875 + 0.108442i
\(389\) −7.84772 + 5.70170i −0.397895 + 0.289088i −0.768683 0.639630i \(-0.779088\pi\)
0.370788 + 0.928718i \(0.379088\pi\)
\(390\) −10.4358 + 2.87414i −0.528440 + 0.145538i
\(391\) 4.47923 + 3.25435i 0.226525 + 0.164580i
\(392\) 0.322773 0.104875i 0.0163025 0.00529700i
\(393\) 0.148886i 0.00751030i
\(394\) −7.46505 22.9751i −0.376084 1.15747i
\(395\) 7.41059 + 26.9075i 0.372867 + 1.35386i
\(396\) 1.73681 5.34536i 0.0872781 0.268614i
\(397\) 7.52519 + 2.44508i 0.377679 + 0.122715i 0.491704 0.870763i \(-0.336374\pi\)
−0.114025 + 0.993478i \(0.536374\pi\)
\(398\) 14.9844 + 20.6242i 0.751100 + 1.03380i
\(399\) −22.7159 −1.13722
\(400\) −4.29497 + 2.55993i −0.214748 + 0.127996i
\(401\) −20.1362 −1.00555 −0.502777 0.864416i \(-0.667688\pi\)
−0.502777 + 0.864416i \(0.667688\pi\)
\(402\) 3.70881 + 5.10474i 0.184979 + 0.254601i
\(403\) 25.6916 + 8.34772i 1.27979 + 0.415829i
\(404\) 1.18305 3.64106i 0.0588591 0.181150i
\(405\) 1.74749 + 1.39510i 0.0868333 + 0.0693228i
\(406\) 3.50806 + 10.7967i 0.174102 + 0.535831i
\(407\) 16.8152i 0.833498i
\(408\) −0.994499 + 0.323132i −0.0492351 + 0.0159974i
\(409\) −2.27125 1.65016i −0.112306 0.0815951i 0.530215 0.847863i \(-0.322111\pi\)
−0.642521 + 0.766268i \(0.722111\pi\)
\(410\) 1.94158 + 2.94477i 0.0958878 + 0.145432i
\(411\) −7.30072 + 5.30429i −0.360118 + 0.261641i
\(412\) 3.46395 4.76772i 0.170657 0.234889i
\(413\) −22.5921 + 31.0954i −1.11168 + 1.53010i
\(414\) −4.28357 + 3.11219i −0.210526 + 0.152956i
\(415\) 0.187671 0.235075i 0.00921240 0.0115394i
\(416\) 3.91630 + 2.84536i 0.192013 + 0.139505i
\(417\) 6.76447 2.19791i 0.331258 0.107632i
\(418\) 47.1271i 2.30506i
\(419\) 10.2582 + 31.5714i 0.501144 + 1.54236i 0.807157 + 0.590337i \(0.201005\pi\)
−0.306013 + 0.952027i \(0.598995\pi\)
\(420\) 6.05155 + 0.275001i 0.295286 + 0.0134187i
\(421\) 5.91384 18.2009i 0.288223 0.887059i −0.697191 0.716885i \(-0.745567\pi\)
0.985414 0.170174i \(-0.0544329\pi\)
\(422\) −4.99228 1.62209i −0.243021 0.0789622i
\(423\) 1.80670 + 2.48671i 0.0878447 + 0.120908i
\(424\) −6.17710 −0.299987
\(425\) 0.474209 5.20684i 0.0230025 0.252569i
\(426\) −4.53276 −0.219613
\(427\) 0.430881 + 0.593057i 0.0208518 + 0.0287000i
\(428\) −5.61845 1.82554i −0.271578 0.0882410i
\(429\) 8.40759 25.8759i 0.405922 1.24930i
\(430\) −2.59388 + 6.90020i −0.125088 + 0.332757i
\(431\) −6.19003 19.0510i −0.298163 0.917652i −0.982141 0.188149i \(-0.939751\pi\)
0.683977 0.729503i \(-0.260249\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) 30.7778 10.0003i 1.47909 0.480585i 0.545247 0.838275i \(-0.316436\pi\)
0.933840 + 0.357691i \(0.116436\pi\)
\(434\) −12.2308 8.88618i −0.587096 0.426550i
\(435\) −0.425362 + 9.36034i −0.0203946 + 0.448794i
\(436\) −4.56128 + 3.31397i −0.218446 + 0.158710i
\(437\) 26.0956 35.9175i 1.24832 1.71816i
\(438\) −4.79691 + 6.60237i −0.229205 + 0.315474i
\(439\) 14.0178 10.1846i 0.669035 0.486083i −0.200667 0.979660i \(-0.564311\pi\)
0.869702 + 0.493577i \(0.164311\pi\)
\(440\) 0.570526 12.5547i 0.0271988 0.598524i
\(441\) −0.274567 0.199485i −0.0130746 0.00949926i
\(442\) −4.81419 + 1.56423i −0.228988 + 0.0744026i
\(443\) 16.5326i 0.785489i −0.919648 0.392745i \(-0.871526\pi\)
0.919648 0.392745i \(-0.128474\pi\)
\(444\) 0.924514 + 2.84536i 0.0438755 + 0.135035i
\(445\) 9.27663 24.6776i 0.439754 1.16983i
\(446\) −4.57251 + 14.0727i −0.216515 + 0.666364i
\(447\) −14.6796 4.76970i −0.694323 0.225599i
\(448\) −1.59239 2.19173i −0.0752332 0.103550i
\(449\) −2.51289 −0.118591 −0.0592954 0.998240i \(-0.518885\pi\)
−0.0592954 + 0.998240i \(0.518885\pi\)
\(450\) 4.59555 + 1.97002i 0.216636 + 0.0928674i
\(451\) −8.86586 −0.417477
\(452\) 2.97826 + 4.09923i 0.140086 + 0.192811i
\(453\) −7.60655 2.47152i −0.357387 0.116122i
\(454\) −3.67064 + 11.2971i −0.172272 + 0.530198i
\(455\) 29.2945 + 1.33123i 1.37335 + 0.0624090i
\(456\) 2.59109 + 7.97455i 0.121339 + 0.373443i
\(457\) 36.7686i 1.71996i 0.510324 + 0.859982i \(0.329525\pi\)
−0.510324 + 0.859982i \(0.670475\pi\)
\(458\) −17.3636 + 5.64177i −0.811347 + 0.263623i
\(459\) 0.845972 + 0.614634i 0.0394866 + 0.0286887i
\(460\) −7.38672 + 9.25256i −0.344408 + 0.431403i
\(461\) −4.91129 + 3.56826i −0.228741 + 0.166190i −0.696253 0.717797i \(-0.745151\pi\)
0.467511 + 0.883987i \(0.345151\pi\)
\(462\) −8.94992 + 12.3185i −0.416388 + 0.573109i
\(463\) −19.5805 + 26.9502i −0.909982 + 1.25248i 0.0571903 + 0.998363i \(0.481786\pi\)
−0.967173 + 0.254120i \(0.918214\pi\)
\(464\) 3.39010 2.46305i 0.157381 0.114344i
\(465\) −6.86866 10.4176i −0.318526 0.483106i
\(466\) 2.31251 + 1.68014i 0.107125 + 0.0778309i
\(467\) 8.68934 2.82334i 0.402094 0.130648i −0.100986 0.994888i \(-0.532200\pi\)
0.503081 + 0.864239i \(0.332200\pi\)
\(468\) 4.84082i 0.223767i
\(469\) −5.28236 16.2574i −0.243917 0.750699i
\(470\) 5.37132 + 4.28816i 0.247761 + 0.197798i
\(471\) −4.82522 + 14.8505i −0.222334 + 0.684274i
\(472\) 13.4932 + 4.38420i 0.621074 + 0.201799i
\(473\) −10.8910 14.9902i −0.500769 0.689249i
\(474\) −12.4814 −0.573291
\(475\) −41.7519 3.80252i −1.91571 0.174472i
\(476\) 2.83288 0.129845
\(477\) 3.63081 + 4.99738i 0.166243 + 0.228814i
\(478\) 15.5819 + 5.06286i 0.712699 + 0.231570i
\(479\) −6.44637 + 19.8399i −0.294542 + 0.906507i 0.688833 + 0.724920i \(0.258123\pi\)
−0.983375 + 0.181587i \(0.941877\pi\)
\(480\) −0.593730 2.15580i −0.0270999 0.0983985i
\(481\) 4.47540 + 13.7739i 0.204061 + 0.628034i
\(482\) 26.3276i 1.19919i
\(483\) 13.6422 4.43261i 0.620741 0.201691i
\(484\) 16.6572 + 12.1021i 0.757144 + 0.550098i
\(485\) 5.69198 1.56763i 0.258460 0.0711824i
\(486\) −0.809017 + 0.587785i −0.0366978 + 0.0266625i
\(487\) −0.748202 + 1.02981i −0.0339043 + 0.0466652i −0.825633 0.564208i \(-0.809182\pi\)
0.791728 + 0.610873i \(0.209182\pi\)
\(488\) 0.159048 0.218911i 0.00719976 0.00990961i
\(489\) 2.95881 2.14970i 0.133802 0.0972130i
\(490\) −0.710352 0.267031i −0.0320904 0.0120632i
\(491\) −8.65507 6.28827i −0.390598 0.283786i 0.375103 0.926983i \(-0.377607\pi\)
−0.765700 + 0.643197i \(0.777607\pi\)
\(492\) −1.50022 + 0.487453i −0.0676354 + 0.0219761i
\(493\) 4.38180i 0.197346i
\(494\) 12.5430 + 38.6034i 0.564336 + 1.73685i
\(495\) −10.4923 + 6.91793i −0.471596 + 0.310938i
\(496\) −1.72444 + 5.30729i −0.0774298 + 0.238304i
\(497\) 11.6788 + 3.79468i 0.523867 + 0.170215i
\(498\) 0.0790699 + 0.108830i 0.00354321 + 0.00487681i
\(499\) 7.08035 0.316960 0.158480 0.987362i \(-0.449341\pi\)
0.158480 + 0.987362i \(0.449341\pi\)
\(500\) 11.0767 + 1.51845i 0.495367 + 0.0679072i
\(501\) 6.30307 0.281601
\(502\) −8.13236 11.1932i −0.362965 0.499578i
\(503\) 5.26012 + 1.70912i 0.234537 + 0.0762058i 0.423928 0.905696i \(-0.360651\pi\)
−0.189390 + 0.981902i \(0.560651\pi\)
\(504\) −0.837167 + 2.57654i −0.0372904 + 0.114768i
\(505\) −7.14700 + 4.71223i −0.318037 + 0.209692i
\(506\) −9.19604 28.3025i −0.408814 1.25820i
\(507\) 10.4335i 0.463368i
\(508\) 9.06270 2.94465i 0.402092 0.130648i
\(509\) 7.79724 + 5.66503i 0.345607 + 0.251098i 0.747024 0.664798i \(-0.231482\pi\)
−0.401417 + 0.915895i \(0.631482\pi\)
\(510\) 2.18868 + 0.822752i 0.0969162 + 0.0364321i
\(511\) 17.8867 12.9954i 0.791260 0.574884i
\(512\) −0.587785 + 0.809017i −0.0259767 + 0.0357538i
\(513\) 4.92854 6.78356i 0.217601 0.299501i
\(514\) 23.1544 16.8227i 1.02130 0.742016i
\(515\) −12.7046 + 3.49898i −0.559833 + 0.154184i
\(516\) −2.66708 1.93775i −0.117412 0.0853046i
\(517\) −16.4303 + 5.33851i −0.722602 + 0.234788i
\(518\) 8.10515i 0.356120i
\(519\) 3.28963 + 10.1244i 0.144399 + 0.444414i
\(520\) −2.87414 10.4358i −0.126039 0.457642i
\(521\) 6.26109 19.2697i 0.274304 0.844219i −0.715099 0.699023i \(-0.753619\pi\)
0.989403 0.145197i \(-0.0463814\pi\)
\(522\) −3.98530 1.29490i −0.174432 0.0566763i
\(523\) −15.0873 20.7659i −0.659722 0.908030i 0.339750 0.940516i \(-0.389658\pi\)
−0.999472 + 0.0324859i \(0.989658\pi\)
\(524\) −0.148886 −0.00650411
\(525\) −10.1914 8.92305i −0.444787 0.389434i
\(526\) 3.12306 0.136172
\(527\) −3.42992 4.72088i −0.149410 0.205645i
\(528\) 5.34536 + 1.73681i 0.232627 + 0.0755851i
\(529\) −1.55580 + 4.78827i −0.0676436 + 0.208186i
\(530\) 10.7944 + 8.61765i 0.468879 + 0.374327i
\(531\) −4.38420 13.4932i −0.190258 0.585554i
\(532\) 22.7159i 0.984859i
\(533\) −7.26231 + 2.35967i −0.314566 + 0.102209i
\(534\) 9.53844 + 6.93008i 0.412769 + 0.299894i
\(535\) 7.27135 + 11.0284i 0.314368 + 0.476798i
\(536\) −5.10474 + 3.70881i −0.220491 + 0.160196i
\(537\) 0.469819 0.646651i 0.0202742 0.0279050i
\(538\) 5.42643 7.46884i 0.233950 0.322005i
\(539\) 1.54319 1.12119i 0.0664698 0.0482932i
\(540\) −1.39510 + 1.74749i −0.0600353 + 0.0751998i
\(541\) 3.20447 + 2.32818i 0.137771 + 0.100096i 0.654536 0.756031i \(-0.272864\pi\)
−0.516765 + 0.856127i \(0.672864\pi\)
\(542\) −20.6232 + 6.70088i −0.885842 + 0.287828i
\(543\) 16.3240i 0.700529i
\(544\) −0.323132 0.994499i −0.0138542 0.0426388i
\(545\) 12.5941 + 0.572313i 0.539471 + 0.0245152i
\(546\) −4.05257 + 12.4725i −0.173434 + 0.533775i
\(547\) −9.46392 3.07502i −0.404648 0.131478i 0.0996194 0.995026i \(-0.468237\pi\)
−0.504268 + 0.863547i \(0.668237\pi\)
\(548\) −5.30429 7.30072i −0.226588 0.311871i
\(549\) −0.270588 −0.0115484
\(550\) −18.5120 + 21.1433i −0.789356 + 0.901553i
\(551\) 35.1362 1.49685
\(552\) −3.11219 4.28357i −0.132464 0.182321i
\(553\) 32.1588 + 10.4490i 1.36753 + 0.444338i
\(554\) 3.18135 9.79119i 0.135163 0.415988i
\(555\) 2.35397 6.26201i 0.0999206 0.265808i
\(556\) 2.19791 + 6.76447i 0.0932122 + 0.286878i
\(557\) 18.7017i 0.792415i 0.918161 + 0.396207i \(0.129674\pi\)
−0.918161 + 0.396207i \(0.870326\pi\)
\(558\) 5.30729 1.72444i 0.224676 0.0730015i
\(559\) −12.9108 9.38028i −0.546071 0.396744i
\(560\) −0.275001 + 6.05155i −0.0116209 + 0.255725i
\(561\) −4.75474 + 3.45452i −0.200745 + 0.145850i
\(562\) 0.469371 0.646034i 0.0197992 0.0272513i
\(563\) −22.5630 + 31.0553i −0.950917 + 1.30882i 0.000202039 1.00000i \(0.499936\pi\)
−0.951119 + 0.308825i \(0.900064\pi\)
\(564\) −2.48671 + 1.80670i −0.104709 + 0.0760758i
\(565\) 0.514338 11.3183i 0.0216384 0.476165i
\(566\) −0.591102 0.429461i −0.0248459 0.0180516i
\(567\) 2.57654 0.837167i 0.108204 0.0351577i
\(568\) 4.53276i 0.190190i
\(569\) 4.90344 + 15.0913i 0.205563 + 0.632658i 0.999690 + 0.0249059i \(0.00792861\pi\)
−0.794127 + 0.607752i \(0.792071\pi\)
\(570\) 6.59737 17.5502i 0.276333 0.735099i
\(571\) 9.96877 30.6807i 0.417180 1.28395i −0.493106 0.869969i \(-0.664139\pi\)
0.910286 0.413979i \(-0.135861\pi\)
\(572\) 25.8759 + 8.40759i 1.08193 + 0.351539i
\(573\) 9.12835 + 12.5641i 0.381342 + 0.524873i
\(574\) 4.27346 0.178371
\(575\) 25.8164 5.86353i 1.07662 0.244526i
\(576\) 1.00000 0.0416667
\(577\) −16.4815 22.6848i −0.686132 0.944379i 0.313855 0.949471i \(-0.398379\pi\)
−0.999987 + 0.00509145i \(0.998379\pi\)
\(578\) −15.1280 4.91540i −0.629243 0.204454i
\(579\) 6.49559 19.9914i 0.269948 0.830813i
\(580\) −9.36034 0.425362i −0.388667 0.0176622i
\(581\) −0.112617 0.346600i −0.00467215 0.0143794i
\(582\) 2.64031i 0.109444i
\(583\) −33.0189 + 10.7285i −1.36750 + 0.444328i
\(584\) −6.60237 4.79691i −0.273208 0.198497i
\(585\) −6.75340 + 8.45926i −0.279219 + 0.349747i
\(586\) −14.9540 + 10.8647i −0.617745 + 0.448818i
\(587\) −6.69311 + 9.21228i −0.276254 + 0.380231i −0.924489 0.381209i \(-0.875508\pi\)
0.648234 + 0.761441i \(0.275508\pi\)
\(588\) 0.199485 0.274567i 0.00822660 0.0113229i
\(589\) −37.8551 + 27.5033i −1.55979 + 1.13326i
\(590\) −17.4628 26.4856i −0.718931 1.09040i
\(591\) −19.5438 14.1994i −0.803923 0.584084i
\(592\) −2.84536 + 0.924514i −0.116944 + 0.0379973i
\(593\) 34.9063i 1.43343i 0.697366 + 0.716715i \(0.254355\pi\)
−0.697366 + 0.716715i \(0.745645\pi\)
\(594\) −1.73681 5.34536i −0.0712623 0.219323i
\(595\) −4.95042 3.95214i −0.202947 0.162022i
\(596\) 4.76970 14.6796i 0.195375 0.601301i
\(597\) 24.2453 + 7.87776i 0.992292 + 0.322415i
\(598\) −15.0656 20.7360i −0.616076 0.847957i
\(599\) −21.2325 −0.867535 −0.433768 0.901025i \(-0.642816\pi\)
−0.433768 + 0.901025i \(0.642816\pi\)
\(600\) −1.97002 + 4.59555i −0.0804255 + 0.187612i
\(601\) −22.6617 −0.924389 −0.462195 0.886779i \(-0.652938\pi\)
−0.462195 + 0.886779i \(0.652938\pi\)
\(602\) 5.24961 + 7.22547i 0.213958 + 0.294488i
\(603\) 6.00099 + 1.94984i 0.244379 + 0.0794036i
\(604\) 2.47152 7.60655i 0.100565 0.309506i
\(605\) −12.2245 44.3867i −0.496998 1.80458i
\(606\) −1.18305 3.64106i −0.0480582 0.147908i
\(607\) 21.3752i 0.867591i −0.901011 0.433796i \(-0.857174\pi\)
0.901011 0.433796i \(-0.142826\pi\)
\(608\) −7.97455 + 2.59109i −0.323411 + 0.105083i
\(609\) 9.18421 + 6.67272i 0.372163 + 0.270392i
\(610\) −0.583335 + 0.160656i −0.0236185 + 0.00650479i
\(611\) −12.0377 + 8.74590i −0.486993 + 0.353821i
\(612\) −0.614634 + 0.845972i −0.0248451 + 0.0341964i
\(613\) 19.9898 27.5136i 0.807380 1.11126i −0.184342 0.982862i \(-0.559015\pi\)
0.991722 0.128401i \(-0.0409845\pi\)
\(614\) 11.4818 8.34203i 0.463368 0.336657i
\(615\) 3.30167 + 1.24114i 0.133136 + 0.0500476i
\(616\) −12.3185 8.94992i −0.496327 0.360603i
\(617\) −23.1992 + 7.53787i −0.933963 + 0.303463i −0.736182 0.676783i \(-0.763373\pi\)
−0.197781 + 0.980246i \(0.563373\pi\)
\(618\) 5.89322i 0.237060i
\(619\) 7.50529 + 23.0989i 0.301663 + 0.928423i 0.980901 + 0.194505i \(0.0623102\pi\)
−0.679239 + 0.733918i \(0.737690\pi\)
\(620\) 10.4176 6.86866i 0.418382 0.275852i
\(621\) −1.63618 + 5.03563i −0.0656575 + 0.202073i
\(622\) −9.61915 3.12545i −0.385693 0.125319i
\(623\) −18.7745 25.8409i −0.752184 1.03529i
\(624\) 4.84082 0.193788
\(625\) −17.2381 18.1066i −0.689523 0.724264i
\(626\) 7.00045 0.279794
\(627\) 27.7006 + 38.1266i 1.10626 + 1.52263i
\(628\) −14.8505 4.82522i −0.592599 0.192547i
\(629\) 0.966744 2.97533i 0.0385466 0.118634i
\(630\) 5.05745 3.33453i 0.201494 0.132851i
\(631\) 0.319506 + 0.983337i 0.0127193 + 0.0391460i 0.957215 0.289379i \(-0.0934486\pi\)
−0.944495 + 0.328525i \(0.893449\pi\)
\(632\) 12.4814i 0.496484i
\(633\) −4.99228 + 1.62209i −0.198425 + 0.0644723i
\(634\) −12.4091 9.01577i −0.492830 0.358062i
\(635\) −19.9450 7.49760i −0.791494 0.297533i
\(636\) −4.99738 + 3.63081i −0.198159 + 0.143971i
\(637\) 0.965668 1.32913i 0.0382612 0.0526620i
\(638\) 13.8434 19.0538i 0.548067 0.754349i
\(639\) −3.66708 + 2.66429i −0.145067 + 0.105398i
\(640\) 2.15580 0.593730i 0.0852156 0.0234692i
\(641\) −3.99638 2.90354i −0.157847 0.114683i 0.506058 0.862499i \(-0.331102\pi\)
−0.663905 + 0.747817i \(0.731102\pi\)
\(642\) −5.61845 + 1.82554i −0.221742 + 0.0720485i
\(643\) 36.3220i 1.43240i 0.697896 + 0.716199i \(0.254120\pi\)
−0.697896 + 0.716199i \(0.745880\pi\)
\(644\) 4.43261 + 13.6422i 0.174669 + 0.537577i
\(645\) 1.95734 + 7.10702i 0.0770704 + 0.279839i
\(646\) 2.70945 8.33882i 0.106602 0.328086i
\(647\) −13.5750 4.41077i −0.533687 0.173405i 0.0297610 0.999557i \(-0.490525\pi\)
−0.563448 + 0.826152i \(0.690525\pi\)
\(648\) −0.587785 0.809017i −0.0230904 0.0317812i
\(649\) 79.7405 3.13009
\(650\) −9.53648 + 22.2462i −0.374052 + 0.872568i
\(651\) −15.1181 −0.592524
\(652\) 2.14970 + 2.95881i 0.0841889 + 0.115876i
\(653\) 5.48428 + 1.78195i 0.214616 + 0.0697331i 0.414352 0.910117i \(-0.364008\pi\)
−0.199736 + 0.979850i \(0.564008\pi\)
\(654\) −1.74225 + 5.36211i −0.0681275 + 0.209675i
\(655\) 0.260176 + 0.207710i 0.0101659 + 0.00811591i
\(656\) −0.487453 1.50022i −0.0190318 0.0585739i
\(657\) 8.16098i 0.318390i
\(658\) 7.91960 2.57324i 0.308738 0.100315i
\(659\) 8.14688 + 5.91906i 0.317357 + 0.230574i 0.735047 0.678016i \(-0.237160\pi\)
−0.417690 + 0.908590i \(0.637160\pi\)
\(660\) −6.91793 10.4923i −0.269280 0.408414i
\(661\) 29.8762 21.7064i 1.16205 0.844279i 0.172015 0.985094i \(-0.444972\pi\)
0.990036 + 0.140815i \(0.0449723\pi\)
\(662\) −13.8995 + 19.1310i −0.540218 + 0.743546i
\(663\) −2.97533 + 4.09519i −0.115552 + 0.159044i
\(664\) −0.108830 + 0.0790699i −0.00422344 + 0.00306851i
\(665\) −31.6908 + 39.6957i −1.22892 + 1.53933i
\(666\) 2.42041 + 1.75853i 0.0937889 + 0.0681416i
\(667\) −21.1013 + 6.85622i −0.817044 + 0.265474i
\(668\) 6.30307i 0.243873i
\(669\) 4.57251 + 14.0727i 0.176783 + 0.544084i
\(670\) 14.0946 + 0.640503i 0.544523 + 0.0247448i
\(671\) 0.469961 1.44639i 0.0181427 0.0558373i
\(672\) −2.57654 0.837167i −0.0993920 0.0322944i
\(673\) −15.8901 21.8708i −0.612518 0.843059i 0.384263 0.923223i \(-0.374455\pi\)
−0.996782 + 0.0801645i \(0.974455\pi\)
\(674\) 27.7121 1.06743
\(675\) 4.87582 1.10742i 0.187670 0.0426245i
\(676\) 10.4335 0.401289
\(677\) −5.08479 6.99862i −0.195425 0.268979i 0.700048 0.714096i \(-0.253162\pi\)
−0.895472 + 0.445117i \(0.853162\pi\)
\(678\) 4.81893 + 1.56576i 0.185070 + 0.0601328i
\(679\) 2.21038 6.80284i 0.0848265 0.261069i
\(680\) −0.822752 + 2.18868i −0.0315511 + 0.0839319i
\(681\) 3.67064 + 11.2971i 0.140659 + 0.432904i
\(682\) 31.3644i 1.20101i
\(683\) 44.1971 14.3605i 1.69115 0.549489i 0.704132 0.710069i \(-0.251336\pi\)
0.987023 + 0.160580i \(0.0513364\pi\)
\(684\) 6.78356 + 4.92854i 0.259376 + 0.188448i
\(685\) −0.916037 + 20.1579i −0.0350000 + 0.770194i
\(686\) 14.5983 10.6063i 0.557365 0.404949i
\(687\) −10.7313 + 14.7704i −0.409424 + 0.563524i
\(688\) 1.93775 2.66708i 0.0738759 0.101681i
\(689\) −24.1914 + 17.5761i −0.921619 + 0.669596i
\(690\) −0.537468 + 11.8273i −0.0204611 + 0.450257i
\(691\) 38.2570 + 27.7954i 1.45537 + 1.05739i 0.984540 + 0.175159i \(0.0560440\pi\)
0.470826 + 0.882226i \(0.343956\pi\)
\(692\) −10.1244 + 3.28963i −0.384874 + 0.125053i
\(693\) 15.2265i 0.578407i
\(694\) −8.24643 25.3799i −0.313030 0.963408i
\(695\) 5.59627 14.8871i 0.212278 0.564701i
\(696\) 1.29490 3.98530i 0.0490831 0.151062i
\(697\) 1.56875 + 0.509719i 0.0594208 + 0.0193070i
\(698\) 3.37139 + 4.64032i 0.127609 + 0.175639i
\(699\) 2.85842 0.108115
\(700\) 8.92305 10.1914i 0.337260 0.385197i
\(701\) 30.1858 1.14010 0.570052 0.821609i \(-0.306923\pi\)
0.570052 + 0.821609i \(0.306923\pi\)
\(702\) −2.84536 3.91630i −0.107391 0.147811i
\(703\) −23.8582 7.75199i −0.899828 0.292372i
\(704\) −1.73681 + 5.34536i −0.0654586 + 0.201461i
\(705\) 6.86601 + 0.312012i 0.258589 + 0.0117511i
\(706\) −8.99327 27.6785i −0.338466 1.04169i
\(707\) 10.3717i 0.390069i
\(708\) 13.4932 4.38420i 0.507105 0.164768i
\(709\) −14.0202 10.1862i −0.526538 0.382553i 0.292523 0.956259i \(-0.405505\pi\)
−0.819061 + 0.573706i \(0.805505\pi\)
\(710\) −6.32363 + 7.92094i −0.237322 + 0.297268i
\(711\) −10.0977 + 7.33640i −0.378693 + 0.275136i
\(712\) −6.93008 + 9.53844i −0.259716 + 0.357468i
\(713\) 17.3673 23.9041i 0.650412 0.895215i
\(714\) 2.29185 1.66512i 0.0857702 0.0623157i
\(715\) −33.4884 50.7915i −1.25240 1.89950i
\(716\) 0.646651 + 0.469819i 0.0241665 + 0.0175580i
\(717\) 15.5819 5.06286i 0.581917 0.189076i
\(718\) 12.9895i 0.484765i
\(719\) 5.82077 + 17.9145i 0.217078 + 0.668098i 0.999000 + 0.0447207i \(0.0142398\pi\)
−0.781921 + 0.623377i \(0.785760\pi\)
\(720\) −1.74749 1.39510i −0.0651250 0.0519921i
\(721\) −4.93361 + 15.1841i −0.183737 + 0.565485i
\(722\) −48.7961 15.8548i −1.81600 0.590055i
\(723\) −15.4750 21.2995i −0.575520 0.792136i
\(724\) 16.3240 0.606676
\(725\) 15.7636 + 13.8019i 0.585447 + 0.512589i
\(726\) 20.5894 0.764144
\(727\) 12.5396 + 17.2593i 0.465068 + 0.640111i 0.975550 0.219777i \(-0.0705331\pi\)
−0.510482 + 0.859888i \(0.670533\pi\)
\(728\) −12.4725 4.05257i −0.462263 0.150198i
\(729\) −0.309017 + 0.951057i −0.0114451 + 0.0352243i
\(730\) 4.84542 + 17.5935i 0.179337 + 0.651164i
\(731\) 1.06527 + 3.27856i 0.0394004 + 0.121262i
\(732\) 0.270588i 0.0100012i
\(733\) 19.8497 6.44956i 0.733165 0.238220i 0.0814434 0.996678i \(-0.474047\pi\)
0.651722 + 0.758458i \(0.274047\pi\)
\(734\) −2.98371 2.16779i −0.110131 0.0800147i
\(735\) −0.731644 + 0.201502i −0.0269871 + 0.00743251i
\(736\) 4.28357 3.11219i 0.157894 0.114717i
\(737\) −20.8452 + 28.6909i −0.767842 + 1.05684i
\(738\) −0.927190 + 1.27617i −0.0341303 + 0.0469764i
\(739\) −13.1129 + 9.52707i −0.482365 + 0.350459i −0.802241 0.597001i \(-0.796359\pi\)
0.319875 + 0.947460i \(0.396359\pi\)
\(740\) 6.26201 + 2.35397i 0.230196 + 0.0865338i
\(741\) 32.8380 + 23.8582i 1.20633 + 0.876452i
\(742\) 15.9155 5.17127i 0.584277 0.189843i
\(743\) 34.7758i 1.27580i 0.770120 + 0.637900i \(0.220197\pi\)
−0.770120 + 0.637900i \(0.779803\pi\)
\(744\) 1.72444 + 5.30729i 0.0632212 + 0.194575i
\(745\) −28.8145 + 18.9983i −1.05568 + 0.696043i
\(746\) −8.03593 + 24.7321i −0.294216 + 0.905505i
\(747\) 0.127938 + 0.0415695i 0.00468100 + 0.00152095i
\(748\) −3.45452 4.75474i −0.126310 0.173850i
\(749\) 16.0044 0.584788
\(750\) 9.85380 5.28229i 0.359810 0.192882i
\(751\) 21.2393 0.775034 0.387517 0.921863i \(-0.373333\pi\)
0.387517 + 0.921863i \(0.373333\pi\)
\(752\) −1.80670 2.48671i −0.0658836 0.0906809i
\(753\) −13.1584 4.27543i −0.479520 0.155805i
\(754\) 6.26838 19.2921i 0.228281 0.702577i
\(755\) −14.9308 + 9.84435i −0.543388 + 0.358272i
\(756\) 0.837167 + 2.57654i 0.0304475 + 0.0937077i
\(757\) 53.9563i 1.96107i 0.196335 + 0.980537i \(0.437096\pi\)
−0.196335 + 0.980537i \(0.562904\pi\)
\(758\) 28.6887 9.32153i 1.04202 0.338573i
\(759\) −24.0755 17.4919i −0.873887 0.634916i
\(760\) 17.5502 + 6.59737i 0.636614 + 0.239312i
\(761\) 34.2990 24.9197i 1.24334 0.903339i 0.245523 0.969391i \(-0.421040\pi\)
0.997816 + 0.0660520i \(0.0210403\pi\)
\(762\) 5.60106 7.70919i 0.202905 0.279275i
\(763\) 8.97796 12.3571i 0.325024 0.447357i
\(764\) −12.5641 + 9.12835i −0.454553 + 0.330252i
\(765\) 2.25428 0.620851i 0.0815035 0.0224469i
\(766\) 10.8125 + 7.85574i 0.390672 + 0.283840i
\(767\) 65.3181 21.2231i 2.35850 0.766323i
\(768\) 1.00000i 0.0360844i
\(769\) −1.55943 4.79943i