Properties

Label 150.2.h.b.109.3
Level 150
Weight 2
Character 150.109
Analytic conductor 1.198
Analytic rank 0
Dimension 16
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.h (of order \(10\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 109.3
Root \(0.543374 + 0.809017i\)
Character \(\chi\) = 150.109
Dual form 150.2.h.b.139.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.587785 - 0.809017i) q^{2} +(0.951057 - 0.309017i) q^{3} +(-0.309017 - 0.951057i) q^{4} +(-1.36682 - 1.76969i) q^{5} +(0.309017 - 0.951057i) q^{6} -0.533559i q^{7} +(-0.951057 - 0.309017i) q^{8} +(0.809017 - 0.587785i) q^{9} +O(q^{10})\) \(q+(0.587785 - 0.809017i) q^{2} +(0.951057 - 0.309017i) q^{3} +(-0.309017 - 0.951057i) q^{4} +(-1.36682 - 1.76969i) q^{5} +(0.309017 - 0.951057i) q^{6} -0.533559i q^{7} +(-0.951057 - 0.309017i) q^{8} +(0.809017 - 0.587785i) q^{9} +(-2.23511 + 0.0655797i) q^{10} +(1.16034 + 0.843033i) q^{11} +(-0.587785 - 0.809017i) q^{12} +(3.86406 + 5.31842i) q^{13} +(-0.431658 - 0.313618i) q^{14} +(-1.84679 - 1.26071i) q^{15} +(-0.809017 + 0.587785i) q^{16} +(-0.911505 - 0.296166i) q^{17} -1.00000i q^{18} +(-0.0657863 + 0.202470i) q^{19} +(-1.26071 + 1.84679i) q^{20} +(-0.164879 - 0.507445i) q^{21} +(1.36406 - 0.443209i) q^{22} +(-2.21243 + 3.04515i) q^{23} -1.00000 q^{24} +(-1.26362 + 4.83769i) q^{25} +6.57392 q^{26} +(0.587785 - 0.809017i) q^{27} +(-0.507445 + 0.164879i) q^{28} +(-1.91420 - 5.89130i) q^{29} +(-2.10545 + 0.753056i) q^{30} +(-0.722398 + 2.22331i) q^{31} +1.00000i q^{32} +(1.36406 + 0.443209i) q^{33} +(-0.775373 + 0.563341i) q^{34} +(-0.944235 + 0.729278i) q^{35} +(-0.809017 - 0.587785i) q^{36} +(-2.38812 - 3.28696i) q^{37} +(0.125133 + 0.172231i) q^{38} +(5.31842 + 3.86406i) q^{39} +(0.753056 + 2.10545i) q^{40} +(6.42486 - 4.66793i) q^{41} +(-0.507445 - 0.164879i) q^{42} +11.3607i q^{43} +(0.443209 - 1.36406i) q^{44} +(-2.14598 - 0.628316i) q^{45} +(1.16314 + 3.57979i) q^{46} +(-9.65219 + 3.13619i) q^{47} +(-0.587785 + 0.809017i) q^{48} +6.71531 q^{49} +(3.17104 + 3.86581i) q^{50} -0.958413 q^{51} +(3.86406 - 5.31842i) q^{52} +(-3.07528 + 0.999220i) q^{53} +(-0.309017 - 0.951057i) q^{54} +(-0.0940579 - 3.20571i) q^{55} +(-0.164879 + 0.507445i) q^{56} +0.212889i q^{57} +(-5.89130 - 1.91420i) q^{58} +(6.08749 - 4.42282i) q^{59} +(-0.628316 + 2.14598i) q^{60} +(-10.1710 - 7.38968i) q^{61} +(1.37408 + 1.89126i) q^{62} +(-0.313618 - 0.431658i) q^{63} +(0.809017 + 0.587785i) q^{64} +(4.13050 - 14.1075i) q^{65} +(1.16034 - 0.843033i) q^{66} +(-6.57451 - 2.13619i) q^{67} +0.958413i q^{68} +(-1.16314 + 3.57979i) q^{69} +(0.0349907 + 1.19256i) q^{70} +(3.12869 + 9.62913i) q^{71} +(-0.951057 + 0.309017i) q^{72} +(8.21552 - 11.3077i) q^{73} -4.06291 q^{74} +(0.293155 + 4.99140i) q^{75} +0.212889 q^{76} +(0.449808 - 0.619107i) q^{77} +(6.25217 - 2.03145i) q^{78} +(-4.79840 - 14.7679i) q^{79} +(2.14598 + 0.628316i) q^{80} +(0.309017 - 0.951057i) q^{81} -7.94156i q^{82} +(-15.5315 - 5.04650i) q^{83} +(-0.431658 + 0.313618i) q^{84} +(0.721739 + 2.01789i) q^{85} +(9.19103 + 6.67767i) q^{86} +(-3.64102 - 5.01144i) q^{87} +(-0.843033 - 1.16034i) q^{88} +(4.54845 + 3.30464i) q^{89} +(-1.76969 + 1.36682i) q^{90} +(2.83769 - 2.06170i) q^{91} +(3.57979 + 1.16314i) q^{92} +2.33773i q^{93} +(-3.13619 + 9.65219i) q^{94} +(0.448227 - 0.160317i) q^{95} +(0.309017 + 0.951057i) q^{96} +(5.29318 - 1.71986i) q^{97} +(3.94716 - 5.43280i) q^{98} +1.43425 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 4q^{4} + 4q^{5} - 4q^{6} + 4q^{9} + O(q^{10}) \) \( 16q + 4q^{4} + 4q^{5} - 4q^{6} + 4q^{9} + 2q^{10} + 2q^{11} + 20q^{13} + 2q^{14} - 2q^{15} - 4q^{16} - 30q^{17} - 4q^{20} - 2q^{21} - 20q^{22} - 10q^{23} - 16q^{24} + 24q^{25} + 4q^{26} - 10q^{29} - 6q^{30} - 18q^{31} - 20q^{33} + 12q^{34} - 34q^{35} - 4q^{36} + 20q^{37} + 10q^{38} - 4q^{39} - 2q^{40} + 22q^{41} + 8q^{44} - 4q^{45} - 6q^{46} - 50q^{47} - 52q^{49} + 12q^{50} + 28q^{51} + 20q^{52} + 30q^{53} + 4q^{54} + 18q^{55} - 2q^{56} - 30q^{58} + 20q^{59} + 2q^{60} + 12q^{61} + 50q^{62} + 10q^{63} + 4q^{64} - 8q^{65} + 2q^{66} - 50q^{67} + 6q^{69} - 12q^{70} - 28q^{71} + 20q^{73} + 12q^{74} + 28q^{75} + 20q^{76} + 100q^{77} - 20q^{79} + 4q^{80} - 4q^{81} - 30q^{83} + 2q^{84} - 4q^{85} - 6q^{86} + 10q^{87} + 70q^{89} + 8q^{90} + 12q^{91} - 30q^{92} + 2q^{94} - 30q^{95} - 4q^{96} - 10q^{97} + 60q^{98} - 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.587785 0.809017i 0.415627 0.572061i
\(3\) 0.951057 0.309017i 0.549093 0.178411i
\(4\) −0.309017 0.951057i −0.154508 0.475528i
\(5\) −1.36682 1.76969i −0.611259 0.791430i
\(6\) 0.309017 0.951057i 0.126156 0.388267i
\(7\) 0.533559i 0.201666i −0.994903 0.100833i \(-0.967849\pi\)
0.994903 0.100833i \(-0.0321508\pi\)
\(8\) −0.951057 0.309017i −0.336249 0.109254i
\(9\) 0.809017 0.587785i 0.269672 0.195928i
\(10\) −2.23511 + 0.0655797i −0.706803 + 0.0207381i
\(11\) 1.16034 + 0.843033i 0.349854 + 0.254184i 0.748808 0.662787i \(-0.230627\pi\)
−0.398954 + 0.916971i \(0.630627\pi\)
\(12\) −0.587785 0.809017i −0.169679 0.233543i
\(13\) 3.86406 + 5.31842i 1.07170 + 1.47506i 0.868347 + 0.495957i \(0.165183\pi\)
0.203349 + 0.979106i \(0.434817\pi\)
\(14\) −0.431658 0.313618i −0.115366 0.0838180i
\(15\) −1.84679 1.26071i −0.476838 0.325513i
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) −0.911505 0.296166i −0.221072 0.0718308i 0.196387 0.980527i \(-0.437079\pi\)
−0.417459 + 0.908696i \(0.637079\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −0.0657863 + 0.202470i −0.0150924 + 0.0464497i −0.958319 0.285700i \(-0.907774\pi\)
0.943227 + 0.332150i \(0.107774\pi\)
\(20\) −1.26071 + 1.84679i −0.281903 + 0.412954i
\(21\) −0.164879 0.507445i −0.0359795 0.110734i
\(22\) 1.36406 0.443209i 0.290818 0.0944924i
\(23\) −2.21243 + 3.04515i −0.461324 + 0.634957i −0.974783 0.223157i \(-0.928364\pi\)
0.513459 + 0.858114i \(0.328364\pi\)
\(24\) −1.00000 −0.204124
\(25\) −1.26362 + 4.83769i −0.252724 + 0.967538i
\(26\) 6.57392 1.28925
\(27\) 0.587785 0.809017i 0.113119 0.155695i
\(28\) −0.507445 + 0.164879i −0.0958981 + 0.0311592i
\(29\) −1.91420 5.89130i −0.355458 1.09399i −0.955743 0.294201i \(-0.904946\pi\)
0.600285 0.799786i \(-0.295054\pi\)
\(30\) −2.10545 + 0.753056i −0.384400 + 0.137489i
\(31\) −0.722398 + 2.22331i −0.129747 + 0.399319i −0.994736 0.102471i \(-0.967325\pi\)
0.864989 + 0.501790i \(0.167325\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 1.36406 + 0.443209i 0.237452 + 0.0771527i
\(34\) −0.775373 + 0.563341i −0.132975 + 0.0966122i
\(35\) −0.944235 + 0.729278i −0.159605 + 0.123270i
\(36\) −0.809017 0.587785i −0.134836 0.0979642i
\(37\) −2.38812 3.28696i −0.392604 0.540373i 0.566264 0.824224i \(-0.308388\pi\)
−0.958869 + 0.283850i \(0.908388\pi\)
\(38\) 0.125133 + 0.172231i 0.0202993 + 0.0279395i
\(39\) 5.31842 + 3.86406i 0.851628 + 0.618744i
\(40\) 0.753056 + 2.10545i 0.119069 + 0.332900i
\(41\) 6.42486 4.66793i 1.00339 0.729009i 0.0405813 0.999176i \(-0.487079\pi\)
0.962813 + 0.270167i \(0.0870790\pi\)
\(42\) −0.507445 0.164879i −0.0783004 0.0254414i
\(43\) 11.3607i 1.73250i 0.499614 + 0.866248i \(0.333475\pi\)
−0.499614 + 0.866248i \(0.666525\pi\)
\(44\) 0.443209 1.36406i 0.0668162 0.205639i
\(45\) −2.14598 0.628316i −0.319903 0.0936638i
\(46\) 1.16314 + 3.57979i 0.171496 + 0.527811i
\(47\) −9.65219 + 3.13619i −1.40792 + 0.457460i −0.911742 0.410763i \(-0.865263\pi\)
−0.496175 + 0.868223i \(0.665263\pi\)
\(48\) −0.587785 + 0.809017i −0.0848395 + 0.116772i
\(49\) 6.71531 0.959331
\(50\) 3.17104 + 3.86581i 0.448453 + 0.546709i
\(51\) −0.958413 −0.134205
\(52\) 3.86406 5.31842i 0.535848 0.737532i
\(53\) −3.07528 + 0.999220i −0.422423 + 0.137253i −0.512512 0.858680i \(-0.671285\pi\)
0.0900889 + 0.995934i \(0.471285\pi\)
\(54\) −0.309017 0.951057i −0.0420519 0.129422i
\(55\) −0.0940579 3.20571i −0.0126828 0.432258i
\(56\) −0.164879 + 0.507445i −0.0220329 + 0.0678102i
\(57\) 0.212889i 0.0281978i
\(58\) −5.89130 1.91420i −0.773566 0.251347i
\(59\) 6.08749 4.42282i 0.792524 0.575802i −0.116188 0.993227i \(-0.537067\pi\)
0.908711 + 0.417425i \(0.137067\pi\)
\(60\) −0.628316 + 2.14598i −0.0811152 + 0.277045i
\(61\) −10.1710 7.38968i −1.30227 0.946151i −0.302290 0.953216i \(-0.597751\pi\)
−0.999975 + 0.00706498i \(0.997751\pi\)
\(62\) 1.37408 + 1.89126i 0.174509 + 0.240191i
\(63\) −0.313618 0.431658i −0.0395122 0.0543838i
\(64\) 0.809017 + 0.587785i 0.101127 + 0.0734732i
\(65\) 4.13050 14.1075i 0.512325 1.74982i
\(66\) 1.16034 0.843033i 0.142827 0.103770i
\(67\) −6.57451 2.13619i −0.803204 0.260977i −0.121487 0.992593i \(-0.538766\pi\)
−0.681717 + 0.731616i \(0.738766\pi\)
\(68\) 0.958413i 0.116225i
\(69\) −1.16314 + 3.57979i −0.140026 + 0.430956i
\(70\) 0.0349907 + 1.19256i 0.00418218 + 0.142538i
\(71\) 3.12869 + 9.62913i 0.371308 + 1.14277i 0.945936 + 0.324353i \(0.105147\pi\)
−0.574628 + 0.818415i \(0.694853\pi\)
\(72\) −0.951057 + 0.309017i −0.112083 + 0.0364180i
\(73\) 8.21552 11.3077i 0.961554 1.32347i 0.0153549 0.999882i \(-0.495112\pi\)
0.946199 0.323584i \(-0.104888\pi\)
\(74\) −4.06291 −0.472304
\(75\) 0.293155 + 4.99140i 0.0338507 + 0.576357i
\(76\) 0.212889 0.0244201
\(77\) 0.449808 0.619107i 0.0512604 0.0705538i
\(78\) 6.25217 2.03145i 0.707919 0.230017i
\(79\) −4.79840 14.7679i −0.539862 1.66152i −0.732903 0.680333i \(-0.761835\pi\)
0.193041 0.981191i \(-0.438165\pi\)
\(80\) 2.14598 + 0.628316i 0.239928 + 0.0702478i
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 7.94156i 0.876999i
\(83\) −15.5315 5.04650i −1.70481 0.553926i −0.715352 0.698764i \(-0.753734\pi\)
−0.989455 + 0.144838i \(0.953734\pi\)
\(84\) −0.431658 + 0.313618i −0.0470978 + 0.0342185i
\(85\) 0.721739 + 2.01789i 0.0782835 + 0.218871i
\(86\) 9.19103 + 6.67767i 0.991094 + 0.720072i
\(87\) −3.64102 5.01144i −0.390359 0.537283i
\(88\) −0.843033 1.16034i −0.0898676 0.123692i
\(89\) 4.54845 + 3.30464i 0.482135 + 0.350291i 0.802152 0.597120i \(-0.203689\pi\)
−0.320017 + 0.947412i \(0.603689\pi\)
\(90\) −1.76969 + 1.36682i −0.186542 + 0.144075i
\(91\) 2.83769 2.06170i 0.297471 0.216125i
\(92\) 3.57979 + 1.16314i 0.373219 + 0.121266i
\(93\) 2.33773i 0.242411i
\(94\) −3.13619 + 9.65219i −0.323473 + 0.995548i
\(95\) 0.448227 0.160317i 0.0459871 0.0164482i
\(96\) 0.309017 + 0.951057i 0.0315389 + 0.0970668i
\(97\) 5.29318 1.71986i 0.537441 0.174625i −0.0277049 0.999616i \(-0.508820\pi\)
0.565146 + 0.824991i \(0.308820\pi\)
\(98\) 3.94716 5.43280i 0.398724 0.548796i
\(99\) 1.43425 0.144148
\(100\) 4.99140 0.293155i 0.499140 0.0293155i
\(101\) −9.42708 −0.938029 −0.469015 0.883190i \(-0.655391\pi\)
−0.469015 + 0.883190i \(0.655391\pi\)
\(102\) −0.563341 + 0.775373i −0.0557791 + 0.0767733i
\(103\) 7.60723 2.47174i 0.749562 0.243548i 0.0907695 0.995872i \(-0.471067\pi\)
0.658793 + 0.752324i \(0.271067\pi\)
\(104\) −2.03145 6.25217i −0.199200 0.613076i
\(105\) −0.672662 + 0.985369i −0.0656451 + 0.0961622i
\(106\) −0.999220 + 3.07528i −0.0970529 + 0.298698i
\(107\) 18.9260i 1.82964i 0.403857 + 0.914822i \(0.367669\pi\)
−0.403857 + 0.914822i \(0.632331\pi\)
\(108\) −0.951057 0.309017i −0.0915155 0.0297352i
\(109\) −2.14813 + 1.56071i −0.205754 + 0.149489i −0.685891 0.727705i \(-0.740587\pi\)
0.480137 + 0.877194i \(0.340587\pi\)
\(110\) −2.64876 1.80817i −0.252549 0.172403i
\(111\) −3.28696 2.38812i −0.311985 0.226670i
\(112\) 0.313618 + 0.431658i 0.0296341 + 0.0407879i
\(113\) 1.80029 + 2.47788i 0.169357 + 0.233099i 0.885256 0.465104i \(-0.153983\pi\)
−0.715899 + 0.698203i \(0.753983\pi\)
\(114\) 0.172231 + 0.125133i 0.0161309 + 0.0117198i
\(115\) 8.41296 0.246843i 0.784513 0.0230182i
\(116\) −5.01144 + 3.64102i −0.465301 + 0.338061i
\(117\) 6.25217 + 2.03145i 0.578014 + 0.187808i
\(118\) 7.52455i 0.692691i
\(119\) −0.158022 + 0.486342i −0.0144859 + 0.0445829i
\(120\) 1.36682 + 1.76969i 0.124773 + 0.161550i
\(121\) −2.76351 8.50522i −0.251229 0.773202i
\(122\) −11.9567 + 3.88498i −1.08251 + 0.351730i
\(123\) 4.66793 6.42486i 0.420893 0.579310i
\(124\) 2.33773 0.209934
\(125\) 10.2884 4.37602i 0.920219 0.391404i
\(126\) −0.533559 −0.0475332
\(127\) −3.81036 + 5.24451i −0.338115 + 0.465375i −0.943890 0.330261i \(-0.892863\pi\)
0.605775 + 0.795636i \(0.292863\pi\)
\(128\) 0.951057 0.309017i 0.0840623 0.0273135i
\(129\) 3.51066 + 10.8047i 0.309096 + 0.951301i
\(130\) −8.98535 11.6338i −0.788068 1.02035i
\(131\) −2.92266 + 8.99503i −0.255354 + 0.785900i 0.738405 + 0.674357i \(0.235579\pi\)
−0.993760 + 0.111543i \(0.964421\pi\)
\(132\) 1.43425i 0.124836i
\(133\) 0.108029 + 0.0351009i 0.00936734 + 0.00304363i
\(134\) −5.59261 + 4.06327i −0.483128 + 0.351013i
\(135\) −2.23511 + 0.0655797i −0.192367 + 0.00564420i
\(136\) 0.775373 + 0.563341i 0.0664877 + 0.0483061i
\(137\) 7.25096 + 9.98010i 0.619492 + 0.852657i 0.997316 0.0732202i \(-0.0233276\pi\)
−0.377824 + 0.925877i \(0.623328\pi\)
\(138\) 2.21243 + 3.04515i 0.188335 + 0.259220i
\(139\) 3.67227 + 2.66806i 0.311478 + 0.226302i 0.732530 0.680734i \(-0.238339\pi\)
−0.421052 + 0.907036i \(0.638339\pi\)
\(140\) 0.985369 + 0.672662i 0.0832789 + 0.0568503i
\(141\) −8.21065 + 5.96538i −0.691461 + 0.502376i
\(142\) 9.62913 + 3.12869i 0.808059 + 0.262554i
\(143\) 9.42867i 0.788465i
\(144\) −0.309017 + 0.951057i −0.0257514 + 0.0792547i
\(145\) −7.80943 + 11.4399i −0.648538 + 0.950030i
\(146\) −4.31916 13.2930i −0.357456 1.10014i
\(147\) 6.38664 2.07515i 0.526761 0.171155i
\(148\) −2.38812 + 3.28696i −0.196302 + 0.270187i
\(149\) −11.0750 −0.907303 −0.453651 0.891179i \(-0.649879\pi\)
−0.453651 + 0.891179i \(0.649879\pi\)
\(150\) 4.21044 + 2.69670i 0.343781 + 0.220185i
\(151\) −1.63387 −0.132962 −0.0664812 0.997788i \(-0.521177\pi\)
−0.0664812 + 0.997788i \(0.521177\pi\)
\(152\) 0.125133 0.172231i 0.0101496 0.0139698i
\(153\) −0.911505 + 0.296166i −0.0736908 + 0.0239436i
\(154\) −0.236478 0.727804i −0.0190559 0.0586481i
\(155\) 4.92196 1.76044i 0.395342 0.141402i
\(156\) 2.03145 6.25217i 0.162647 0.500574i
\(157\) 6.64544i 0.530364i 0.964198 + 0.265182i \(0.0854320\pi\)
−0.964198 + 0.265182i \(0.914568\pi\)
\(158\) −14.7679 4.79840i −1.17487 0.381740i
\(159\) −2.61599 + 1.90063i −0.207462 + 0.150730i
\(160\) 1.76969 1.36682i 0.139906 0.108056i
\(161\) 1.62477 + 1.18046i 0.128050 + 0.0930335i
\(162\) −0.587785 0.809017i −0.0461808 0.0635624i
\(163\) −5.94451 8.18191i −0.465610 0.640857i 0.510051 0.860144i \(-0.329627\pi\)
−0.975660 + 0.219288i \(0.929627\pi\)
\(164\) −6.42486 4.66793i −0.501697 0.364504i
\(165\) −1.08007 3.01974i −0.0840835 0.235087i
\(166\) −13.2119 + 9.59902i −1.02544 + 0.745028i
\(167\) 12.1625 + 3.95185i 0.941166 + 0.305803i 0.739121 0.673573i \(-0.235241\pi\)
0.202045 + 0.979376i \(0.435241\pi\)
\(168\) 0.533559i 0.0411650i
\(169\) −9.33741 + 28.7376i −0.718262 + 2.21058i
\(170\) 2.05673 + 0.602186i 0.157744 + 0.0461856i
\(171\) 0.0657863 + 0.202470i 0.00503081 + 0.0154832i
\(172\) 10.8047 3.51066i 0.823851 0.267685i
\(173\) 8.02770 11.0492i 0.610335 0.840054i −0.386270 0.922386i \(-0.626237\pi\)
0.996605 + 0.0823317i \(0.0262367\pi\)
\(174\) −6.19448 −0.469602
\(175\) 2.58119 + 0.674216i 0.195120 + 0.0509659i
\(176\) −1.43425 −0.108111
\(177\) 4.42282 6.08749i 0.332439 0.457564i
\(178\) 5.34703 1.73735i 0.400776 0.130220i
\(179\) −0.924399 2.84501i −0.0690928 0.212646i 0.910548 0.413403i \(-0.135660\pi\)
−0.979641 + 0.200757i \(0.935660\pi\)
\(180\) 0.0655797 + 2.23511i 0.00488802 + 0.166595i
\(181\) 2.35559 7.24976i 0.175090 0.538871i −0.824548 0.565792i \(-0.808570\pi\)
0.999638 + 0.0269215i \(0.00857041\pi\)
\(182\) 3.50758i 0.259999i
\(183\) −11.9567 3.88498i −0.883868 0.287186i
\(184\) 3.04515 2.21243i 0.224491 0.163102i
\(185\) −2.55279 + 8.71891i −0.187685 + 0.641027i
\(186\) 1.89126 + 1.37408i 0.138674 + 0.100753i
\(187\) −0.807974 1.11208i −0.0590849 0.0813234i
\(188\) 5.96538 + 8.21065i 0.435070 + 0.598823i
\(189\) −0.431658 0.313618i −0.0313985 0.0228124i
\(190\) 0.133762 0.456855i 0.00970408 0.0331438i
\(191\) 6.79610 4.93766i 0.491749 0.357276i −0.314108 0.949387i \(-0.601705\pi\)
0.805856 + 0.592111i \(0.201705\pi\)
\(192\) 0.951057 + 0.309017i 0.0686366 + 0.0223014i
\(193\) 10.5266i 0.757723i 0.925453 + 0.378861i \(0.123684\pi\)
−0.925453 + 0.378861i \(0.876316\pi\)
\(194\) 1.71986 5.29318i 0.123479 0.380028i
\(195\) −0.431116 14.6934i −0.0308729 1.05222i
\(196\) −2.07515 6.38664i −0.148225 0.456189i
\(197\) 9.70843 3.15446i 0.691697 0.224746i 0.0579878 0.998317i \(-0.481532\pi\)
0.633709 + 0.773571i \(0.281532\pi\)
\(198\) 0.843033 1.16034i 0.0599117 0.0824614i
\(199\) −3.84318 −0.272436 −0.136218 0.990679i \(-0.543495\pi\)
−0.136218 + 0.990679i \(0.543495\pi\)
\(200\) 2.69670 4.21044i 0.190686 0.297723i
\(201\) −6.91285 −0.487595
\(202\) −5.54110 + 7.62667i −0.389870 + 0.536610i
\(203\) −3.14336 + 1.02134i −0.220620 + 0.0716839i
\(204\) 0.296166 + 0.911505i 0.0207358 + 0.0638181i
\(205\) −17.0424 4.98981i −1.19029 0.348503i
\(206\) 2.47174 7.60723i 0.172214 0.530021i
\(207\) 3.76401i 0.261617i
\(208\) −6.25217 2.03145i −0.433510 0.140856i
\(209\) −0.247023 + 0.179472i −0.0170869 + 0.0124144i
\(210\) 0.401800 + 1.12338i 0.0277268 + 0.0775206i
\(211\) −4.24669 3.08540i −0.292354 0.212408i 0.431934 0.901905i \(-0.357831\pi\)
−0.724288 + 0.689498i \(0.757831\pi\)
\(212\) 1.90063 + 2.61599i 0.130536 + 0.179667i
\(213\) 5.95113 + 8.19103i 0.407765 + 0.561240i
\(214\) 15.3114 + 11.1244i 1.04667 + 0.760450i
\(215\) 20.1050 15.5281i 1.37115 1.05900i
\(216\) −0.809017 + 0.587785i −0.0550466 + 0.0399937i
\(217\) 1.18627 + 0.385442i 0.0805292 + 0.0261655i
\(218\) 2.65524i 0.179836i
\(219\) 4.31916 13.2930i 0.291862 0.898258i
\(220\) −3.01974 + 1.08007i −0.203591 + 0.0728185i
\(221\) −1.94697 5.99217i −0.130968 0.403077i
\(222\) −3.86406 + 1.25551i −0.259338 + 0.0842642i
\(223\) 11.3315 15.5964i 0.758811 1.04441i −0.238501 0.971142i \(-0.576656\pi\)
0.997312 0.0732716i \(-0.0233440\pi\)
\(224\) 0.533559 0.0356499
\(225\) 1.82123 + 4.65651i 0.121416 + 0.310434i
\(226\) 3.06283 0.203736
\(227\) 4.96066 6.82776i 0.329250 0.453174i −0.612013 0.790848i \(-0.709640\pi\)
0.941263 + 0.337673i \(0.109640\pi\)
\(228\) 0.202470 0.0657863i 0.0134089 0.00435681i
\(229\) −1.84041 5.66419i −0.121618 0.374300i 0.871652 0.490125i \(-0.163049\pi\)
−0.993270 + 0.115825i \(0.963049\pi\)
\(230\) 4.74532 6.95132i 0.312897 0.458357i
\(231\) 0.236478 0.727804i 0.0155591 0.0478860i
\(232\) 6.19448i 0.406688i
\(233\) 1.99049 + 0.646750i 0.130401 + 0.0423700i 0.373491 0.927634i \(-0.378161\pi\)
−0.243089 + 0.970004i \(0.578161\pi\)
\(234\) 5.31842 3.86406i 0.347676 0.252601i
\(235\) 18.7429 + 12.7948i 1.22265 + 0.834642i
\(236\) −6.08749 4.42282i −0.396262 0.287901i
\(237\) −9.12709 12.5624i −0.592868 0.816013i
\(238\) 0.300576 + 0.413707i 0.0194834 + 0.0268167i
\(239\) 8.00797 + 5.81813i 0.517993 + 0.376344i 0.815847 0.578268i \(-0.196271\pi\)
−0.297855 + 0.954611i \(0.596271\pi\)
\(240\) 2.23511 0.0655797i 0.144275 0.00423315i
\(241\) 17.3588 12.6119i 1.11818 0.812406i 0.134249 0.990948i \(-0.457138\pi\)
0.983932 + 0.178542i \(0.0571379\pi\)
\(242\) −8.50522 2.76351i −0.546736 0.177645i
\(243\) 1.00000i 0.0641500i
\(244\) −3.88498 + 11.9567i −0.248711 + 0.765452i
\(245\) −9.17861 11.8840i −0.586400 0.759243i
\(246\) −2.45408 7.55288i −0.156466 0.481554i
\(247\) −1.33102 + 0.432474i −0.0846907 + 0.0275177i
\(248\) 1.37408 1.89126i 0.0872543 0.120095i
\(249\) −16.3308 −1.03492
\(250\) 2.50707 10.8956i 0.158561 0.689100i
\(251\) −4.10753 −0.259265 −0.129632 0.991562i \(-0.541380\pi\)
−0.129632 + 0.991562i \(0.541380\pi\)
\(252\) −0.313618 + 0.431658i −0.0197561 + 0.0271919i
\(253\) −5.13432 + 1.66824i −0.322792 + 0.104881i
\(254\) 2.00323 + 6.16529i 0.125694 + 0.386845i
\(255\) 1.30998 + 1.69610i 0.0820339 + 0.106214i
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 30.7748i 1.91968i −0.280552 0.959839i \(-0.590518\pi\)
0.280552 0.959839i \(-0.409482\pi\)
\(258\) 10.8047 + 3.51066i 0.672671 + 0.218564i
\(259\) −1.75379 + 1.27420i −0.108975 + 0.0791751i
\(260\) −14.6934 + 0.431116i −0.911247 + 0.0267367i
\(261\) −5.01144 3.64102i −0.310200 0.225374i
\(262\) 5.55924 + 7.65163i 0.343451 + 0.472719i
\(263\) −16.6771 22.9541i −1.02836 1.41541i −0.906174 0.422904i \(-0.861011\pi\)
−0.122183 0.992508i \(-0.538989\pi\)
\(264\) −1.16034 0.843033i −0.0714137 0.0518851i
\(265\) 5.97166 + 4.07655i 0.366836 + 0.250421i
\(266\) 0.0918954 0.0667659i 0.00563447 0.00409368i
\(267\) 5.34703 + 1.73735i 0.327233 + 0.106324i
\(268\) 6.91285i 0.422269i
\(269\) −3.29621 + 10.1447i −0.200974 + 0.618533i 0.798881 + 0.601489i \(0.205426\pi\)
−0.999855 + 0.0170443i \(0.994574\pi\)
\(270\) −1.26071 + 1.84679i −0.0767242 + 0.112392i
\(271\) 7.05917 + 21.7259i 0.428814 + 1.31975i 0.899295 + 0.437343i \(0.144080\pi\)
−0.470481 + 0.882410i \(0.655920\pi\)
\(272\) 0.911505 0.296166i 0.0552681 0.0179577i
\(273\) 2.06170 2.83769i 0.124780 0.171745i
\(274\) 12.3361 0.745250
\(275\) −5.54456 + 4.54807i −0.334349 + 0.274259i
\(276\) 3.76401 0.226567
\(277\) −18.4912 + 25.4510i −1.11103 + 1.52920i −0.291141 + 0.956680i \(0.594035\pi\)
−0.819889 + 0.572522i \(0.805965\pi\)
\(278\) 4.31701 1.40268i 0.258917 0.0841273i
\(279\) 0.722398 + 2.22331i 0.0432488 + 0.133106i
\(280\) 1.12338 0.401800i 0.0671348 0.0240121i
\(281\) −3.33074 + 10.2510i −0.198695 + 0.611522i 0.801218 + 0.598372i \(0.204186\pi\)
−0.999914 + 0.0131494i \(0.995814\pi\)
\(282\) 10.1489i 0.604359i
\(283\) 3.96046 + 1.28683i 0.235425 + 0.0764943i 0.424354 0.905497i \(-0.360501\pi\)
−0.188928 + 0.981991i \(0.560501\pi\)
\(284\) 8.19103 5.95113i 0.486048 0.353135i
\(285\) 0.376748 0.290981i 0.0223166 0.0172362i
\(286\) 7.62795 + 5.54203i 0.451050 + 0.327707i
\(287\) −2.49062 3.42804i −0.147017 0.202351i
\(288\) 0.587785 + 0.809017i 0.0346356 + 0.0476718i
\(289\) −13.0102 9.45244i −0.765304 0.556026i
\(290\) 4.66479 + 13.0422i 0.273926 + 0.765862i
\(291\) 4.50265 3.27137i 0.263950 0.191771i
\(292\) −13.2930 4.31916i −0.777914 0.252760i
\(293\) 17.9603i 1.04925i 0.851333 + 0.524626i \(0.175795\pi\)
−0.851333 + 0.524626i \(0.824205\pi\)
\(294\) 2.07515 6.38664i 0.121025 0.372477i
\(295\) −16.1475 4.72779i −0.940145 0.275263i
\(296\) 1.25551 + 3.86406i 0.0729749 + 0.224594i
\(297\) 1.36406 0.443209i 0.0791505 0.0257176i
\(298\) −6.50975 + 8.95990i −0.377099 + 0.519033i
\(299\) −24.7443 −1.43100
\(300\) 4.65651 1.82123i 0.268844 0.105149i
\(301\) 6.06163 0.349386
\(302\) −0.960365 + 1.32183i −0.0552628 + 0.0760627i
\(303\) −8.96568 + 2.91313i −0.515065 + 0.167355i
\(304\) −0.0657863 0.202470i −0.00377311 0.0116124i
\(305\) 0.824473 + 28.0999i 0.0472092 + 1.60900i
\(306\) −0.296166 + 0.911505i −0.0169307 + 0.0521073i
\(307\) 20.8174i 1.18811i −0.804423 0.594056i \(-0.797526\pi\)
0.804423 0.594056i \(-0.202474\pi\)
\(308\) −0.727804 0.236478i −0.0414705 0.0134746i
\(309\) 6.47109 4.70153i 0.368128 0.267460i
\(310\) 1.46883 5.01671i 0.0834240 0.284930i
\(311\) 15.7375 + 11.4339i 0.892390 + 0.648359i 0.936500 0.350667i \(-0.114045\pi\)
−0.0441099 + 0.999027i \(0.514045\pi\)
\(312\) −3.86406 5.31842i −0.218759 0.301096i
\(313\) 3.45800 + 4.75953i 0.195458 + 0.269024i 0.895485 0.445092i \(-0.146829\pi\)
−0.700027 + 0.714116i \(0.746829\pi\)
\(314\) 5.37627 + 3.90609i 0.303401 + 0.220433i
\(315\) −0.335244 + 1.14501i −0.0188888 + 0.0645138i
\(316\) −12.5624 + 9.12709i −0.706688 + 0.513439i
\(317\) −10.2344 3.32534i −0.574818 0.186770i 0.00715959 0.999974i \(-0.497721\pi\)
−0.581978 + 0.813205i \(0.697721\pi\)
\(318\) 3.23354i 0.181328i
\(319\) 2.74545 8.44962i 0.153716 0.473088i
\(320\) −0.0655797 2.23511i −0.00366602 0.124946i
\(321\) 5.84845 + 17.9997i 0.326429 + 1.00464i
\(322\) 1.91003 0.620606i 0.106442 0.0345850i
\(323\) 0.119929 0.165068i 0.00667304 0.00918465i
\(324\) −1.00000 −0.0555556
\(325\) −30.6116 + 11.9727i −1.69802 + 0.664123i
\(326\) −10.1134 −0.560129
\(327\) −1.56071 + 2.14813i −0.0863075 + 0.118792i
\(328\) −7.55288 + 2.45408i −0.417038 + 0.135504i
\(329\) 1.67334 + 5.15002i 0.0922543 + 0.283930i
\(330\) −3.07787 0.901164i −0.169431 0.0496074i
\(331\) −0.190692 + 0.586889i −0.0104814 + 0.0322584i −0.956160 0.292843i \(-0.905399\pi\)
0.945679 + 0.325102i \(0.105399\pi\)
\(332\) 16.3308i 0.896270i
\(333\) −3.86406 1.25551i −0.211749 0.0688014i
\(334\) 10.3461 7.51686i 0.566112 0.411304i
\(335\) 5.20576 + 14.5546i 0.284421 + 0.795205i
\(336\) 0.431658 + 0.313618i 0.0235489 + 0.0171093i
\(337\) 9.05814 + 12.4675i 0.493429 + 0.679146i 0.981016 0.193928i \(-0.0621229\pi\)
−0.487587 + 0.873074i \(0.662123\pi\)
\(338\) 17.7608 + 24.4456i 0.966060 + 1.32967i
\(339\) 2.47788 + 1.80029i 0.134580 + 0.0977781i
\(340\) 1.69610 1.30998i 0.0919837 0.0710434i
\(341\) −2.71255 + 1.97078i −0.146893 + 0.106724i
\(342\) 0.202470 + 0.0657863i 0.0109483 + 0.00355732i
\(343\) 7.31793i 0.395131i
\(344\) 3.51066 10.8047i 0.189282 0.582551i
\(345\) 7.92492 2.83451i 0.426664 0.152605i
\(346\) −4.22041 12.9891i −0.226891 0.698298i
\(347\) −21.5477 + 7.00126i −1.15674 + 0.375847i −0.823678 0.567058i \(-0.808081\pi\)
−0.333061 + 0.942905i \(0.608081\pi\)
\(348\) −3.64102 + 5.01144i −0.195179 + 0.268641i
\(349\) 16.9543 0.907544 0.453772 0.891118i \(-0.350078\pi\)
0.453772 + 0.891118i \(0.350078\pi\)
\(350\) 2.06264 1.69194i 0.110253 0.0904378i
\(351\) 6.57392 0.350890
\(352\) −0.843033 + 1.16034i −0.0449338 + 0.0618461i
\(353\) 5.76583 1.87343i 0.306884 0.0997127i −0.151526 0.988453i \(-0.548419\pi\)
0.458411 + 0.888740i \(0.348419\pi\)
\(354\) −2.32521 7.15627i −0.123584 0.380352i
\(355\) 12.7642 18.6981i 0.677456 0.992392i
\(356\) 1.73735 5.34703i 0.0920796 0.283392i
\(357\) 0.511370i 0.0270646i
\(358\) −2.84501 0.924399i −0.150363 0.0488560i
\(359\) 15.2894 11.1084i 0.806943 0.586279i −0.105999 0.994366i \(-0.533804\pi\)
0.912943 + 0.408088i \(0.133804\pi\)
\(360\) 1.84679 + 1.26071i 0.0973341 + 0.0664451i
\(361\) 15.3347 + 11.1413i 0.807087 + 0.586383i
\(362\) −4.48060 6.16702i −0.235495 0.324131i
\(363\) −5.25652 7.23497i −0.275896 0.379738i
\(364\) −2.83769 2.06170i −0.148735 0.108063i
\(365\) −31.2403 + 0.916613i −1.63519 + 0.0479777i
\(366\) −10.1710 + 7.38968i −0.531648 + 0.386265i
\(367\) −23.8224 7.74036i −1.24352 0.404044i −0.387924 0.921691i \(-0.626808\pi\)
−0.855594 + 0.517648i \(0.826808\pi\)
\(368\) 3.76401i 0.196213i
\(369\) 2.45408 7.55288i 0.127754 0.393187i
\(370\) 5.55325 + 7.19010i 0.288700 + 0.373795i
\(371\) 0.533143 + 1.64085i 0.0276794 + 0.0851885i
\(372\) 2.22331 0.722398i 0.115273 0.0374546i
\(373\) 6.99196 9.62360i 0.362030 0.498291i −0.588683 0.808364i \(-0.700353\pi\)
0.950713 + 0.310073i \(0.100353\pi\)
\(374\) −1.37461 −0.0710792
\(375\) 8.43255 7.34113i 0.435455 0.379094i
\(376\) 10.1489 0.523390
\(377\) 23.9358 32.9448i 1.23276 1.69675i
\(378\) −0.507445 + 0.164879i −0.0261001 + 0.00848045i
\(379\) −8.50366 26.1716i −0.436804 1.34434i −0.891227 0.453558i \(-0.850155\pi\)
0.454423 0.890786i \(-0.349845\pi\)
\(380\) −0.290981 0.376748i −0.0149270 0.0193268i
\(381\) −2.00323 + 6.16529i −0.102628 + 0.315858i
\(382\) 8.40045i 0.429804i
\(383\) 20.9531 + 6.80809i 1.07066 + 0.347877i 0.790743 0.612149i \(-0.209695\pi\)
0.279912 + 0.960026i \(0.409695\pi\)
\(384\) 0.809017 0.587785i 0.0412850 0.0299953i
\(385\) −1.71043 + 0.0501855i −0.0871718 + 0.00255769i
\(386\) 8.51621 + 6.18739i 0.433464 + 0.314930i
\(387\) 6.67767 + 9.19103i 0.339445 + 0.467206i
\(388\) −3.27137 4.50265i −0.166078 0.228587i
\(389\) 14.1491 + 10.2799i 0.717386 + 0.521212i 0.885548 0.464548i \(-0.153783\pi\)
−0.168162 + 0.985759i \(0.553783\pi\)
\(390\) −12.1406 8.28779i −0.614765 0.419669i
\(391\) 2.91851 2.12042i 0.147595 0.107234i
\(392\) −6.38664 2.07515i −0.322574 0.104811i
\(393\) 9.45794i 0.477090i
\(394\) 3.15446 9.70843i 0.158919 0.489104i
\(395\) −19.5762 + 28.6768i −0.984985 + 1.44288i
\(396\) −0.443209 1.36406i −0.0222721 0.0685464i
\(397\) 23.3000 7.57062i 1.16939 0.379959i 0.340976 0.940072i \(-0.389242\pi\)
0.828416 + 0.560113i \(0.189242\pi\)
\(398\) −2.25896 + 3.10920i −0.113232 + 0.155850i
\(399\) 0.113589 0.00568656
\(400\) −1.82123 4.65651i −0.0910617 0.232826i
\(401\) 1.04105 0.0519875 0.0259937 0.999662i \(-0.491725\pi\)
0.0259937 + 0.999662i \(0.491725\pi\)
\(402\) −4.06327 + 5.59261i −0.202658 + 0.278934i
\(403\) −14.6159 + 4.74899i −0.728069 + 0.236564i
\(404\) 2.91313 + 8.96568i 0.144934 + 0.446059i
\(405\) −2.10545 + 0.753056i −0.104621 + 0.0374196i
\(406\) −1.02134 + 3.14336i −0.0506882 + 0.156002i
\(407\) 5.82724i 0.288845i
\(408\) 0.911505 + 0.296166i 0.0451262 + 0.0146624i
\(409\) 18.0061 13.0822i 0.890345 0.646873i −0.0456231 0.998959i \(-0.514527\pi\)
0.935968 + 0.352085i \(0.114527\pi\)
\(410\) −14.0541 + 10.8547i −0.694084 + 0.536074i
\(411\) 9.98010 + 7.25096i 0.492282 + 0.357664i
\(412\) −4.70153 6.47109i −0.231628 0.318808i
\(413\) −2.35984 3.24804i −0.116120 0.159825i
\(414\) 3.04515 + 2.21243i 0.149661 + 0.108735i
\(415\) 12.2980 + 34.3837i 0.603686 + 1.68783i
\(416\) −5.31842 + 3.86406i −0.260757 + 0.189451i
\(417\) 4.31701 + 1.40268i 0.211405 + 0.0686897i
\(418\) 0.305337i 0.0149345i
\(419\) 7.14737 21.9973i 0.349172 1.07464i −0.610141 0.792293i \(-0.708887\pi\)
0.959312 0.282347i \(-0.0911129\pi\)
\(420\) 1.14501 + 0.335244i 0.0558706 + 0.0163582i
\(421\) 3.01643 + 9.28363i 0.147012 + 0.452457i 0.997264 0.0739190i \(-0.0235506\pi\)
−0.850252 + 0.526376i \(0.823551\pi\)
\(422\) −4.99228 + 1.62209i −0.243021 + 0.0789622i
\(423\) −5.96538 + 8.21065i −0.290047 + 0.399215i
\(424\) 3.23354 0.157035
\(425\) 2.58456 4.03534i 0.125369 0.195743i
\(426\) 10.1247 0.490542
\(427\) −3.94283 + 5.42684i −0.190807 + 0.262623i
\(428\) 17.9997 5.84845i 0.870048 0.282696i
\(429\) 2.91362 + 8.96720i 0.140671 + 0.432940i
\(430\) −0.745034 25.3925i −0.0359287 1.22453i
\(431\) 2.62448 8.07731i 0.126417 0.389070i −0.867740 0.497019i \(-0.834428\pi\)
0.994157 + 0.107948i \(0.0344281\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) −20.9272 6.79967i −1.00570 0.326771i −0.240558 0.970635i \(-0.577330\pi\)
−0.765140 + 0.643864i \(0.777330\pi\)
\(434\) 1.00910 0.733154i 0.0484384 0.0351925i
\(435\) −3.89209 + 13.2932i −0.186611 + 0.637361i
\(436\) 2.14813 + 1.56071i 0.102877 + 0.0747445i
\(437\) −0.471002 0.648279i −0.0225311 0.0310114i
\(438\) −8.21552 11.3077i −0.392553 0.540303i
\(439\) −31.0325 22.5464i −1.48110 1.07608i −0.977201 0.212318i \(-0.931899\pi\)
−0.503898 0.863763i \(-0.668101\pi\)
\(440\) −0.901164 + 3.07787i −0.0429613 + 0.146732i
\(441\) 5.43280 3.94716i 0.258705 0.187960i
\(442\) −5.99217 1.94697i −0.285018 0.0926080i
\(443\) 12.7478i 0.605666i −0.953044 0.302833i \(-0.902068\pi\)
0.953044 0.302833i \(-0.0979324\pi\)
\(444\) −1.25551 + 3.86406i −0.0595838 + 0.183380i
\(445\) −0.368702 12.5662i −0.0174782 0.595695i
\(446\) −5.95730 18.3347i −0.282087 0.868173i
\(447\) −10.5330 + 3.42238i −0.498193 + 0.161873i
\(448\) 0.313618 0.431658i 0.0148171 0.0203939i
\(449\) −18.0358 −0.851161 −0.425580 0.904921i \(-0.639930\pi\)
−0.425580 + 0.904921i \(0.639930\pi\)
\(450\) 4.83769 + 1.26362i 0.228051 + 0.0595676i
\(451\) 11.3902 0.536344
\(452\) 1.80029 2.47788i 0.0846783 0.116550i
\(453\) −1.55390 + 0.504894i −0.0730087 + 0.0237220i
\(454\) −2.60797 8.02651i −0.122398 0.376703i
\(455\) −7.52718 2.20387i −0.352880 0.103319i
\(456\) 0.0657863 0.202470i 0.00308073 0.00948150i
\(457\) 21.1495i 0.989334i −0.869083 0.494667i \(-0.835290\pi\)
0.869083 0.494667i \(-0.164710\pi\)
\(458\) −5.66419 1.84041i −0.264670 0.0859966i
\(459\) −0.775373 + 0.563341i −0.0361913 + 0.0262945i
\(460\) −2.83451 7.92492i −0.132160 0.369502i
\(461\) −25.8954 18.8141i −1.20607 0.876260i −0.211200 0.977443i \(-0.567737\pi\)
−0.994868 + 0.101183i \(0.967737\pi\)
\(462\) −0.449808 0.619107i −0.0209270 0.0288035i
\(463\) 16.9150 + 23.2815i 0.786108 + 1.08198i 0.994582 + 0.103957i \(0.0331503\pi\)
−0.208474 + 0.978028i \(0.566850\pi\)
\(464\) 5.01144 + 3.64102i 0.232650 + 0.169030i
\(465\) 4.13706 3.19525i 0.191852 0.148176i
\(466\) 1.69321 1.23019i 0.0784366 0.0569875i
\(467\) 4.94859 + 1.60789i 0.228993 + 0.0744045i 0.421266 0.906937i \(-0.361586\pi\)
−0.192273 + 0.981342i \(0.561586\pi\)
\(468\) 6.57392i 0.303880i
\(469\) −1.13978 + 3.50789i −0.0526303 + 0.161979i
\(470\) 21.3680 7.64270i 0.985633 0.352532i
\(471\) 2.05355 + 6.32019i 0.0946227 + 0.291219i
\(472\) −7.15627 + 2.32521i −0.329394 + 0.107027i
\(473\) −9.57747 + 13.1823i −0.440373 + 0.606121i
\(474\) −15.5279 −0.713222
\(475\) −0.896356 0.574099i −0.0411276 0.0263414i
\(476\) 0.511370 0.0234386
\(477\) −1.90063 + 2.61599i −0.0870239 + 0.119778i
\(478\) 9.41393 3.05877i 0.430583 0.139905i
\(479\) 12.2490 + 37.6985i 0.559670 + 1.72249i 0.683279 + 0.730157i \(0.260553\pi\)
−0.123609 + 0.992331i \(0.539447\pi\)
\(480\) 1.26071 1.84679i 0.0575432 0.0842938i
\(481\) 8.25361 25.4020i 0.376332 1.15823i
\(482\) 21.4567i 0.977326i
\(483\) 1.91003 + 0.620606i 0.0869093 + 0.0282385i
\(484\) −7.23497 + 5.25652i −0.328862 + 0.238933i
\(485\) −10.2784 7.01657i −0.466719 0.318606i
\(486\) −0.809017 0.587785i −0.0366978 0.0266625i
\(487\) 3.19936 + 4.40354i 0.144977 + 0.199544i 0.875330 0.483527i \(-0.160644\pi\)
−0.730353 + 0.683070i \(0.760644\pi\)
\(488\) 7.38968 + 10.1710i 0.334515 + 0.460420i
\(489\) −8.18191 5.94451i −0.369999 0.268820i
\(490\) −15.0094 + 0.440388i −0.678057 + 0.0198947i
\(491\) −0.707053 + 0.513704i −0.0319088 + 0.0231831i −0.603625 0.797268i \(-0.706278\pi\)
0.571717 + 0.820451i \(0.306278\pi\)
\(492\) −7.55288 2.45408i −0.340510 0.110638i
\(493\) 5.93687i 0.267383i
\(494\) −0.432474 + 1.33102i −0.0194579 + 0.0598854i
\(495\) −1.96036 2.53819i −0.0881117 0.114083i
\(496\) −0.722398 2.22331i −0.0324366 0.0998297i
\(497\) 5.13771 1.66934i 0.230458 0.0748803i
\(498\) −9.59902 + 13.2119i −0.430142 + 0.592040i
\(499\) 34.9604 1.56504 0.782522 0.622623i \(-0.213933\pi\)
0.782522 + 0.622623i \(0.213933\pi\)
\(500\) −7.34113 8.43255i −0.328305 0.377115i
\(501\) 12.7885 0.571346
\(502\) −2.41434 + 3.32306i −0.107757 + 0.148315i
\(503\) −0.304076 + 0.0988002i −0.0135581 + 0.00440528i −0.315788 0.948830i \(-0.602269\pi\)
0.302230 + 0.953235i \(0.402269\pi\)
\(504\) 0.164879 + 0.507445i 0.00734429 + 0.0226034i
\(505\) 12.8851 + 16.6830i 0.573379 + 0.742385i
\(506\) −1.66824 + 5.13432i −0.0741624 + 0.228248i
\(507\) 30.2165i 1.34196i
\(508\) 6.16529 + 2.00323i 0.273541 + 0.0888788i
\(509\) 16.6867 12.1236i 0.739624 0.537368i −0.152969 0.988231i \(-0.548884\pi\)
0.892593 + 0.450863i \(0.148884\pi\)
\(510\) 2.14216 0.0628525i 0.0948562 0.00278315i
\(511\) −6.03333 4.38347i −0.266899 0.193913i
\(512\) −0.587785 0.809017i −0.0259767 0.0357538i
\(513\) 0.125133 + 0.172231i 0.00552476 + 0.00760418i
\(514\) −24.8973 18.0890i −1.09817 0.797870i
\(515\) −14.7719 10.0840i −0.650928 0.444356i
\(516\) 9.19103 6.67767i 0.404613 0.293968i
\(517\) −13.8437 4.49809i −0.608845 0.197826i
\(518\) 2.16780i 0.0952477i
\(519\) 4.22041 12.9891i 0.185256 0.570158i
\(520\) −8.28779 + 12.1406i −0.363444 + 0.532402i
\(521\) −1.30417 4.01383i −0.0571368 0.175849i 0.918415 0.395618i \(-0.129470\pi\)
−0.975552 + 0.219769i \(0.929470\pi\)
\(522\) −5.89130 + 1.91420i −0.257855 + 0.0837823i
\(523\) −12.6714 + 17.4407i −0.554081 + 0.762627i −0.990559 0.137088i \(-0.956226\pi\)
0.436478 + 0.899715i \(0.356226\pi\)
\(524\) 9.45794 0.413172
\(525\) 2.66321 0.156416i 0.116232 0.00682654i
\(526\) −28.3729 −1.23712
\(527\) 1.31694 1.81261i 0.0573668 0.0789586i
\(528\) −1.36406 + 0.443209i −0.0593629 + 0.0192882i
\(529\) 2.72931 + 8.39994i 0.118666 + 0.365215i
\(530\) 6.80806 2.43504i 0.295723 0.105771i
\(531\) 2.32521 7.15627i 0.100906 0.310556i
\(532\) 0.113589i 0.00492470i
\(533\) 49.6520 + 16.1329i 2.15067 + 0.698795i
\(534\) 4.54845 3.30464i 0.196831 0.143006i
\(535\) 33.4932 25.8684i 1.44804 1.11839i
\(536\) 5.59261 + 4.06327i 0.241564 + 0.175507i
\(537\) −1.75831 2.42011i −0.0758767 0.104435i
\(538\) 6.26977 + 8.62960i 0.270309 + 0.372048i
\(539\) 7.79201 + 5.66123i 0.335626 + 0.243846i
\(540\) 0.753056 + 2.10545i 0.0324064 + 0.0906040i
\(541\) 7.22987 5.25281i 0.310837 0.225836i −0.421419 0.906866i \(-0.638468\pi\)
0.732255 + 0.681030i \(0.238468\pi\)
\(542\) 21.7259 + 7.05917i 0.933206 + 0.303217i
\(543\) 7.62285i 0.327128i
\(544\) 0.296166 0.911505i 0.0126980 0.0390805i
\(545\) 5.69809 + 1.66833i 0.244079 + 0.0714634i
\(546\) −1.08390 3.33590i −0.0463867 0.142764i
\(547\) 11.4874 3.73249i 0.491167 0.159590i −0.0529536 0.998597i \(-0.516864\pi\)
0.544120 + 0.839007i \(0.316864\pi\)
\(548\) 7.25096 9.98010i 0.309746 0.426329i
\(549\) −12.5721 −0.536563
\(550\) 0.420459 + 7.15893i 0.0179284 + 0.305258i
\(551\) 1.31874 0.0561801
\(552\) 2.21243 3.04515i 0.0941673 0.129610i
\(553\) −7.87957 + 2.56023i −0.335073 + 0.108872i
\(554\) 9.72142 + 29.9194i 0.413023 + 1.27116i
\(555\) 0.266444 + 9.08103i 0.0113099 + 0.385468i
\(556\) 1.40268 4.31701i 0.0594870 0.183082i
\(557\) 8.23596i 0.348969i 0.984660 + 0.174484i \(0.0558259\pi\)
−0.984660 + 0.174484i \(0.944174\pi\)
\(558\) 2.22331 + 0.722398i 0.0941203 + 0.0305815i
\(559\) −60.4211 + 43.8985i −2.55554 + 1.85671i
\(560\) 0.335244 1.14501i 0.0141666 0.0483853i
\(561\) −1.11208 0.807974i −0.0469521 0.0341127i
\(562\) 6.33545 + 8.72000i 0.267245 + 0.367831i
\(563\) −8.60271 11.8406i −0.362561 0.499022i 0.588299 0.808643i \(-0.299798\pi\)
−0.950860 + 0.309621i \(0.899798\pi\)
\(564\) 8.21065 + 5.96538i 0.345731 + 0.251188i
\(565\) 1.92442 6.57276i 0.0809611 0.276518i
\(566\) 3.36897 2.44770i 0.141608 0.102885i
\(567\) −0.507445 0.164879i −0.0213107 0.00692426i
\(568\) 10.1247i 0.424822i
\(569\) −9.65590 + 29.7178i −0.404796 + 1.24583i 0.516269 + 0.856427i \(0.327321\pi\)
−0.921065 + 0.389408i \(0.872679\pi\)
\(570\) −0.0139612 0.475830i −0.000584771 0.0199303i
\(571\) 8.10430 + 24.9425i 0.339154 + 1.04381i 0.964639 + 0.263574i \(0.0849012\pi\)
−0.625485 + 0.780236i \(0.715099\pi\)
\(572\) 8.96720 2.91362i 0.374937 0.121825i
\(573\) 4.93766 6.79610i 0.206274 0.283911i
\(574\) −4.23729 −0.176861
\(575\) −11.9358 14.5510i −0.497758 0.606817i
\(576\) 1.00000 0.0416667
\(577\) 5.25092 7.22727i 0.218599 0.300875i −0.685608 0.727971i \(-0.740463\pi\)
0.904206 + 0.427096i \(0.140463\pi\)
\(578\) −15.2944 + 4.96944i −0.636162 + 0.206701i
\(579\) 3.25290 + 10.0114i 0.135186 + 0.416060i
\(580\) 13.2932 + 3.89209i 0.551971 + 0.161610i
\(581\) −2.69261 + 8.28699i −0.111708 + 0.343802i
\(582\) 5.56558i 0.230701i
\(583\) −4.41074 1.43313i −0.182674 0.0593544i
\(584\) −11.3077 + 8.21552i −0.467916 + 0.339961i
\(585\) −4.95053 13.8410i −0.204679 0.572257i
\(586\) 14.5302 + 10.5568i 0.600237 + 0.436098i
\(587\) −2.34738 3.23089i −0.0968867 0.133353i 0.757821 0.652462i \(-0.226264\pi\)
−0.854708 + 0.519109i \(0.826264\pi\)
\(588\) −3.94716 5.43280i −0.162778 0.224045i
\(589\) −0.402629 0.292527i −0.0165900 0.0120534i
\(590\) −13.3161 + 10.2847i −0.548217 + 0.423414i
\(591\) 8.25848 6.00014i 0.339709 0.246813i
\(592\) 3.86406 + 1.25551i 0.158812 + 0.0516011i
\(593\) 11.2114i 0.460396i −0.973144 0.230198i \(-0.926063\pi\)
0.973144 0.230198i \(-0.0739374\pi\)
\(594\) 0.443209 1.36406i 0.0181851 0.0559679i
\(595\) 1.07666 0.385090i 0.0441389 0.0157872i
\(596\) 3.42238 + 10.5330i 0.140186 + 0.431448i
\(597\) −3.65508 + 1.18761i −0.149593 + 0.0486056i
\(598\) −14.5443 + 20.0186i −0.594763 + 0.818620i
\(599\) 6.64762 0.271614 0.135807 0.990735i \(-0.456637\pi\)
0.135807 + 0.990735i \(0.456637\pi\)
\(600\) 1.26362 4.83769i 0.0515871 0.197498i
\(601\) −10.7465 −0.438359 −0.219179 0.975685i \(-0.570338\pi\)
−0.219179 + 0.975685i \(0.570338\pi\)
\(602\) 3.56293 4.90396i 0.145214 0.199870i
\(603\) −6.57451 + 2.13619i −0.267735 + 0.0869923i
\(604\) 0.504894 + 1.55390i 0.0205438 + 0.0632274i
\(605\) −11.2744 + 16.5157i −0.458370 + 0.671457i
\(606\) −2.91313 + 8.96568i −0.118338 + 0.364206i
\(607\) 15.4591i 0.627466i 0.949511 + 0.313733i \(0.101580\pi\)
−0.949511 + 0.313733i \(0.898420\pi\)
\(608\) −0.202470 0.0657863i −0.00821122 0.00266799i
\(609\) −2.67390 + 1.94270i −0.108352 + 0.0787223i
\(610\) 23.2179 + 15.8497i 0.940066 + 0.641735i
\(611\) −53.9762 39.2160i −2.18364 1.58651i
\(612\) 0.563341 + 0.775373i 0.0227717 + 0.0313426i
\(613\) −14.3929 19.8101i −0.581324 0.800123i 0.412516 0.910950i \(-0.364650\pi\)
−0.993840 + 0.110827i \(0.964650\pi\)
\(614\) −16.8416 12.2362i −0.679673 0.493812i
\(615\) −17.7502 + 0.520806i −0.715759 + 0.0210009i
\(616\) −0.619107 + 0.449808i −0.0249445 + 0.0181233i
\(617\) −17.9899 5.84526i −0.724244 0.235321i −0.0763819 0.997079i \(-0.524337\pi\)
−0.647862 + 0.761757i \(0.724337\pi\)
\(618\) 7.99871i 0.321755i
\(619\) −0.788010 + 2.42524i −0.0316728 + 0.0974788i −0.965643 0.259872i \(-0.916320\pi\)
0.933970 + 0.357350i \(0.116320\pi\)
\(620\) −3.19525 4.13706i −0.128324 0.166148i
\(621\) 1.16314 + 3.57979i 0.0466753 + 0.143652i
\(622\) 18.5005 6.01118i 0.741803 0.241026i
\(623\) 1.76322 2.42687i 0.0706420 0.0972304i
\(624\) −6.57392 −0.263168
\(625\) −21.8065 12.2260i −0.872261 0.489040i
\(626\) 5.88310 0.235136
\(627\) −0.179472 + 0.247023i −0.00716744 + 0.00986513i
\(628\) 6.32019 2.05355i 0.252203 0.0819457i
\(629\) 1.20330 + 3.70336i 0.0479785 + 0.147663i
\(630\) 0.729278 + 0.944235i 0.0290551 + 0.0376192i
\(631\) −11.2646 + 34.6688i −0.448436 + 1.38014i 0.430235 + 0.902717i \(0.358431\pi\)
−0.878671 + 0.477428i \(0.841569\pi\)
\(632\) 15.5279i 0.617668i
\(633\) −4.99228 1.62209i −0.198425 0.0644723i
\(634\) −8.70586 + 6.32518i −0.345754 + 0.251205i
\(635\) 14.4892 0.425125i 0.574988 0.0168706i
\(636\) 2.61599 + 1.90063i 0.103731 + 0.0753649i
\(637\) 25.9483 + 35.7148i 1.02811 + 1.41507i
\(638\) −5.22215 7.18767i −0.206747 0.284563i
\(639\) 8.19103 + 5.95113i 0.324032 + 0.235423i
\(640\) −1.84679 1.26071i −0.0730006 0.0498338i
\(641\) 16.4772 11.9714i 0.650809 0.472840i −0.212738 0.977109i \(-0.568238\pi\)
0.863546 + 0.504269i \(0.168238\pi\)
\(642\) 17.9997 + 5.84845i 0.710391 + 0.230820i
\(643\) 11.4218i 0.450433i 0.974309 + 0.225217i \(0.0723090\pi\)
−0.974309 + 0.225217i \(0.927691\pi\)
\(644\) 0.620606 1.91003i 0.0244553 0.0752656i
\(645\) 14.3226 20.9808i 0.563950 0.826120i
\(646\) −0.0630505 0.194049i −0.00248069 0.00763477i
\(647\) −5.60379 + 1.82078i −0.220308 + 0.0715823i −0.417091 0.908865i \(-0.636950\pi\)
0.196783 + 0.980447i \(0.436950\pi\)
\(648\) −0.587785 + 0.809017i −0.0230904 + 0.0317812i
\(649\) 10.7921 0.423627
\(650\) −8.30694 + 31.8026i −0.325825 + 1.24740i
\(651\) 1.24732 0.0488862
\(652\) −5.94451 + 8.18191i −0.232805 + 0.320428i
\(653\) 16.2691 5.28614i 0.636658 0.206863i 0.0271359 0.999632i \(-0.491361\pi\)
0.609522 + 0.792769i \(0.291361\pi\)
\(654\) 0.820514 + 2.52528i 0.0320847 + 0.0987464i
\(655\) 19.9132 7.12235i 0.778073 0.278293i
\(656\) −2.45408 + 7.55288i −0.0958157 + 0.294890i
\(657\) 13.9771i 0.545298i
\(658\) 5.15002 + 1.67334i 0.200769 + 0.0652337i
\(659\) −24.0433 + 17.4685i −0.936593 + 0.680475i −0.947598 0.319465i \(-0.896497\pi\)
0.0110052 + 0.999939i \(0.496497\pi\)
\(660\) −2.53819 + 1.96036i −0.0987988 + 0.0763070i
\(661\) −37.4604 27.2166i −1.45704 1.05860i −0.984121 0.177497i \(-0.943200\pi\)
−0.472920 0.881105i \(-0.656800\pi\)
\(662\) 0.362718 + 0.499238i 0.0140974 + 0.0194034i
\(663\) −3.70336 5.09724i −0.143827 0.197960i
\(664\) 13.2119 + 9.59902i 0.512722 + 0.372514i
\(665\) −0.0855388 0.239155i −0.00331705 0.00927405i
\(666\) −3.28696 + 2.38812i −0.127367 + 0.0925377i
\(667\) 22.1749 + 7.20507i 0.858616 + 0.278981i
\(668\) 12.7885i 0.494800i
\(669\) 5.95730 18.3347i 0.230323 0.708860i
\(670\) 14.8348 + 4.34345i 0.573119 + 0.167802i
\(671\) −5.57205 17.1490i −0.215107 0.662030i
\(672\) 0.507445 0.164879i 0.0195751 0.00636034i
\(673\) −11.5841 + 15.9441i −0.446534 + 0.614601i −0.971648 0.236430i \(-0.924023\pi\)
0.525114 + 0.851032i \(0.324023\pi\)
\(674\) 15.4106 0.593595
\(675\) 3.17104 + 3.86581i 0.122053 + 0.148795i
\(676\) 30.2165 1.16217
\(677\) −14.5638 + 20.0453i −0.559732 + 0.770405i −0.991292 0.131679i \(-0.957963\pi\)
0.431560 + 0.902084i \(0.357963\pi\)
\(678\) 2.91292 0.946466i 0.111870 0.0363488i
\(679\) −0.917646 2.82422i −0.0352160 0.108384i
\(680\) −0.0628525 2.14216i −0.00241028 0.0821479i
\(681\) 2.60797 8.02651i 0.0999377 0.307577i
\(682\) 3.35289i 0.128389i
\(683\) 15.7755 + 5.12579i 0.603635 + 0.196133i 0.594861 0.803829i \(-0.297207\pi\)
0.00877377 + 0.999962i \(0.497207\pi\)
\(684\) 0.172231 0.125133i 0.00658541 0.00478458i
\(685\) 7.75095 26.4729i 0.296149 1.01148i
\(686\) −5.92033 4.30137i −0.226039 0.164227i
\(687\) −3.50066 4.81825i −0.133559 0.183828i
\(688\) −6.67767 9.19103i −0.254584 0.350405i
\(689\) −17.1973 12.4946i −0.655166 0.476006i
\(690\) 2.36499 8.07748i 0.0900335 0.307504i
\(691\) −34.2128 + 24.8570i −1.30152 + 0.945606i −0.999969 0.00784530i \(-0.997503\pi\)
−0.301546 + 0.953452i \(0.597503\pi\)
\(692\) −12.9891 4.22041i −0.493771 0.160436i
\(693\) 0.765259i 0.0290698i
\(694\) −7.00126 + 21.5477i −0.265764 + 0.817938i
\(695\) −0.297678 10.1455i −0.0112916 0.384842i
\(696\) 1.91420 + 5.89130i 0.0725576 + 0.223309i
\(697\) −7.23878 + 2.35202i −0.274188 + 0.0890892i
\(698\) 9.96550 13.7163i 0.377200 0.519171i
\(699\) 2.09293 0.0791617
\(700\) −0.156416 2.66321i −0.00591196 0.100660i
\(701\) −22.7240 −0.858273 −0.429137 0.903240i \(-0.641182\pi\)
−0.429137 + 0.903240i \(0.641182\pi\)
\(702\) 3.86406 5.31842i 0.145839 0.200731i
\(703\) 0.822615 0.267284i 0.0310255 0.0100808i
\(704\) 0.443209 + 1.36406i 0.0167041 + 0.0514098i
\(705\) 21.7793 + 6.37672i 0.820258 + 0.240161i
\(706\) 1.87343 5.76583i 0.0705076 0.217000i
\(707\) 5.02990i 0.189169i
\(708\) −7.15627 2.32521i −0.268949 0.0873869i
\(709\) 37.5483 27.2804i 1.41016 1.02454i 0.416855 0.908973i \(-0.363132\pi\)
0.993300 0.115565i \(-0.0368678\pi\)
\(710\) −7.62444 21.3170i −0.286140 0.800011i
\(711\) −12.5624 9.12709i −0.471125 0.342293i
\(712\) −3.30464 4.54845i −0.123847 0.170460i
\(713\) −5.17206 7.11873i −0.193695 0.266599i
\(714\) 0.413707 + 0.300576i 0.0154826 + 0.0112488i
\(715\) 16.6858 12.8873i 0.624015 0.481957i
\(716\) −2.42011 + 1.75831i −0.0904437 + 0.0657112i
\(717\) 9.41393 + 3.05877i 0.351570 + 0.114232i
\(718\) 18.8987i 0.705294i
\(719\) 8.71631 26.8260i 0.325063 1.00044i −0.646349 0.763042i \(-0.723705\pi\)
0.971412 0.237400i \(-0.0762952\pi\)
\(720\) 2.10545 0.753056i 0.0784654 0.0280647i
\(721\) −1.31882 4.05891i −0.0491154 0.151162i
\(722\) 18.0270 5.85732i 0.670894 0.217987i
\(723\) 12.6119 17.3588i 0.469043 0.645582i
\(724\) −7.62285 −0.283301
\(725\) 30.9191 1.81594i 1.14831 0.0674425i
\(726\) −8.94292 −0.331903
\(727\) −0.500553 + 0.688953i −0.0185645 + 0.0255518i −0.818198 0.574936i \(-0.805027\pi\)
0.799634 + 0.600488i \(0.205027\pi\)
\(728\) −3.33590 + 1.08390i −0.123637 + 0.0401720i
\(729\) −0.309017 0.951057i −0.0114451 0.0352243i
\(730\) −17.6210 + 25.8127i −0.652183 + 0.955370i
\(731\) 3.36466 10.3554i 0.124447 0.383007i
\(732\) 12.5721i 0.464677i
\(733\) 29.2259 + 9.49607i 1.07948 + 0.350745i 0.794174 0.607690i \(-0.207904\pi\)
0.285309 + 0.958436i \(0.407904\pi\)
\(734\) −20.2645 + 14.7230i −0.747978 + 0.543437i
\(735\) −12.4017 8.46605i −0.457445 0.312275i
\(736\) −3.04515 2.21243i −0.112246 0.0815512i
\(737\) −5.82776 8.02122i −0.214668 0.295465i
\(738\) −4.66793 6.42486i −0.171829 0.236502i
\(739\) 1.67050 + 1.21369i 0.0614502 + 0.0446462i 0.618086 0.786110i \(-0.287908\pi\)
−0.556636 + 0.830756i \(0.687908\pi\)
\(740\) 9.08103 0.266444i 0.333825 0.00979469i
\(741\) −1.13223 + 0.822615i −0.0415936 + 0.0302195i
\(742\) 1.64085 + 0.533143i 0.0602373 + 0.0195723i
\(743\) 37.8972i 1.39031i −0.718858 0.695157i \(-0.755335\pi\)
0.718858 0.695157i \(-0.244665\pi\)
\(744\) 0.722398 2.22331i 0.0264844 0.0815106i
\(745\) 15.1376 + 19.5994i 0.554597 + 0.718067i
\(746\) −3.67589 11.3132i −0.134584 0.414207i
\(747\) −15.5315 + 5.04650i −0.568269 + 0.184642i
\(748\) −0.807974 + 1.11208i −0.0295424 + 0.0406617i
\(749\) 10.0981 0.368978
\(750\) −0.982568 11.1371i −0.0358783 0.406669i
\(751\) −40.6331 −1.48272 −0.741361 0.671106i \(-0.765819\pi\)
−0.741361 + 0.671106i \(0.765819\pi\)
\(752\) 5.96538 8.21065i 0.217535 0.299411i
\(753\) −3.90649 + 1.26930i −0.142360 + 0.0462557i
\(754\) −12.5838 38.7290i −0.458275 1.41043i
\(755\) 2.23320 + 2.89145i 0.0812746 + 0.105231i
\(756\) −0.164879 + 0.507445i −0.00599659 + 0.0184556i
\(757\) 10.0032i 0.363572i −0.983338 0.181786i \(-0.941812\pi\)
0.983338 0.181786i \(-0.0581877\pi\)
\(758\) −26.1716 8.50366i −0.950594 0.308867i
\(759\) −4.36751 + 3.17318i −0.158531 + 0.115179i
\(760\) −0.475830 + 0.0139612i −0.0172602 + 0.000506426i
\(761\) 24.4172 + 17.7401i 0.885121 + 0.643078i 0.934601 0.355697i \(-0.115756\pi\)
−0.0494802 + 0.998775i \(0.515756\pi\)
\(762\) 3.81036 + 5.24451i 0.138035 + 0.189989i
\(763\) 0.832732 + 1.14616i 0.0301469 + 0.0414937i
\(764\) −6.79610 4.93766i −0.245874 0.178638i
\(765\) 1.76998 + 1.20828i 0.0639939 + 0.0436854i
\(766\) 17.8238 12.9497i 0.644000 0.467893i
\(767\) 47.0448 + 15.2858i 1.69869 + 0.551938i
\(768\) 1.00000i 0.0360844i