Properties

Label 150.2.h.b.139.2
Level 150
Weight 2
Character 150.139
Analytic conductor 1.198
Analytic rank 0
Dimension 16
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.h (of order \(10\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 139.2
Root \(-2.79002 + 0.809017i\)
Character \(\chi\) = 150.139
Dual form 150.2.h.b.109.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.587785 - 0.809017i) q^{2} +(-0.951057 - 0.309017i) q^{3} +(-0.309017 + 0.951057i) q^{4} +(2.03938 + 0.917020i) q^{5} +(0.309017 + 0.951057i) q^{6} -4.80694i q^{7} +(0.951057 - 0.309017i) q^{8} +(0.809017 + 0.587785i) q^{9} +O(q^{10})\) \(q+(-0.587785 - 0.809017i) q^{2} +(-0.951057 - 0.309017i) q^{3} +(-0.309017 + 0.951057i) q^{4} +(2.03938 + 0.917020i) q^{5} +(0.309017 + 0.951057i) q^{6} -4.80694i q^{7} +(0.951057 - 0.309017i) q^{8} +(0.809017 + 0.587785i) q^{9} +(-0.456833 - 2.18890i) q^{10} +(0.714027 - 0.518771i) q^{11} +(0.587785 - 0.809017i) q^{12} +(1.66061 - 2.28564i) q^{13} +(-3.88890 + 2.82545i) q^{14} +(-1.65619 - 1.50234i) q^{15} +(-0.809017 - 0.587785i) q^{16} +(-1.57666 + 0.512289i) q^{17} -1.00000i q^{18} +(-1.66217 - 5.11563i) q^{19} +(-1.50234 + 1.65619i) q^{20} +(-1.48543 + 4.57167i) q^{21} +(-0.839389 - 0.272734i) q^{22} +(3.44056 + 4.73553i) q^{23} -1.00000 q^{24} +(3.31815 + 3.74031i) q^{25} -2.82520 q^{26} +(-0.587785 - 0.809017i) q^{27} +(4.57167 + 1.48543i) q^{28} +(-1.10574 + 3.40313i) q^{29} +(-0.241934 + 2.22294i) q^{30} +(3.22681 + 9.93109i) q^{31} +1.00000i q^{32} +(-0.839389 + 0.272734i) q^{33} +(1.34119 + 0.974432i) q^{34} +(4.40806 - 9.80318i) q^{35} +(-0.809017 + 0.587785i) q^{36} +(-1.02631 + 1.41260i) q^{37} +(-3.16163 + 4.35161i) q^{38} +(-2.28564 + 1.66061i) q^{39} +(2.22294 + 0.241934i) q^{40} +(1.40381 + 1.01993i) q^{41} +(4.57167 - 1.48543i) q^{42} -2.27151i q^{43} +(0.272734 + 0.839389i) q^{44} +(1.11088 + 1.94060i) q^{45} +(1.80881 - 5.56695i) q^{46} +(-8.29746 - 2.69601i) q^{47} +(0.587785 + 0.809017i) q^{48} -16.1067 q^{49} +(1.07561 - 4.88294i) q^{50} +1.65780 q^{51} +(1.66061 + 2.28564i) q^{52} +(-3.37565 - 1.09681i) q^{53} +(-0.309017 + 0.951057i) q^{54} +(1.93190 - 0.403195i) q^{55} +(-1.48543 - 4.57167i) q^{56} +5.37889i q^{57} +(3.40313 - 1.10574i) q^{58} +(8.37628 + 6.08572i) q^{59} +(1.94060 - 1.11088i) q^{60} +(0.0697810 - 0.0506988i) q^{61} +(6.13775 - 8.44789i) q^{62} +(2.82545 - 3.88890i) q^{63} +(0.809017 - 0.587785i) q^{64} +(5.48259 - 3.13847i) q^{65} +(0.714027 + 0.518771i) q^{66} +(-11.3751 + 3.69601i) q^{67} -1.65780i q^{68} +(-1.80881 - 5.56695i) q^{69} +(-10.5219 + 2.19597i) q^{70} +(-1.08390 + 3.33591i) q^{71} +(0.951057 + 0.309017i) q^{72} +(4.24851 + 5.84757i) q^{73} +1.74607 q^{74} +(-1.99993 - 4.58261i) q^{75} +5.37889 q^{76} +(-2.49370 - 3.43228i) q^{77} +(2.68693 + 0.873035i) q^{78} +(3.88627 - 11.9607i) q^{79} +(-1.11088 - 1.94060i) q^{80} +(0.309017 + 0.951057i) q^{81} -1.73520i q^{82} +(-12.6244 + 4.10192i) q^{83} +(-3.88890 - 2.82545i) q^{84} +(-3.68520 - 0.401079i) q^{85} +(-1.83769 + 1.33516i) q^{86} +(2.10325 - 2.89488i) q^{87} +(0.518771 - 0.714027i) q^{88} +(15.1178 - 10.9837i) q^{89} +(0.917020 - 2.03938i) q^{90} +(-10.9869 - 7.98246i) q^{91} +(-5.56695 + 1.80881i) q^{92} -10.4422i q^{93} +(2.69601 + 8.29746i) q^{94} +(1.30134 - 11.9570i) q^{95} +(0.309017 - 0.951057i) q^{96} +(17.3764 + 5.64593i) q^{97} +(9.46727 + 13.0306i) q^{98} +0.882586 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 4q^{4} + 4q^{5} - 4q^{6} + 4q^{9} + O(q^{10}) \) \( 16q + 4q^{4} + 4q^{5} - 4q^{6} + 4q^{9} + 2q^{10} + 2q^{11} + 20q^{13} + 2q^{14} - 2q^{15} - 4q^{16} - 30q^{17} - 4q^{20} - 2q^{21} - 20q^{22} - 10q^{23} - 16q^{24} + 24q^{25} + 4q^{26} - 10q^{29} - 6q^{30} - 18q^{31} - 20q^{33} + 12q^{34} - 34q^{35} - 4q^{36} + 20q^{37} + 10q^{38} - 4q^{39} - 2q^{40} + 22q^{41} + 8q^{44} - 4q^{45} - 6q^{46} - 50q^{47} - 52q^{49} + 12q^{50} + 28q^{51} + 20q^{52} + 30q^{53} + 4q^{54} + 18q^{55} - 2q^{56} - 30q^{58} + 20q^{59} + 2q^{60} + 12q^{61} + 50q^{62} + 10q^{63} + 4q^{64} - 8q^{65} + 2q^{66} - 50q^{67} + 6q^{69} - 12q^{70} - 28q^{71} + 20q^{73} + 12q^{74} + 28q^{75} + 20q^{76} + 100q^{77} - 20q^{79} + 4q^{80} - 4q^{81} - 30q^{83} + 2q^{84} - 4q^{85} - 6q^{86} + 10q^{87} + 70q^{89} + 8q^{90} + 12q^{91} - 30q^{92} + 2q^{94} - 30q^{95} - 4q^{96} - 10q^{97} + 60q^{98} - 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.587785 0.809017i −0.415627 0.572061i
\(3\) −0.951057 0.309017i −0.549093 0.178411i
\(4\) −0.309017 + 0.951057i −0.154508 + 0.475528i
\(5\) 2.03938 + 0.917020i 0.912039 + 0.410104i
\(6\) 0.309017 + 0.951057i 0.126156 + 0.388267i
\(7\) 4.80694i 1.81685i −0.418045 0.908426i \(-0.637284\pi\)
0.418045 0.908426i \(-0.362716\pi\)
\(8\) 0.951057 0.309017i 0.336249 0.109254i
\(9\) 0.809017 + 0.587785i 0.269672 + 0.195928i
\(10\) −0.456833 2.18890i −0.144463 0.692192i
\(11\) 0.714027 0.518771i 0.215287 0.156415i −0.474915 0.880031i \(-0.657521\pi\)
0.690203 + 0.723616i \(0.257521\pi\)
\(12\) 0.587785 0.809017i 0.169679 0.233543i
\(13\) 1.66061 2.28564i 0.460571 0.633921i −0.514056 0.857756i \(-0.671858\pi\)
0.974627 + 0.223835i \(0.0718578\pi\)
\(14\) −3.88890 + 2.82545i −1.03935 + 0.755133i
\(15\) −1.65619 1.50234i −0.427627 0.387903i
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) −1.57666 + 0.512289i −0.382397 + 0.124248i −0.493907 0.869515i \(-0.664432\pi\)
0.111509 + 0.993763i \(0.464432\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −1.66217 5.11563i −0.381327 1.17361i −0.939110 0.343618i \(-0.888348\pi\)
0.557782 0.829987i \(-0.311652\pi\)
\(20\) −1.50234 + 1.65619i −0.335934 + 0.370336i
\(21\) −1.48543 + 4.57167i −0.324147 + 0.997621i
\(22\) −0.839389 0.272734i −0.178958 0.0581471i
\(23\) 3.44056 + 4.73553i 0.717407 + 0.987426i 0.999606 + 0.0280705i \(0.00893629\pi\)
−0.282199 + 0.959356i \(0.591064\pi\)
\(24\) −1.00000 −0.204124
\(25\) 3.31815 + 3.74031i 0.663630 + 0.748061i
\(26\) −2.82520 −0.554067
\(27\) −0.587785 0.809017i −0.113119 0.155695i
\(28\) 4.57167 + 1.48543i 0.863965 + 0.280719i
\(29\) −1.10574 + 3.40313i −0.205332 + 0.631946i 0.794368 + 0.607437i \(0.207802\pi\)
−0.999700 + 0.0245090i \(0.992198\pi\)
\(30\) −0.241934 + 2.22294i −0.0441710 + 0.405852i
\(31\) 3.22681 + 9.93109i 0.579551 + 1.78368i 0.620130 + 0.784499i \(0.287080\pi\)
−0.0405785 + 0.999176i \(0.512920\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −0.839389 + 0.272734i −0.146119 + 0.0474769i
\(34\) 1.34119 + 0.974432i 0.230012 + 0.167114i
\(35\) 4.40806 9.80318i 0.745098 1.65704i
\(36\) −0.809017 + 0.587785i −0.134836 + 0.0979642i
\(37\) −1.02631 + 1.41260i −0.168725 + 0.232230i −0.885003 0.465585i \(-0.845844\pi\)
0.716278 + 0.697815i \(0.245844\pi\)
\(38\) −3.16163 + 4.35161i −0.512884 + 0.705925i
\(39\) −2.28564 + 1.66061i −0.365995 + 0.265911i
\(40\) 2.22294 + 0.241934i 0.351478 + 0.0382532i
\(41\) 1.40381 + 1.01993i 0.219238 + 0.159286i 0.691984 0.721913i \(-0.256737\pi\)
−0.472746 + 0.881199i \(0.656737\pi\)
\(42\) 4.57167 1.48543i 0.705424 0.229206i
\(43\) 2.27151i 0.346403i −0.984886 0.173201i \(-0.944589\pi\)
0.984886 0.173201i \(-0.0554111\pi\)
\(44\) 0.272734 + 0.839389i 0.0411162 + 0.126543i
\(45\) 1.11088 + 1.94060i 0.165601 + 0.289288i
\(46\) 1.80881 5.56695i 0.266695 0.820802i
\(47\) −8.29746 2.69601i −1.21031 0.393253i −0.366765 0.930314i \(-0.619535\pi\)
−0.843544 + 0.537060i \(0.819535\pi\)
\(48\) 0.587785 + 0.809017i 0.0848395 + 0.116772i
\(49\) −16.1067 −2.30095
\(50\) 1.07561 4.88294i 0.152114 0.690551i
\(51\) 1.65780 0.232139
\(52\) 1.66061 + 2.28564i 0.230285 + 0.316961i
\(53\) −3.37565 1.09681i −0.463681 0.150659i 0.0678545 0.997695i \(-0.478385\pi\)
−0.531535 + 0.847036i \(0.678385\pi\)
\(54\) −0.309017 + 0.951057i −0.0420519 + 0.129422i
\(55\) 1.93190 0.403195i 0.260497 0.0543667i
\(56\) −1.48543 4.57167i −0.198498 0.610915i
\(57\) 5.37889i 0.712451i
\(58\) 3.40313 1.10574i 0.446853 0.145191i
\(59\) 8.37628 + 6.08572i 1.09050 + 0.792293i 0.979483 0.201525i \(-0.0645898\pi\)
0.111015 + 0.993819i \(0.464590\pi\)
\(60\) 1.94060 1.11088i 0.250531 0.143414i
\(61\) 0.0697810 0.0506988i 0.00893454 0.00649132i −0.583309 0.812250i \(-0.698242\pi\)
0.592244 + 0.805759i \(0.298242\pi\)
\(62\) 6.13775 8.44789i 0.779495 1.07288i
\(63\) 2.82545 3.88890i 0.355973 0.489955i
\(64\) 0.809017 0.587785i 0.101127 0.0734732i
\(65\) 5.48259 3.13847i 0.680032 0.389279i
\(66\) 0.714027 + 0.518771i 0.0878906 + 0.0638563i
\(67\) −11.3751 + 3.69601i −1.38969 + 0.451539i −0.905844 0.423611i \(-0.860762\pi\)
−0.483851 + 0.875150i \(0.660762\pi\)
\(68\) 1.65780i 0.201038i
\(69\) −1.80881 5.56695i −0.217755 0.670182i
\(70\) −10.5219 + 2.19597i −1.25761 + 0.262469i
\(71\) −1.08390 + 3.33591i −0.128636 + 0.395900i −0.994546 0.104300i \(-0.966740\pi\)
0.865910 + 0.500199i \(0.166740\pi\)
\(72\) 0.951057 + 0.309017i 0.112083 + 0.0364180i
\(73\) 4.24851 + 5.84757i 0.497251 + 0.684407i 0.981705 0.190410i \(-0.0609817\pi\)
−0.484454 + 0.874817i \(0.660982\pi\)
\(74\) 1.74607 0.202977
\(75\) −1.99993 4.58261i −0.230932 0.529154i
\(76\) 5.37889 0.617001
\(77\) −2.49370 3.43228i −0.284184 0.391145i
\(78\) 2.68693 + 0.873035i 0.304234 + 0.0988518i
\(79\) 3.88627 11.9607i 0.437240 1.34569i −0.453533 0.891239i \(-0.649837\pi\)
0.890774 0.454447i \(-0.150163\pi\)
\(80\) −1.11088 1.94060i −0.124201 0.216966i
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 1.73520i 0.191621i
\(83\) −12.6244 + 4.10192i −1.38571 + 0.450244i −0.904541 0.426386i \(-0.859787\pi\)
−0.481166 + 0.876629i \(0.659787\pi\)
\(84\) −3.88890 2.82545i −0.424313 0.308282i
\(85\) −3.68520 0.401079i −0.399716 0.0435032i
\(86\) −1.83769 + 1.33516i −0.198164 + 0.143974i
\(87\) 2.10325 2.89488i 0.225492 0.310363i
\(88\) 0.518771 0.714027i 0.0553011 0.0761155i
\(89\) 15.1178 10.9837i 1.60248 1.16427i 0.719939 0.694037i \(-0.244170\pi\)
0.882542 0.470233i \(-0.155830\pi\)
\(90\) 0.917020 2.03938i 0.0966624 0.214970i
\(91\) −10.9869 7.98246i −1.15174 0.836789i
\(92\) −5.56695 + 1.80881i −0.580395 + 0.188582i
\(93\) 10.4422i 1.08280i
\(94\) 2.69601 + 8.29746i 0.278072 + 0.855818i
\(95\) 1.30134 11.9570i 0.133514 1.22676i
\(96\) 0.309017 0.951057i 0.0315389 0.0970668i
\(97\) 17.3764 + 5.64593i 1.76430 + 0.573257i 0.997632 0.0687822i \(-0.0219114\pi\)
0.766672 + 0.642039i \(0.221911\pi\)
\(98\) 9.46727 + 13.0306i 0.956339 + 1.31629i
\(99\) 0.882586 0.0887032
\(100\) −4.58261 + 1.99993i −0.458261 + 0.199993i
\(101\) −5.46110 −0.543400 −0.271700 0.962382i \(-0.587586\pi\)
−0.271700 + 0.962382i \(0.587586\pi\)
\(102\) −0.974432 1.34119i −0.0964831 0.132798i
\(103\) 6.31725 + 2.05260i 0.622457 + 0.202248i 0.603231 0.797567i \(-0.293880\pi\)
0.0192260 + 0.999815i \(0.493880\pi\)
\(104\) 0.873035 2.68693i 0.0856081 0.263475i
\(105\) −7.22166 + 7.96122i −0.704762 + 0.776935i
\(106\) 1.09681 + 3.37565i 0.106532 + 0.327872i
\(107\) 14.5245i 1.40414i 0.712108 + 0.702070i \(0.247741\pi\)
−0.712108 + 0.702070i \(0.752259\pi\)
\(108\) 0.951057 0.309017i 0.0915155 0.0297352i
\(109\) 3.85954 + 2.80412i 0.369676 + 0.268586i 0.757077 0.653326i \(-0.226627\pi\)
−0.387400 + 0.921912i \(0.626627\pi\)
\(110\) −1.46173 1.32594i −0.139371 0.126424i
\(111\) 1.41260 1.02631i 0.134078 0.0974134i
\(112\) −2.82545 + 3.88890i −0.266980 + 0.367466i
\(113\) 2.84228 3.91206i 0.267379 0.368016i −0.654124 0.756388i \(-0.726962\pi\)
0.921503 + 0.388372i \(0.126962\pi\)
\(114\) 4.35161 3.16163i 0.407566 0.296114i
\(115\) 2.67405 + 12.8126i 0.249356 + 1.19478i
\(116\) −2.89488 2.10325i −0.268783 0.195282i
\(117\) 2.68693 0.873035i 0.248406 0.0807121i
\(118\) 10.3536i 0.953131i
\(119\) 2.46254 + 7.57893i 0.225741 + 0.694759i
\(120\) −2.03938 0.917020i −0.186169 0.0837121i
\(121\) −3.15848 + 9.72079i −0.287134 + 0.883708i
\(122\) −0.0820324 0.0266540i −0.00742687 0.00241314i
\(123\) −1.01993 1.40381i −0.0919637 0.126577i
\(124\) −10.4422 −0.937734
\(125\) 3.33704 + 10.6707i 0.298474 + 0.954418i
\(126\) −4.80694 −0.428236
\(127\) 1.05908 + 1.45769i 0.0939779 + 0.129349i 0.853417 0.521229i \(-0.174526\pi\)
−0.759439 + 0.650579i \(0.774526\pi\)
\(128\) −0.951057 0.309017i −0.0840623 0.0273135i
\(129\) −0.701936 + 2.16034i −0.0618021 + 0.190207i
\(130\) −5.76166 2.59077i −0.505331 0.227225i
\(131\) −4.95400 15.2468i −0.432833 1.33212i −0.895291 0.445481i \(-0.853033\pi\)
0.462459 0.886641i \(-0.346967\pi\)
\(132\) 0.882586i 0.0768192i
\(133\) −24.5905 + 7.98994i −2.13227 + 0.692816i
\(134\) 9.67628 + 7.03023i 0.835903 + 0.607319i
\(135\) −0.456833 2.18890i −0.0393180 0.188391i
\(136\) −1.34119 + 0.974432i −0.115006 + 0.0835569i
\(137\) −1.03872 + 1.42968i −0.0887443 + 0.122146i −0.851081 0.525035i \(-0.824052\pi\)
0.762336 + 0.647181i \(0.224052\pi\)
\(138\) −3.44056 + 4.73553i −0.292880 + 0.403115i
\(139\) 8.89636 6.46359i 0.754580 0.548234i −0.142663 0.989771i \(-0.545567\pi\)
0.897243 + 0.441537i \(0.145567\pi\)
\(140\) 7.96122 + 7.22166i 0.672846 + 0.610342i
\(141\) 7.05824 + 5.12811i 0.594411 + 0.431865i
\(142\) 3.33591 1.08390i 0.279943 0.0909591i
\(143\) 2.49348i 0.208515i
\(144\) −0.309017 0.951057i −0.0257514 0.0792547i
\(145\) −5.37577 + 5.92629i −0.446434 + 0.492152i
\(146\) 2.23357 6.87424i 0.184852 0.568916i
\(147\) 15.3184 + 4.97724i 1.26344 + 0.410516i
\(148\) −1.02631 1.41260i −0.0843625 0.116115i
\(149\) −2.90948 −0.238354 −0.119177 0.992873i \(-0.538026\pi\)
−0.119177 + 0.992873i \(0.538026\pi\)
\(150\) −2.53188 + 4.31157i −0.206727 + 0.352038i
\(151\) −1.34184 −0.109197 −0.0545986 0.998508i \(-0.517388\pi\)
−0.0545986 + 0.998508i \(0.517388\pi\)
\(152\) −3.16163 4.35161i −0.256442 0.352962i
\(153\) −1.57666 0.512289i −0.127466 0.0414161i
\(154\) −1.31102 + 4.03489i −0.105645 + 0.325141i
\(155\) −2.52632 + 23.2123i −0.202919 + 1.86446i
\(156\) −0.873035 2.68693i −0.0698987 0.215126i
\(157\) 8.31169i 0.663345i −0.943395 0.331673i \(-0.892387\pi\)
0.943395 0.331673i \(-0.107613\pi\)
\(158\) −11.9607 + 3.88627i −0.951544 + 0.309175i
\(159\) 2.87150 + 2.08626i 0.227724 + 0.165451i
\(160\) −0.917020 + 2.03938i −0.0724968 + 0.161227i
\(161\) 22.7634 16.5386i 1.79401 1.30342i
\(162\) 0.587785 0.809017i 0.0461808 0.0635624i
\(163\) 3.66704 5.04724i 0.287225 0.395331i −0.640886 0.767636i \(-0.721433\pi\)
0.928110 + 0.372306i \(0.121433\pi\)
\(164\) −1.40381 + 1.01993i −0.109619 + 0.0796429i
\(165\) −1.96194 0.213528i −0.152736 0.0166231i
\(166\) 10.7390 + 7.80231i 0.833505 + 0.605576i
\(167\) −14.1107 + 4.58483i −1.09192 + 0.354785i −0.798986 0.601349i \(-0.794630\pi\)
−0.292929 + 0.956134i \(0.594630\pi\)
\(168\) 4.80694i 0.370864i
\(169\) 1.55072 + 4.77263i 0.119286 + 0.367125i
\(170\) 1.84163 + 3.21714i 0.141246 + 0.246743i
\(171\) 1.66217 5.11563i 0.127109 0.391202i
\(172\) 2.16034 + 0.701936i 0.164724 + 0.0535221i
\(173\) −9.42623 12.9741i −0.716663 0.986402i −0.999628 0.0272719i \(-0.991318\pi\)
0.282965 0.959130i \(-0.408682\pi\)
\(174\) −3.57827 −0.271268
\(175\) 17.9794 15.9501i 1.35912 1.20572i
\(176\) −0.882586 −0.0665274
\(177\) −6.08572 8.37628i −0.457431 0.629600i
\(178\) −17.7720 5.77448i −1.33207 0.432815i
\(179\) −3.63061 + 11.1739i −0.271365 + 0.835174i 0.718794 + 0.695223i \(0.244694\pi\)
−0.990158 + 0.139951i \(0.955306\pi\)
\(180\) −2.18890 + 0.456833i −0.163151 + 0.0340504i
\(181\) −1.24658 3.83658i −0.0926577 0.285171i 0.893979 0.448110i \(-0.147903\pi\)
−0.986636 + 0.162939i \(0.947903\pi\)
\(182\) 13.5806i 1.00666i
\(183\) −0.0820324 + 0.0266540i −0.00606401 + 0.00197032i
\(184\) 4.73553 + 3.44056i 0.349108 + 0.253642i
\(185\) −3.38843 + 1.93968i −0.249122 + 0.142608i
\(186\) −8.44789 + 6.13775i −0.619429 + 0.450042i
\(187\) −0.860020 + 1.18372i −0.0628909 + 0.0865618i
\(188\) 5.12811 7.05824i 0.374006 0.514775i
\(189\) −3.88890 + 2.82545i −0.282876 + 0.205521i
\(190\) −10.4383 + 5.97532i −0.757273 + 0.433495i
\(191\) −9.64472 7.00730i −0.697867 0.507030i 0.181370 0.983415i \(-0.441947\pi\)
−0.879237 + 0.476385i \(0.841947\pi\)
\(192\) −0.951057 + 0.309017i −0.0686366 + 0.0223014i
\(193\) 11.8088i 0.850019i −0.905189 0.425009i \(-0.860271\pi\)
0.905189 0.425009i \(-0.139729\pi\)
\(194\) −5.64593 17.3764i −0.405354 1.24755i
\(195\) −6.18409 + 1.29065i −0.442852 + 0.0924251i
\(196\) 4.97724 15.3184i 0.355517 1.09417i
\(197\) −6.92219 2.24916i −0.493186 0.160246i 0.0518562 0.998655i \(-0.483486\pi\)
−0.545042 + 0.838409i \(0.683486\pi\)
\(198\) −0.518771 0.714027i −0.0368674 0.0507437i
\(199\) −2.27949 −0.161589 −0.0807944 0.996731i \(-0.525746\pi\)
−0.0807944 + 0.996731i \(0.525746\pi\)
\(200\) 4.31157 + 2.53188i 0.304874 + 0.179031i
\(201\) 11.9605 0.843631
\(202\) 3.20996 + 4.41813i 0.225852 + 0.310858i
\(203\) 16.3587 + 5.31525i 1.14815 + 0.373057i
\(204\) −0.512289 + 1.57666i −0.0358674 + 0.110389i
\(205\) 1.92761 + 3.36734i 0.134630 + 0.235185i
\(206\) −2.05260 6.31725i −0.143011 0.440143i
\(207\) 5.85344i 0.406842i
\(208\) −2.68693 + 0.873035i −0.186305 + 0.0605341i
\(209\) −3.84067 2.79041i −0.265665 0.193017i
\(210\) 10.6855 + 1.16296i 0.737373 + 0.0802521i
\(211\) 1.01062 0.734260i 0.0695741 0.0505485i −0.552455 0.833543i \(-0.686309\pi\)
0.622029 + 0.782994i \(0.286309\pi\)
\(212\) 2.08626 2.87150i 0.143285 0.197215i
\(213\) 2.06170 2.83769i 0.141266 0.194436i
\(214\) 11.7506 8.53731i 0.803255 0.583599i
\(215\) 2.08302 4.63248i 0.142061 0.315933i
\(216\) −0.809017 0.587785i −0.0550466 0.0399937i
\(217\) 47.7381 15.5111i 3.24068 1.05296i
\(218\) 4.77065i 0.323109i
\(219\) −2.23357 6.87424i −0.150931 0.464518i
\(220\) −0.213528 + 1.96194i −0.0143960 + 0.132274i
\(221\) −1.44732 + 4.45439i −0.0973573 + 0.299635i
\(222\) −1.66061 0.539565i −0.111453 0.0362133i
\(223\) 5.19727 + 7.15343i 0.348035 + 0.479029i 0.946767 0.321921i \(-0.104328\pi\)
−0.598732 + 0.800950i \(0.704328\pi\)
\(224\) 4.80694 0.321177
\(225\) 0.485943 + 4.97633i 0.0323962 + 0.331755i
\(226\) −4.83558 −0.321658
\(227\) 10.4019 + 14.3170i 0.690398 + 0.950251i 1.00000 0.000615300i \(-0.000195856\pi\)
−0.309602 + 0.950866i \(0.600196\pi\)
\(228\) −5.11563 1.66217i −0.338791 0.110080i
\(229\) 2.75446 8.47737i 0.182020 0.560200i −0.817864 0.575411i \(-0.804842\pi\)
0.999884 + 0.0152110i \(0.00484200\pi\)
\(230\) 8.79386 9.69442i 0.579850 0.639231i
\(231\) 1.31102 + 4.03489i 0.0862585 + 0.265476i
\(232\) 3.57827i 0.234925i
\(233\) −9.12123 + 2.96367i −0.597551 + 0.194156i −0.592148 0.805829i \(-0.701720\pi\)
−0.00540335 + 0.999985i \(0.501720\pi\)
\(234\) −2.28564 1.66061i −0.149417 0.108558i
\(235\) −14.4494 13.1071i −0.942574 0.855014i
\(236\) −8.37628 + 6.08572i −0.545249 + 0.396147i
\(237\) −7.39213 + 10.1744i −0.480171 + 0.660898i
\(238\) 4.68404 6.44702i 0.303621 0.417898i
\(239\) −7.41301 + 5.38587i −0.479508 + 0.348383i −0.801135 0.598483i \(-0.795770\pi\)
0.321627 + 0.946866i \(0.395770\pi\)
\(240\) 0.456833 + 2.18890i 0.0294885 + 0.141293i
\(241\) 2.01891 + 1.46682i 0.130049 + 0.0944864i 0.650908 0.759156i \(-0.274388\pi\)
−0.520859 + 0.853643i \(0.674388\pi\)
\(242\) 9.72079 3.15848i 0.624876 0.203035i
\(243\) 1.00000i 0.0641500i
\(244\) 0.0266540 + 0.0820324i 0.00170634 + 0.00525159i
\(245\) −32.8477 14.7701i −2.09856 0.943630i
\(246\) −0.536207 + 1.65028i −0.0341873 + 0.105218i
\(247\) −14.4527 4.69596i −0.919601 0.298797i
\(248\) 6.13775 + 8.44789i 0.389747 + 0.536441i
\(249\) 13.2741 0.841211
\(250\) 6.67133 8.97181i 0.421932 0.567427i
\(251\) 8.71262 0.549936 0.274968 0.961453i \(-0.411333\pi\)
0.274968 + 0.961453i \(0.411333\pi\)
\(252\) 2.82545 + 3.88890i 0.177987 + 0.244977i
\(253\) 4.91331 + 1.59643i 0.308897 + 0.100367i
\(254\) 0.556790 1.71362i 0.0349361 0.107522i
\(255\) 3.38089 + 1.52024i 0.211720 + 0.0952010i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 19.7871i 1.23429i −0.786851 0.617143i \(-0.788290\pi\)
0.786851 0.617143i \(-0.211710\pi\)
\(258\) 2.16034 0.701936i 0.134497 0.0437007i
\(259\) 6.79029 + 4.93343i 0.421928 + 0.306549i
\(260\) 1.29065 + 6.18409i 0.0800425 + 0.383521i
\(261\) −2.89488 + 2.10325i −0.179188 + 0.130188i
\(262\) −9.42306 + 12.9697i −0.582159 + 0.801272i
\(263\) −15.0258 + 20.6813i −0.926532 + 1.27526i 0.0346651 + 0.999399i \(0.488964\pi\)
−0.961197 + 0.275863i \(0.911036\pi\)
\(264\) −0.714027 + 0.518771i −0.0439453 + 0.0319281i
\(265\) −5.87843 5.33236i −0.361109 0.327564i
\(266\) 20.9179 + 15.1978i 1.28256 + 0.931835i
\(267\) −17.7720 + 5.77448i −1.08763 + 0.353392i
\(268\) 11.9605i 0.730606i
\(269\) −7.54447 23.2195i −0.459994 1.41572i −0.865170 0.501478i \(-0.832790\pi\)
0.405176 0.914239i \(-0.367210\pi\)
\(270\) −1.50234 + 1.65619i −0.0914296 + 0.100793i
\(271\) 0.848720 2.61209i 0.0515561 0.158673i −0.921964 0.387277i \(-0.873416\pi\)
0.973520 + 0.228603i \(0.0734159\pi\)
\(272\) 1.57666 + 0.512289i 0.0955993 + 0.0310621i
\(273\) 7.98246 + 10.9869i 0.483120 + 0.664958i
\(274\) 1.76718 0.106760
\(275\) 4.30961 + 0.949319i 0.259879 + 0.0572461i
\(276\) 5.85344 0.352336
\(277\) −1.75206 2.41151i −0.105271 0.144893i 0.753131 0.657870i \(-0.228543\pi\)
−0.858402 + 0.512977i \(0.828543\pi\)
\(278\) −10.4583 3.39811i −0.627247 0.203805i
\(279\) −3.22681 + 9.93109i −0.193184 + 0.594559i
\(280\) 1.16296 10.6855i 0.0695004 0.638584i
\(281\) 1.19334 + 3.67274i 0.0711890 + 0.219097i 0.980321 0.197412i \(-0.0632535\pi\)
−0.909132 + 0.416509i \(0.863254\pi\)
\(282\) 8.72447i 0.519534i
\(283\) −15.8844 + 5.16117i −0.944232 + 0.306800i −0.740370 0.672200i \(-0.765350\pi\)
−0.203863 + 0.979000i \(0.565350\pi\)
\(284\) −2.83769 2.06170i −0.168386 0.122340i
\(285\) −4.93255 + 10.9696i −0.292179 + 0.649783i
\(286\) −2.01727 + 1.46563i −0.119284 + 0.0866646i
\(287\) 4.90273 6.74802i 0.289399 0.398323i
\(288\) −0.587785 + 0.809017i −0.0346356 + 0.0476718i
\(289\) −11.5299 + 8.37693i −0.678227 + 0.492761i
\(290\) 7.95427 + 0.865705i 0.467091 + 0.0508360i
\(291\) −14.7812 10.7392i −0.866491 0.629542i
\(292\) −6.87424 + 2.23357i −0.402284 + 0.130710i
\(293\) 0.503153i 0.0293945i 0.999892 + 0.0146972i \(0.00467845\pi\)
−0.999892 + 0.0146972i \(0.995322\pi\)
\(294\) −4.97724 15.3184i −0.290278 0.893385i
\(295\) 11.5017 + 20.0923i 0.669654 + 1.16982i
\(296\) −0.539565 + 1.66061i −0.0313616 + 0.0965211i
\(297\) −0.839389 0.272734i −0.0487063 0.0158256i
\(298\) 1.71015 + 2.35382i 0.0990664 + 0.136353i
\(299\) 16.5371 0.956367
\(300\) 4.97633 0.485943i 0.287309 0.0280559i
\(301\) −10.9190 −0.629363
\(302\) 0.788713 + 1.08557i 0.0453853 + 0.0624675i
\(303\) 5.19382 + 1.68757i 0.298377 + 0.0969486i
\(304\) −1.66217 + 5.11563i −0.0953319 + 0.293401i
\(305\) 0.188802 0.0394037i 0.0108108 0.00225625i
\(306\) 0.512289 + 1.57666i 0.0292856 + 0.0901319i
\(307\) 8.63375i 0.492754i −0.969174 0.246377i \(-0.920760\pi\)
0.969174 0.246377i \(-0.0792402\pi\)
\(308\) 4.03489 1.31102i 0.229909 0.0747021i
\(309\) −5.37377 3.90427i −0.305703 0.222106i
\(310\) 20.2641 11.6000i 1.15092 0.658837i
\(311\) −16.3967 + 11.9129i −0.929771 + 0.675518i −0.945937 0.324351i \(-0.894854\pi\)
0.0161660 + 0.999869i \(0.494854\pi\)
\(312\) −1.66061 + 2.28564i −0.0940136 + 0.129399i
\(313\) 10.0101 13.7777i 0.565805 0.778763i −0.426245 0.904608i \(-0.640164\pi\)
0.992050 + 0.125844i \(0.0401640\pi\)
\(314\) −6.72430 + 4.88549i −0.379474 + 0.275704i
\(315\) 9.32836 5.33995i 0.525594 0.300872i
\(316\) 10.1744 + 7.39213i 0.572355 + 0.415840i
\(317\) 2.68347 0.871912i 0.150719 0.0489715i −0.232686 0.972552i \(-0.574751\pi\)
0.383405 + 0.923580i \(0.374751\pi\)
\(318\) 3.54936i 0.199038i
\(319\) 0.975914 + 3.00356i 0.0546407 + 0.168167i
\(320\) 2.18890 0.456833i 0.122363 0.0255378i
\(321\) 4.48833 13.8137i 0.250514 0.771003i
\(322\) −26.7600 8.69485i −1.49128 0.484545i
\(323\) 5.24136 + 7.21411i 0.291637 + 0.401404i
\(324\) −1.00000 −0.0555556
\(325\) 14.0591 1.37289i 0.779860 0.0761540i
\(326\) −6.23874 −0.345532
\(327\) −2.80412 3.85954i −0.155068 0.213433i
\(328\) 1.65028 + 0.536207i 0.0911212 + 0.0296071i
\(329\) −12.9596 + 39.8854i −0.714483 + 2.19895i
\(330\) 0.980449 + 1.71275i 0.0539720 + 0.0942837i
\(331\) −1.25862 3.87364i −0.0691802 0.212915i 0.910489 0.413532i \(-0.135705\pi\)
−0.979670 + 0.200618i \(0.935705\pi\)
\(332\) 13.2741i 0.728510i
\(333\) −1.66061 + 0.539565i −0.0910009 + 0.0295680i
\(334\) 12.0032 + 8.72086i 0.656788 + 0.477184i
\(335\) −26.5876 2.89366i −1.45263 0.158098i
\(336\) 3.88890 2.82545i 0.212157 0.154141i
\(337\) −5.31818 + 7.31984i −0.289700 + 0.398737i −0.928917 0.370289i \(-0.879259\pi\)
0.639217 + 0.769026i \(0.279259\pi\)
\(338\) 2.94965 4.05984i 0.160440 0.220826i
\(339\) −3.91206 + 2.84228i −0.212474 + 0.154371i
\(340\) 1.52024 3.38089i 0.0824465 0.183355i
\(341\) 7.45598 + 5.41709i 0.403764 + 0.293352i
\(342\) −5.11563 + 1.66217i −0.276621 + 0.0898797i
\(343\) 43.7753i 2.36364i
\(344\) −0.701936 2.16034i −0.0378459 0.116478i
\(345\) 1.41615 13.0118i 0.0762428 0.700534i
\(346\) −4.95566 + 15.2520i −0.266418 + 0.819951i
\(347\) 8.26141 + 2.68429i 0.443495 + 0.144100i 0.522248 0.852794i \(-0.325094\pi\)
−0.0787523 + 0.996894i \(0.525094\pi\)
\(348\) 2.10325 + 2.89488i 0.112746 + 0.155182i
\(349\) −26.8305 −1.43620 −0.718101 0.695938i \(-0.754989\pi\)
−0.718101 + 0.695938i \(0.754989\pi\)
\(350\) −23.4720 5.17040i −1.25463 0.276370i
\(351\) −2.82520 −0.150798
\(352\) 0.518771 + 0.714027i 0.0276506 + 0.0380577i
\(353\) 26.9623 + 8.76060i 1.43506 + 0.466279i 0.920354 0.391087i \(-0.127901\pi\)
0.514707 + 0.857366i \(0.327901\pi\)
\(354\) −3.19945 + 9.84690i −0.170049 + 0.523357i
\(355\) −5.26958 + 5.80923i −0.279680 + 0.308322i
\(356\) 5.77448 + 17.7720i 0.306047 + 0.941915i
\(357\) 7.96896i 0.421762i
\(358\) 11.1739 3.63061i 0.590557 0.191884i
\(359\) 7.02898 + 5.10686i 0.370976 + 0.269530i 0.757615 0.652701i \(-0.226364\pi\)
−0.386640 + 0.922231i \(0.626364\pi\)
\(360\) 1.65619 + 1.50234i 0.0872890 + 0.0791803i
\(361\) −8.03551 + 5.83814i −0.422921 + 0.307270i
\(362\) −2.37114 + 3.26359i −0.124624 + 0.171531i
\(363\) 6.00778 8.26900i 0.315327 0.434010i
\(364\) 10.9869 7.98246i 0.575871 0.418395i
\(365\) 3.30199 + 15.8214i 0.172834 + 0.828130i
\(366\) 0.0697810 + 0.0506988i 0.00364751 + 0.00265007i
\(367\) 11.8609 3.85385i 0.619136 0.201170i 0.0173794 0.999849i \(-0.494468\pi\)
0.601757 + 0.798679i \(0.294468\pi\)
\(368\) 5.85344i 0.305132i
\(369\) 0.536207 + 1.65028i 0.0279138 + 0.0859099i
\(370\) 3.56090 + 1.60118i 0.185122 + 0.0832414i
\(371\) −5.27232 + 16.2265i −0.273725 + 0.842439i
\(372\) 9.93109 + 3.22681i 0.514903 + 0.167302i
\(373\) −7.64048 10.5162i −0.395609 0.544509i 0.564026 0.825757i \(-0.309252\pi\)
−0.959635 + 0.281248i \(0.909252\pi\)
\(374\) 1.46315 0.0756578
\(375\) 0.123723 11.1797i 0.00638904 0.577315i
\(376\) −8.72447 −0.449930
\(377\) 5.94211 + 8.17861i 0.306034 + 0.421220i
\(378\) 4.57167 + 1.48543i 0.235141 + 0.0764021i
\(379\) −0.541481 + 1.66651i −0.0278140 + 0.0856027i −0.964000 0.265903i \(-0.914330\pi\)
0.936186 + 0.351505i \(0.114330\pi\)
\(380\) 10.9696 + 4.93255i 0.562729 + 0.253034i
\(381\) −0.556790 1.71362i −0.0285252 0.0877915i
\(382\) 11.9215i 0.609958i
\(383\) 32.4652 10.5486i 1.65889 0.539007i 0.678252 0.734829i \(-0.262738\pi\)
0.980639 + 0.195822i \(0.0627376\pi\)
\(384\) 0.809017 + 0.587785i 0.0412850 + 0.0299953i
\(385\) −1.93813 9.28651i −0.0987764 0.473284i
\(386\) −9.55355 + 6.94106i −0.486263 + 0.353291i
\(387\) 1.33516 1.83769i 0.0678701 0.0934152i
\(388\) −10.7392 + 14.7812i −0.545200 + 0.750403i
\(389\) 5.54704 4.03016i 0.281246 0.204337i −0.438215 0.898870i \(-0.644389\pi\)
0.719461 + 0.694533i \(0.244389\pi\)
\(390\) 4.67907 + 4.24442i 0.236934 + 0.214924i
\(391\) −7.85058 5.70378i −0.397021 0.288452i
\(392\) −15.3184 + 4.97724i −0.773694 + 0.251388i
\(393\) 16.0315i 0.808680i
\(394\) 2.24916 + 6.92219i 0.113311 + 0.348735i
\(395\) 18.8938 20.8287i 0.950651 1.04800i
\(396\) −0.272734 + 0.839389i −0.0137054 + 0.0421809i
\(397\) −31.5358 10.2466i −1.58274 0.514262i −0.619976 0.784621i \(-0.712858\pi\)
−0.962760 + 0.270359i \(0.912858\pi\)
\(398\) 1.33985 + 1.84415i 0.0671607 + 0.0924387i
\(399\) 25.8560 1.29442
\(400\) −0.485943 4.97633i −0.0242971 0.248816i
\(401\) 3.51432 0.175497 0.0877483 0.996143i \(-0.472033\pi\)
0.0877483 + 0.996143i \(0.472033\pi\)
\(402\) −7.03023 9.67628i −0.350636 0.482609i
\(403\) 28.0573 + 9.11637i 1.39763 + 0.454119i
\(404\) 1.68757 5.19382i 0.0839599 0.258402i
\(405\) −0.241934 + 2.22294i −0.0120218 + 0.110459i
\(406\) −5.31525 16.3587i −0.263791 0.811866i
\(407\) 1.54106i 0.0763873i
\(408\) 1.57666 0.512289i 0.0780565 0.0253621i
\(409\) −13.1746 9.57194i −0.651444 0.473302i 0.212318 0.977201i \(-0.431899\pi\)
−0.863763 + 0.503898i \(0.831899\pi\)
\(410\) 1.59122 3.53874i 0.0785845 0.174766i
\(411\) 1.42968 1.03872i 0.0705210 0.0512365i
\(412\) −3.90427 + 5.37377i −0.192350 + 0.264747i
\(413\) 29.2537 40.2643i 1.43948 1.98128i
\(414\) 4.73553 3.44056i 0.232739 0.169095i
\(415\) −29.5075 3.21146i −1.44847 0.157644i
\(416\) 2.28564 + 1.66061i 0.112062 + 0.0814182i
\(417\) −10.4583 + 3.39811i −0.512145 + 0.166406i
\(418\) 4.74733i 0.232199i
\(419\) −8.18528 25.1917i −0.399877 1.23070i −0.925098 0.379730i \(-0.876017\pi\)
0.525220 0.850966i \(-0.323983\pi\)
\(420\) −5.33995 9.32836i −0.260563 0.455177i
\(421\) −9.56476 + 29.4373i −0.466158 + 1.43469i 0.391362 + 0.920237i \(0.372004\pi\)
−0.857520 + 0.514450i \(0.827996\pi\)
\(422\) −1.18806 0.386023i −0.0578337 0.0187913i
\(423\) −5.12811 7.05824i −0.249337 0.343183i
\(424\) −3.54936 −0.172372
\(425\) −7.14772 4.19735i −0.346716 0.203602i
\(426\) −3.50758 −0.169943
\(427\) −0.243706 0.335433i −0.0117938 0.0162327i
\(428\) −13.8137 4.48833i −0.667708 0.216952i
\(429\) −0.770528 + 2.37144i −0.0372014 + 0.114494i
\(430\) −4.97213 + 1.03770i −0.239777 + 0.0500425i
\(431\) −0.532381 1.63850i −0.0256439 0.0789238i 0.937416 0.348213i \(-0.113211\pi\)
−0.963059 + 0.269289i \(0.913211\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) 22.9568 7.45911i 1.10323 0.358462i 0.299886 0.953975i \(-0.403051\pi\)
0.803346 + 0.595513i \(0.203051\pi\)
\(434\) −40.6085 29.5038i −1.94927 1.41623i
\(435\) 6.94399 3.97503i 0.332939 0.190588i
\(436\) −3.85954 + 2.80412i −0.184838 + 0.134293i
\(437\) 18.5064 25.4719i 0.885282 1.21849i
\(438\) −4.24851 + 5.84757i −0.203002 + 0.279408i
\(439\) 6.66899 4.84531i 0.318294 0.231254i −0.417153 0.908836i \(-0.636972\pi\)
0.735447 + 0.677582i \(0.236972\pi\)
\(440\) 1.71275 0.980449i 0.0816520 0.0467411i
\(441\) −13.0306 9.46727i −0.620504 0.450822i
\(442\) 4.45439 1.44732i 0.211874 0.0688420i
\(443\) 22.4652i 1.06735i −0.845689 0.533676i \(-0.820810\pi\)
0.845689 0.533676i \(-0.179190\pi\)
\(444\) 0.539565 + 1.66061i 0.0256066 + 0.0788091i
\(445\) 40.9032 8.53666i 1.93900 0.404677i
\(446\) 2.73237 8.40936i 0.129381 0.398195i
\(447\) 2.76708 + 0.899079i 0.130878 + 0.0425250i
\(448\) −2.82545 3.88890i −0.133490 0.183733i
\(449\) −30.4988 −1.43933 −0.719663 0.694323i \(-0.755704\pi\)
−0.719663 + 0.694323i \(0.755704\pi\)
\(450\) 3.74031 3.31815i 0.176320 0.156419i
\(451\) 1.53146 0.0721139
\(452\) 2.84228 + 3.91206i 0.133690 + 0.184008i
\(453\) 1.27616 + 0.414651i 0.0599594 + 0.0194820i
\(454\) 5.46860 16.8306i 0.256654 0.789900i
\(455\) −15.0864 26.3545i −0.707263 1.23552i
\(456\) 1.66217 + 5.11563i 0.0778381 + 0.239561i
\(457\) 6.65272i 0.311201i −0.987820 0.155601i \(-0.950269\pi\)
0.987820 0.155601i \(-0.0497313\pi\)
\(458\) −8.47737 + 2.75446i −0.396121 + 0.128708i
\(459\) 1.34119 + 0.974432i 0.0626014 + 0.0454826i
\(460\) −13.0118 1.41615i −0.606681 0.0660282i
\(461\) 19.1479 13.9118i 0.891808 0.647936i −0.0445410 0.999008i \(-0.514183\pi\)
0.936349 + 0.351071i \(0.114183\pi\)
\(462\) 2.49370 3.43228i 0.116017 0.159684i
\(463\) −15.3328 + 21.1038i −0.712575 + 0.980775i 0.287163 + 0.957882i \(0.407288\pi\)
−0.999738 + 0.0228935i \(0.992712\pi\)
\(464\) 2.89488 2.10325i 0.134391 0.0976410i
\(465\) 9.57567 21.2955i 0.444061 0.987557i
\(466\) 7.75898 + 5.63723i 0.359428 + 0.261140i
\(467\) 1.40340 0.455993i 0.0649417 0.0211008i −0.276366 0.961052i \(-0.589130\pi\)
0.341308 + 0.939952i \(0.389130\pi\)
\(468\) 2.82520i 0.130595i
\(469\) 17.7665 + 54.6796i 0.820380 + 2.52487i
\(470\) −2.11075 + 19.3940i −0.0973615 + 0.894577i
\(471\) −2.56845 + 7.90489i −0.118348 + 0.364238i
\(472\) 9.84690 + 3.19945i 0.453240 + 0.147267i
\(473\) −1.17839 1.62192i −0.0541827 0.0745760i
\(474\) 12.5762 0.577646
\(475\) 13.6187 23.1914i 0.624868 1.06410i
\(476\) −7.96896 −0.365257
\(477\) −2.08626 2.87150i −0.0955235 0.131477i
\(478\) 8.71452 + 2.83152i 0.398593 + 0.129511i
\(479\) 4.14388 12.7536i 0.189339 0.582725i −0.810657 0.585521i \(-0.800890\pi\)
0.999996 + 0.00279598i \(0.000889988\pi\)
\(480\) 1.50234 1.65619i 0.0685722 0.0755945i
\(481\) 1.52438 + 4.69156i 0.0695058 + 0.213917i
\(482\) 2.49551i 0.113667i
\(483\) −26.7600 + 8.69485i −1.21762 + 0.395629i
\(484\) −8.26900 6.00778i −0.375864 0.273081i
\(485\) 30.2596 + 27.4487i 1.37402 + 1.24638i
\(486\) −0.809017 + 0.587785i −0.0366978 + 0.0266625i
\(487\) −1.24615 + 1.71518i −0.0564686 + 0.0777224i −0.836317 0.548246i \(-0.815296\pi\)
0.779849 + 0.625968i \(0.215296\pi\)
\(488\) 0.0506988 0.0697810i 0.00229503 0.00315884i
\(489\) −5.04724 + 3.66704i −0.228244 + 0.165829i
\(490\) 7.35807 + 35.2560i 0.332404 + 1.59270i
\(491\) 1.79947 + 1.30739i 0.0812091 + 0.0590019i 0.627649 0.778496i \(-0.284017\pi\)
−0.546440 + 0.837498i \(0.684017\pi\)
\(492\) 1.65028 0.536207i 0.0744002 0.0241741i
\(493\) 5.93206i 0.267166i
\(494\) 4.69596 + 14.4527i 0.211281 + 0.650256i
\(495\) 1.79993 + 0.809348i 0.0809007 + 0.0363775i
\(496\) 3.22681 9.93109i 0.144888 0.445919i
\(497\) 16.0355 + 5.21025i 0.719291 + 0.233712i
\(498\) −7.80231 10.7390i −0.349630 0.481224i
\(499\) −14.5582 −0.651715 −0.325858 0.945419i \(-0.605653\pi\)
−0.325858 + 0.945419i \(0.605653\pi\)
\(500\) −11.1797 0.123723i −0.499969 0.00553307i
\(501\) 14.8368 0.662860
\(502\) −5.12115 7.04866i −0.228568 0.314597i
\(503\) −22.6744 7.36734i −1.01100 0.328494i −0.243747 0.969839i \(-0.578377\pi\)
−0.767252 + 0.641345i \(0.778377\pi\)
\(504\) 1.48543 4.57167i 0.0661662 0.203638i
\(505\) −11.1373 5.00794i −0.495602 0.222850i
\(506\) −1.59643 4.91331i −0.0709700 0.218423i
\(507\) 5.01824i 0.222868i
\(508\) −1.71362 + 0.556790i −0.0760297 + 0.0247035i
\(509\) −28.1543 20.4553i −1.24792 0.906664i −0.249817 0.968293i \(-0.580370\pi\)
−0.998099 + 0.0616289i \(0.980370\pi\)
\(510\) −0.757340 3.62877i −0.0335356 0.160685i
\(511\) 28.1089 20.4223i 1.24347 0.903431i
\(512\) 0.587785 0.809017i 0.0259767 0.0357538i
\(513\) −3.16163 + 4.35161i −0.139589 + 0.192128i
\(514\) −16.0081 + 11.6306i −0.706088 + 0.513003i
\(515\) 11.0010 + 9.97907i 0.484762 + 0.439730i
\(516\) −1.83769 1.33516i −0.0808999 0.0587772i
\(517\) −7.32322 + 2.37946i −0.322075 + 0.104648i
\(518\) 8.39326i 0.368778i
\(519\) 4.95566 + 15.2520i 0.217529 + 0.669487i
\(520\) 4.24442 4.67907i 0.186130 0.205191i
\(521\) −2.68575 + 8.26589i −0.117665 + 0.362135i −0.992494 0.122297i \(-0.960974\pi\)
0.874829 + 0.484433i \(0.160974\pi\)
\(522\) 3.40313 + 1.10574i 0.148951 + 0.0483971i
\(523\) 19.0655 + 26.2414i 0.833676 + 1.14746i 0.987228 + 0.159317i \(0.0509290\pi\)
−0.153551 + 0.988141i \(0.549071\pi\)
\(524\) 16.0315 0.700338
\(525\) −22.0283 + 9.61354i −0.961395 + 0.419569i
\(526\) 25.5635 1.11462
\(527\) −10.1752 14.0049i −0.443238 0.610064i
\(528\) 0.839389 + 0.272734i 0.0365297 + 0.0118692i
\(529\) −3.48038 + 10.7115i −0.151321 + 0.465717i
\(530\) −0.858713 + 7.89003i −0.0373001 + 0.342721i
\(531\) 3.19945 + 9.84690i 0.138844 + 0.427319i
\(532\) 25.8560i 1.12100i
\(533\) 4.66236 1.51489i 0.201949 0.0656173i
\(534\) 15.1178 + 10.9837i 0.654210 + 0.475312i
\(535\) −13.3193 + 29.6211i −0.575843 + 1.28063i
\(536\) −9.67628 + 7.03023i −0.417951 + 0.303659i
\(537\) 6.90583 9.50506i 0.298009 0.410174i
\(538\) −14.3504 + 19.7517i −0.618691 + 0.851555i
\(539\) −11.5006 + 8.35567i −0.495366 + 0.359904i
\(540\) 2.22294 + 0.241934i 0.0956602 + 0.0104112i
\(541\) −25.0000 18.1636i −1.07483 0.780913i −0.0980596 0.995181i \(-0.531264\pi\)
−0.976775 + 0.214268i \(0.931264\pi\)
\(542\) −2.61209 + 0.848720i −0.112199 + 0.0364557i
\(543\) 4.03402i 0.173116i
\(544\) −0.512289 1.57666i −0.0219642 0.0675989i
\(545\) 5.29963 + 9.25793i 0.227011 + 0.396566i
\(546\) 4.19663 12.9159i 0.179599 0.552749i
\(547\) −29.7315 9.66035i −1.27123 0.413047i −0.405745 0.913986i \(-0.632988\pi\)
−0.865482 + 0.500940i \(0.832988\pi\)
\(548\) −1.03872 1.42968i −0.0443721 0.0610730i
\(549\) 0.0862540 0.00368123
\(550\) −1.76511 4.04454i −0.0752645 0.172460i
\(551\) 19.2471 0.819953
\(552\) −3.44056 4.73553i −0.146440 0.201558i
\(553\) −57.4945 18.6811i −2.44491 0.794401i
\(554\) −0.921114 + 2.83490i −0.0391344 + 0.120443i
\(555\) 3.82198 0.797663i 0.162234 0.0338589i
\(556\) 3.39811 + 10.4583i 0.144112 + 0.443531i
\(557\) 34.8113i 1.47500i 0.675347 + 0.737500i \(0.263994\pi\)
−0.675347 + 0.737500i \(0.736006\pi\)
\(558\) 9.93109 3.22681i 0.420416 0.136602i
\(559\) −5.19185 3.77210i −0.219592 0.159543i
\(560\) −9.32836 + 5.33995i −0.394195 + 0.225654i
\(561\) 1.18372 0.860020i 0.0499765 0.0363101i
\(562\) 2.26988 3.12422i 0.0957490 0.131787i
\(563\) −2.87518 + 3.95734i −0.121174 + 0.166782i −0.865295 0.501263i \(-0.832869\pi\)
0.744121 + 0.668045i \(0.232869\pi\)
\(564\) −7.05824 + 5.12811i −0.297206 + 0.215932i
\(565\) 9.38393 5.37176i 0.394785 0.225992i
\(566\) 13.5121 + 9.81713i 0.567957 + 0.412645i
\(567\) 4.57167 1.48543i 0.191992 0.0623820i
\(568\) 3.50758i 0.147175i
\(569\) 0.906980 + 2.79140i 0.0380226 + 0.117021i 0.968266 0.249921i \(-0.0804046\pi\)
−0.930244 + 0.366942i \(0.880405\pi\)
\(570\) 11.7739 2.45726i 0.493153 0.102923i
\(571\) 9.85310 30.3247i 0.412339 1.26905i −0.502270 0.864711i \(-0.667501\pi\)
0.914609 0.404339i \(-0.132499\pi\)
\(572\) 2.37144 + 0.770528i 0.0991550 + 0.0322174i
\(573\) 7.00730 + 9.64472i 0.292734 + 0.402914i
\(574\) −8.34102 −0.348147
\(575\) −6.29603 + 28.5820i −0.262562 + 1.19195i
\(576\) 1.00000 0.0416667
\(577\) 21.7254 + 29.9024i 0.904439 + 1.24485i 0.969030 + 0.246942i \(0.0794256\pi\)
−0.0645913 + 0.997912i \(0.520574\pi\)
\(578\) 13.5542 + 4.40401i 0.563779 + 0.183183i
\(579\) −3.64913 + 11.2309i −0.151653 + 0.466739i
\(580\) −3.97503 6.94399i −0.165054 0.288334i
\(581\) 19.7177 + 60.6847i 0.818027 + 2.51763i
\(582\) 18.2706i 0.757341i
\(583\) −2.97930 + 0.968032i −0.123390 + 0.0400918i
\(584\) 5.84757 + 4.24851i 0.241974 + 0.175805i
\(585\) 6.28026 + 0.683513i 0.259657 + 0.0282598i
\(586\) 0.407059 0.295746i 0.0168155 0.0122171i
\(587\) 16.4935 22.7014i 0.680761 0.936988i −0.319181 0.947694i \(-0.603408\pi\)
0.999943 + 0.0107059i \(0.00340786\pi\)
\(588\) −9.46727 + 13.0306i −0.390424 + 0.537372i
\(589\) 45.4402 33.0143i 1.87233 1.36033i
\(590\) 9.49450 21.1150i 0.390882 0.869292i
\(591\) 5.88837 + 4.27815i 0.242215 + 0.175980i
\(592\) 1.66061 0.539565i 0.0682507 0.0221760i
\(593\) 40.6263i 1.66832i 0.551521 + 0.834161i \(0.314048\pi\)
−0.551521 + 0.834161i \(0.685952\pi\)
\(594\) 0.272734 + 0.839389i 0.0111904 + 0.0344405i
\(595\) −1.92796 + 17.7145i −0.0790389 + 0.726225i
\(596\) 0.899079 2.76708i 0.0368277 0.113344i
\(597\) 2.16792 + 0.704401i 0.0887272 + 0.0288292i
\(598\) −9.72029 13.3788i −0.397492 0.547101i
\(599\) 22.6989 0.927451 0.463725 0.885979i \(-0.346512\pi\)
0.463725 + 0.885979i \(0.346512\pi\)
\(600\) −3.31815 3.74031i −0.135463 0.152697i
\(601\) 32.9640 1.34463 0.672316 0.740265i \(-0.265300\pi\)
0.672316 + 0.740265i \(0.265300\pi\)
\(602\) 6.41805 + 8.83368i 0.261580 + 0.360034i
\(603\) −11.3751 3.69601i −0.463232 0.150513i
\(604\) 0.414651 1.27616i 0.0168719 0.0519264i
\(605\) −15.3555 + 16.9280i −0.624290 + 0.688221i
\(606\) −1.68757 5.19382i −0.0685530 0.210984i
\(607\) 8.32854i 0.338045i 0.985612 + 0.169023i \(0.0540611\pi\)
−0.985612 + 0.169023i \(0.945939\pi\)
\(608\) 5.11563 1.66217i 0.207466 0.0674098i
\(609\) −13.9155 10.1102i −0.563885 0.409686i
\(610\) −0.142853 0.129583i −0.00578396 0.00524666i
\(611\) −19.9409 + 14.4879i −0.806724 + 0.586120i
\(612\) 0.974432 1.34119i 0.0393891 0.0542144i
\(613\) 4.33351 5.96457i 0.175029 0.240907i −0.712485 0.701687i \(-0.752430\pi\)
0.887514 + 0.460780i \(0.152430\pi\)
\(614\) −6.98485 + 5.07479i −0.281886 + 0.204802i
\(615\) −0.792698 3.79819i −0.0319647 0.153158i
\(616\) −3.43228 2.49370i −0.138291 0.100474i
\(617\) 8.43210 2.73975i 0.339463 0.110298i −0.134324 0.990937i \(-0.542886\pi\)
0.473788 + 0.880639i \(0.342886\pi\)
\(618\) 6.64235i 0.267194i
\(619\) 0.139486 + 0.429292i 0.00560640 + 0.0172547i 0.953821 0.300377i \(-0.0971125\pi\)
−0.948214 + 0.317632i \(0.897112\pi\)
\(620\) −21.2955 9.57567i −0.855250 0.384568i
\(621\) 1.80881 5.56695i 0.0725851 0.223394i
\(622\) 19.2755 + 6.26298i 0.772875 + 0.251122i
\(623\) −52.7980 72.6703i −2.11531 2.91147i
\(624\) 2.82520 0.113099
\(625\) −2.97977 + 24.8218i −0.119191 + 0.992871i
\(626\) −17.0302 −0.680664
\(627\) 2.79041 + 3.84067i 0.111438 + 0.153382i
\(628\) 7.90489 + 2.56845i 0.315439 + 0.102492i
\(629\) 0.894493 2.75297i 0.0356658 0.109768i
\(630\) −9.80318 4.40806i −0.390568 0.175621i
\(631\) −9.74952 30.0059i −0.388122 1.19452i −0.934190 0.356776i \(-0.883876\pi\)
0.546068 0.837741i \(-0.316124\pi\)
\(632\) 12.5762i 0.500256i
\(633\) −1.18806 + 0.386023i −0.0472210 + 0.0153430i
\(634\) −2.28270 1.65848i −0.0906575 0.0658665i
\(635\) 0.823127 + 3.94399i 0.0326648 + 0.156512i
\(636\) −2.87150 + 2.08626i −0.113862 + 0.0827257i
\(637\) −26.7469 + 36.8140i −1.05975 + 1.45862i
\(638\) 1.85630 2.55498i 0.0734916 0.101153i
\(639\) −2.83769 + 2.06170i −0.112257 + 0.0815598i
\(640\) −1.65619 1.50234i −0.0654667 0.0593852i
\(641\) −15.1110 10.9788i −0.596848 0.433635i 0.247911 0.968783i \(-0.420256\pi\)
−0.844759 + 0.535147i \(0.820256\pi\)
\(642\) −13.8137 + 4.48833i −0.545182 + 0.177140i
\(643\) 15.5969i 0.615083i −0.951535 0.307541i \(-0.900494\pi\)
0.951535 0.307541i \(-0.0995063\pi\)
\(644\) 8.69485 + 26.7600i 0.342625 + 1.05449i
\(645\) −3.41259 + 3.76206i −0.134371 + 0.148131i
\(646\) 2.75555 8.48070i 0.108416 0.333669i
\(647\) 25.0683 + 8.14520i 0.985538 + 0.320221i 0.757072 0.653331i \(-0.226629\pi\)
0.228466 + 0.973552i \(0.426629\pi\)
\(648\) 0.587785 + 0.809017i 0.0230904 + 0.0317812i
\(649\) 9.13798 0.358697
\(650\) −9.37444 10.5671i −0.367696 0.414476i
\(651\) −50.1948 −1.96729
\(652\) 3.66704 + 5.04724i 0.143612 + 0.197665i
\(653\) −18.6583 6.06245i −0.730156 0.237242i −0.0797351 0.996816i \(-0.525407\pi\)
−0.650421 + 0.759574i \(0.725407\pi\)
\(654\) −1.47421 + 4.53716i −0.0576462 + 0.177417i
\(655\) 3.87856 35.6370i 0.151548 1.39245i
\(656\) −0.536207 1.65028i −0.0209354 0.0644324i
\(657\) 7.22800i 0.281991i
\(658\) 39.8854 12.9596i 1.55489 0.505216i
\(659\) 18.7179 + 13.5993i 0.729145 + 0.529755i 0.889293 0.457338i \(-0.151197\pi\)
−0.160148 + 0.987093i \(0.551197\pi\)
\(660\) 0.809348 1.79993i 0.0315038 0.0700621i
\(661\) −14.1554 + 10.2845i −0.550581 + 0.400021i −0.828000 0.560729i \(-0.810521\pi\)
0.277419 + 0.960749i \(0.410521\pi\)
\(662\) −2.39404 + 3.29512i −0.0930472 + 0.128068i
\(663\) 2.75297 3.78913i 0.106916 0.147158i
\(664\) −10.7390 + 7.80231i −0.416752 + 0.302788i
\(665\) −57.4764 6.25545i −2.22884 0.242576i
\(666\) 1.41260 + 1.02631i 0.0547372 + 0.0397689i
\(667\) −19.9200 + 6.47241i −0.771306 + 0.250613i
\(668\) 14.8368i 0.574054i
\(669\) −2.73237 8.40936i −0.105639 0.325125i
\(670\) 13.2868 + 23.2106i 0.513312 + 0.896705i
\(671\) 0.0235244 0.0724006i 0.000908149 0.00279500i
\(672\) −4.57167 1.48543i −0.176356 0.0573016i
\(673\) 0.608086 + 0.836959i 0.0234400 + 0.0322624i 0.820576 0.571537i \(-0.193653\pi\)
−0.797136 + 0.603800i \(0.793653\pi\)
\(674\) 9.04782 0.348509
\(675\) 1.07561 4.88294i 0.0414003 0.187944i
\(676\) −5.01824 −0.193009
\(677\) 5.53353 + 7.61625i 0.212671 + 0.292716i 0.902004 0.431729i \(-0.142096\pi\)
−0.689333 + 0.724445i \(0.742096\pi\)
\(678\) 4.59891 + 1.49428i 0.176620 + 0.0573873i
\(679\) 27.1396 83.5272i 1.04152 3.20548i
\(680\) −3.62877 + 0.757340i −0.139157 + 0.0290427i
\(681\) −5.46860 16.8306i −0.209557 0.644950i
\(682\) 9.21610i 0.352903i
\(683\) 13.1823 4.28318i 0.504405 0.163891i −0.0457510 0.998953i \(-0.514568\pi\)
0.550156 + 0.835062i \(0.314568\pi\)
\(684\) 4.35161 + 3.16163i 0.166388 + 0.120888i
\(685\) −3.42940 + 1.96314i −0.131031 + 0.0750075i
\(686\) 35.4149 25.7305i 1.35215 0.982394i
\(687\) −5.23930 + 7.21128i −0.199892 + 0.275128i
\(688\) −1.33516 + 1.83769i −0.0509026 + 0.0700614i
\(689\) −8.11255 + 5.89411i −0.309064 + 0.224548i
\(690\) −11.3592 + 6.50249i −0.432437 + 0.247545i
\(691\) 7.36726 + 5.35263i 0.280264 + 0.203624i 0.719032 0.694977i \(-0.244585\pi\)
−0.438769 + 0.898600i \(0.644585\pi\)
\(692\) 15.2520 4.95566i 0.579793 0.188386i
\(693\) 4.24254i 0.161161i
\(694\) −2.68429 8.26141i −0.101894 0.313599i
\(695\) 24.0703 5.02357i 0.913039 0.190555i
\(696\) 1.10574 3.40313i 0.0419131 0.128995i
\(697\) −2.73583 0.888926i −0.103627 0.0336705i
\(698\) 15.7706 + 21.7063i 0.596925 + 0.821596i
\(699\) 9.59063 0.362751
\(700\) 9.61354 + 22.0283i 0.363358 + 0.832592i
\(701\) −22.6848 −0.856791 −0.428396 0.903591i \(-0.640921\pi\)
−0.428396 + 0.903591i \(0.640921\pi\)
\(702\) 1.66061 + 2.28564i 0.0626757 + 0.0862657i
\(703\) 8.93224 + 2.90226i 0.336886 + 0.109461i
\(704\) 0.272734 0.839389i 0.0102790 0.0316357i
\(705\) 9.69186 + 16.9307i 0.365017 + 0.637648i
\(706\) −8.76060 26.9623i −0.329709 1.01474i
\(707\) 26.2512i 0.987278i
\(708\) 9.84690 3.19945i 0.370069 0.120243i
\(709\) 18.1615 + 13.1951i 0.682069 + 0.495552i 0.874043 0.485848i \(-0.161489\pi\)
−0.191974 + 0.981400i \(0.561489\pi\)
\(710\) 7.79715 + 0.848604i 0.292622 + 0.0318476i
\(711\) 10.1744 7.39213i 0.381570 0.277227i
\(712\) 10.9837 15.1178i 0.411632 0.566563i
\(713\) −35.9269 + 49.4492i −1.34547 + 1.85189i
\(714\) −6.44702 + 4.68404i −0.241274 + 0.175296i
\(715\) 2.28657 5.08516i 0.0855129 0.190174i
\(716\) −9.50506 6.90583i −0.355221 0.258083i
\(717\) 8.71452 2.83152i 0.325450 0.105745i
\(718\) 8.68830i 0.324245i
\(719\) −14.1238 43.4684i −0.526727 1.62110i −0.760875 0.648898i \(-0.775230\pi\)
0.234148 0.972201i \(-0.424770\pi\)
\(720\) 0.241934 2.22294i 0.00901636 0.0828441i
\(721\) 9.86672 30.3666i 0.367456 1.13091i
\(722\) 9.44630 + 3.06929i 0.351555 + 0.114227i
\(723\) −1.46682 2.01891i −0.0545517 0.0750840i
\(724\) 4.03402 0.149923
\(725\) −16.3978 + 7.15628i −0.608998 + 0.265777i
\(726\) −10.2210 −0.379338
\(727\) −1.28973 1.77517i −0.0478336 0.0658373i 0.784430 0.620217i \(-0.212956\pi\)
−0.832264 + 0.554380i \(0.812956\pi\)
\(728\) −12.9159 4.19663i −0.478695 0.155537i
\(729\) −0.309017 + 0.951057i −0.0114451 + 0.0352243i
\(730\) 10.8589 11.9710i 0.401907 0.443065i
\(731\) 1.16367 + 3.58141i 0.0430400 + 0.132463i
\(732\) 0.0862540i 0.00318804i
\(733\) 8.72887 2.83618i 0.322408 0.104757i −0.143342 0.989673i \(-0.545785\pi\)
0.465750 + 0.884917i \(0.345785\pi\)
\(734\) −10.0895 7.33046i −0.372411 0.270572i
\(735\) 26.6758 + 24.1977i 0.983950 + 0.892547i
\(736\) −4.73553 + 3.44056i −0.174554 + 0.126821i
\(737\) −6.20478 + 8.54014i −0.228556 + 0.314580i
\(738\) 1.01993 1.40381i 0.0375440 0.0516749i
\(739\) −35.2025 + 25.5761i −1.29495 + 0.940833i −0.999893 0.0146478i \(-0.995337\pi\)
−0.295053 + 0.955481i \(0.595337\pi\)
\(740\) −0.797663 3.82198i −0.0293227 0.140499i
\(741\) 12.2942 + 8.93224i 0.451638 + 0.328134i
\(742\) 16.2265 5.27232i 0.595695 0.193553i
\(743\) 8.61668i 0.316115i 0.987430 + 0.158058i \(0.0505232\pi\)
−0.987430 + 0.158058i \(0.949477\pi\)
\(744\) −3.22681 9.93109i −0.118300 0.364091i
\(745\) −5.93354 2.66805i −0.217388 0.0977499i
\(746\) −4.01684 + 12.3626i −0.147067 + 0.452625i
\(747\) −12.6244 4.10192i −0.461903 0.150081i
\(748\) −0.860020 1.18372i −0.0314454 0.0432809i
\(749\) 69.8186 2.55112
\(750\) −9.11725 + 6.47114i −0.332915 + 0.236293i
\(751\) 1.11603 0.0407245 0.0203623 0.999793i \(-0.493518\pi\)
0.0203623 + 0.999793i \(0.493518\pi\)
\(752\) 5.12811 + 7.05824i 0.187003 + 0.257388i
\(753\) −8.28619 2.69235i −0.301966 0.0981146i
\(754\) 3.12395 9.61453i 0.113768 0.350141i
\(755\) −2.73652 1.23049i −0.0995921 0.0447822i
\(756\) −1.48543 4.57167i −0.0540244 0.166270i
\(757\) 37.2729i 1.35471i −0.735658 0.677354i \(-0.763127\pi\)
0.735658 0.677354i \(-0.236873\pi\)
\(758\) 1.66651 0.541481i 0.0605302 0.0196675i
\(759\) −4.17951 3.03659i −0.151707 0.110221i
\(760\) −2.45726 11.7739i −0.0891340 0.427083i
\(761\) 16.1999 11.7699i 0.587245 0.426659i −0.254084 0.967182i \(-0.581774\pi\)
0.841329 + 0.540524i \(0.181774\pi\)
\(762\) −1.05908 + 1.45769i −0.0383663 + 0.0528067i
\(763\) 13.4792 18.5526i 0.487981 0.671648i
\(764\) 9.64472 7.00730i 0.348934 0.253515i
\(765\) −2.74564 2.49059i −0.0992688 0.0900473i
\(766\) −27.6165 20.0646i −0.997825 0.724962i
\(767\) 27.8195 9.03910i 1.00450 0.326383i
\(768\) 1.00000i 0.0360844i