Properties

Label 150.2.h.b.109.1
Level 150
Weight 2
Character 150.109
Analytic conductor 1.198
Analytic rank 0
Dimension 16
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.h (of order \(10\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 109.1
Root \(2.17199 - 0.809017i\)
Character \(\chi\) = 150.109
Dual form 150.2.h.b.139.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.587785 + 0.809017i) q^{2} +(-0.951057 + 0.309017i) q^{3} +(-0.309017 - 0.951057i) q^{4} +(-1.53938 - 1.62182i) q^{5} +(0.309017 - 0.951057i) q^{6} -4.63137i q^{7} +(0.951057 + 0.309017i) q^{8} +(0.809017 - 0.587785i) q^{9} +O(q^{10})\) \(q+(-0.587785 + 0.809017i) q^{2} +(-0.951057 + 0.309017i) q^{3} +(-0.309017 - 0.951057i) q^{4} +(-1.53938 - 1.62182i) q^{5} +(0.309017 - 0.951057i) q^{6} -4.63137i q^{7} +(0.951057 + 0.309017i) q^{8} +(0.809017 - 0.587785i) q^{9} +(2.21691 - 0.292102i) q^{10} +(2.05464 + 1.49278i) q^{11} +(0.587785 + 0.809017i) q^{12} +(0.0846260 + 0.116478i) q^{13} +(3.74686 + 2.72225i) q^{14} +(1.96521 + 1.06675i) q^{15} +(-0.809017 + 0.587785i) q^{16} +(-7.12436 - 2.31485i) q^{17} +1.00000i q^{18} +(2.08298 - 6.41074i) q^{19} +(-1.06675 + 1.96521i) q^{20} +(1.43117 + 4.40469i) q^{21} +(-2.41537 + 0.784803i) q^{22} +(0.985910 - 1.35699i) q^{23} -1.00000 q^{24} +(-0.260613 + 4.99320i) q^{25} -0.143974 q^{26} +(-0.587785 + 0.809017i) q^{27} +(-4.40469 + 1.43117i) q^{28} +(0.696812 + 2.14457i) q^{29} +(-2.01814 + 0.962868i) q^{30} +(0.310207 - 0.954718i) q^{31} -1.00000i q^{32} +(-2.41537 - 0.784803i) q^{33} +(6.06035 - 4.40310i) q^{34} +(-7.51126 + 7.12944i) q^{35} +(-0.809017 - 0.587785i) q^{36} +(-0.0523017 - 0.0719871i) q^{37} +(3.96205 + 5.45330i) q^{38} +(-0.116478 - 0.0846260i) q^{39} +(-0.962868 - 2.01814i) q^{40} +(-2.48680 + 1.80677i) q^{41} +(-4.40469 - 1.43117i) q^{42} +9.02860i q^{43} +(0.784803 - 2.41537i) q^{44} +(-2.19867 - 0.407256i) q^{45} +(0.518324 + 1.59524i) q^{46} +(10.3526 - 3.36376i) q^{47} +(0.587785 - 0.809017i) q^{48} -14.4496 q^{49} +(-3.88640 - 3.14577i) q^{50} +7.49100 q^{51} +(0.0846260 - 0.116478i) q^{52} +(4.72205 - 1.53429i) q^{53} +(-0.309017 - 0.951057i) q^{54} +(-0.741845 - 5.63022i) q^{55} +(1.43117 - 4.40469i) q^{56} +6.74065i q^{57} +(-2.14457 - 0.696812i) q^{58} +(4.25029 - 3.08802i) q^{59} +(0.407256 - 2.19867i) q^{60} +(11.0841 + 8.05305i) q^{61} +(0.590048 + 0.812131i) q^{62} +(-2.72225 - 3.74686i) q^{63} +(0.809017 + 0.587785i) q^{64} +(0.0586344 - 0.316552i) q^{65} +(2.05464 - 1.49278i) q^{66} +(7.27491 + 2.36376i) q^{67} +7.49100i q^{68} +(-0.518324 + 1.59524i) q^{69} +(-1.35283 - 10.2673i) q^{70} +(-3.17196 - 9.76228i) q^{71} +(0.951057 - 0.309017i) q^{72} +(1.15547 - 1.59036i) q^{73} +0.0889810 q^{74} +(-1.29513 - 4.82935i) q^{75} -6.74065 q^{76} +(6.91363 - 9.51580i) q^{77} +(0.136928 - 0.0444905i) q^{78} +(-0.230908 - 0.710661i) q^{79} +(2.19867 + 0.407256i) q^{80} +(0.309017 - 0.951057i) q^{81} -3.07386i q^{82} +(-2.95072 - 0.958745i) q^{83} +(3.74686 - 2.72225i) q^{84} +(7.21284 + 15.1179i) q^{85} +(-7.30429 - 5.30688i) q^{86} +(-1.32542 - 1.82428i) q^{87} +(1.49278 + 2.05464i) q^{88} +(0.593709 + 0.431355i) q^{89} +(1.62182 - 1.53938i) q^{90} +(0.539451 - 0.391934i) q^{91} +(-1.59524 - 0.518324i) q^{92} +1.00385i q^{93} +(-3.36376 + 10.3526i) q^{94} +(-13.6036 + 6.49035i) q^{95} +(0.309017 + 0.951057i) q^{96} +(-8.67406 + 2.81837i) q^{97} +(8.49326 - 11.6900i) q^{98} +2.53967 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 4q^{4} + 4q^{5} - 4q^{6} + 4q^{9} + O(q^{10}) \) \( 16q + 4q^{4} + 4q^{5} - 4q^{6} + 4q^{9} + 2q^{10} + 2q^{11} + 20q^{13} + 2q^{14} - 2q^{15} - 4q^{16} - 30q^{17} - 4q^{20} - 2q^{21} - 20q^{22} - 10q^{23} - 16q^{24} + 24q^{25} + 4q^{26} - 10q^{29} - 6q^{30} - 18q^{31} - 20q^{33} + 12q^{34} - 34q^{35} - 4q^{36} + 20q^{37} + 10q^{38} - 4q^{39} - 2q^{40} + 22q^{41} + 8q^{44} - 4q^{45} - 6q^{46} - 50q^{47} - 52q^{49} + 12q^{50} + 28q^{51} + 20q^{52} + 30q^{53} + 4q^{54} + 18q^{55} - 2q^{56} - 30q^{58} + 20q^{59} + 2q^{60} + 12q^{61} + 50q^{62} + 10q^{63} + 4q^{64} - 8q^{65} + 2q^{66} - 50q^{67} + 6q^{69} - 12q^{70} - 28q^{71} + 20q^{73} + 12q^{74} + 28q^{75} + 20q^{76} + 100q^{77} - 20q^{79} + 4q^{80} - 4q^{81} - 30q^{83} + 2q^{84} - 4q^{85} - 6q^{86} + 10q^{87} + 70q^{89} + 8q^{90} + 12q^{91} - 30q^{92} + 2q^{94} - 30q^{95} - 4q^{96} - 10q^{97} + 60q^{98} - 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.587785 + 0.809017i −0.415627 + 0.572061i
\(3\) −0.951057 + 0.309017i −0.549093 + 0.178411i
\(4\) −0.309017 0.951057i −0.154508 0.475528i
\(5\) −1.53938 1.62182i −0.688432 0.725301i
\(6\) 0.309017 0.951057i 0.126156 0.388267i
\(7\) 4.63137i 1.75049i −0.483677 0.875247i \(-0.660699\pi\)
0.483677 0.875247i \(-0.339301\pi\)
\(8\) 0.951057 + 0.309017i 0.336249 + 0.109254i
\(9\) 0.809017 0.587785i 0.269672 0.195928i
\(10\) 2.21691 0.292102i 0.701048 0.0923709i
\(11\) 2.05464 + 1.49278i 0.619497 + 0.450091i 0.852746 0.522326i \(-0.174936\pi\)
−0.233249 + 0.972417i \(0.574936\pi\)
\(12\) 0.587785 + 0.809017i 0.169679 + 0.233543i
\(13\) 0.0846260 + 0.116478i 0.0234710 + 0.0323051i 0.820591 0.571516i \(-0.193644\pi\)
−0.797120 + 0.603821i \(0.793644\pi\)
\(14\) 3.74686 + 2.72225i 1.00139 + 0.727552i
\(15\) 1.96521 + 1.06675i 0.507415 + 0.275434i
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) −7.12436 2.31485i −1.72791 0.561433i −0.734767 0.678320i \(-0.762708\pi\)
−0.993145 + 0.116887i \(0.962708\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 2.08298 6.41074i 0.477867 1.47072i −0.364184 0.931327i \(-0.618652\pi\)
0.842051 0.539397i \(-0.181348\pi\)
\(20\) −1.06675 + 1.96521i −0.238532 + 0.439434i
\(21\) 1.43117 + 4.40469i 0.312307 + 0.961183i
\(22\) −2.41537 + 0.784803i −0.514959 + 0.167320i
\(23\) 0.985910 1.35699i 0.205576 0.282952i −0.693763 0.720204i \(-0.744048\pi\)
0.899339 + 0.437252i \(0.144048\pi\)
\(24\) −1.00000 −0.204124
\(25\) −0.260613 + 4.99320i −0.0521225 + 0.998641i
\(26\) −0.143974 −0.0282357
\(27\) −0.587785 + 0.809017i −0.113119 + 0.155695i
\(28\) −4.40469 + 1.43117i −0.832409 + 0.270466i
\(29\) 0.696812 + 2.14457i 0.129395 + 0.398236i 0.994676 0.103050i \(-0.0328603\pi\)
−0.865281 + 0.501287i \(0.832860\pi\)
\(30\) −2.01814 + 0.962868i −0.368460 + 0.175795i
\(31\) 0.310207 0.954718i 0.0557148 0.171472i −0.919327 0.393495i \(-0.871266\pi\)
0.975042 + 0.222023i \(0.0712659\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −2.41537 0.784803i −0.420463 0.136617i
\(34\) 6.06035 4.40310i 1.03934 0.755125i
\(35\) −7.51126 + 7.12944i −1.26963 + 1.20510i
\(36\) −0.809017 0.587785i −0.134836 0.0979642i
\(37\) −0.0523017 0.0719871i −0.00859835 0.0118346i 0.804696 0.593687i \(-0.202328\pi\)
−0.813295 + 0.581852i \(0.802328\pi\)
\(38\) 3.96205 + 5.45330i 0.642730 + 0.884642i
\(39\) −0.116478 0.0846260i −0.0186514 0.0135510i
\(40\) −0.962868 2.01814i −0.152243 0.319096i
\(41\) −2.48680 + 1.80677i −0.388373 + 0.282170i −0.764789 0.644281i \(-0.777157\pi\)
0.376415 + 0.926451i \(0.377157\pi\)
\(42\) −4.40469 1.43117i −0.679659 0.220835i
\(43\) 9.02860i 1.37685i 0.725308 + 0.688424i \(0.241697\pi\)
−0.725308 + 0.688424i \(0.758303\pi\)
\(44\) 0.784803 2.41537i 0.118313 0.364131i
\(45\) −2.19867 0.407256i −0.327758 0.0607102i
\(46\) 0.518324 + 1.59524i 0.0764226 + 0.235205i
\(47\) 10.3526 3.36376i 1.51008 0.490655i 0.567141 0.823620i \(-0.308049\pi\)
0.942939 + 0.332965i \(0.108049\pi\)
\(48\) 0.587785 0.809017i 0.0848395 0.116772i
\(49\) −14.4496 −2.06423
\(50\) −3.88640 3.14577i −0.549620 0.444879i
\(51\) 7.49100 1.04895
\(52\) 0.0846260 0.116478i 0.0117355 0.0161525i
\(53\) 4.72205 1.53429i 0.648624 0.210751i 0.0338165 0.999428i \(-0.489234\pi\)
0.614807 + 0.788677i \(0.289234\pi\)
\(54\) −0.309017 0.951057i −0.0420519 0.129422i
\(55\) −0.741845 5.63022i −0.100030 0.759179i
\(56\) 1.43117 4.40469i 0.191248 0.588602i
\(57\) 6.74065i 0.892821i
\(58\) −2.14457 0.696812i −0.281596 0.0914959i
\(59\) 4.25029 3.08802i 0.553341 0.402026i −0.275675 0.961251i \(-0.588901\pi\)
0.829016 + 0.559225i \(0.188901\pi\)
\(60\) 0.407256 2.19867i 0.0525765 0.283847i
\(61\) 11.0841 + 8.05305i 1.41917 + 1.03109i 0.991908 + 0.126960i \(0.0405221\pi\)
0.427263 + 0.904127i \(0.359478\pi\)
\(62\) 0.590048 + 0.812131i 0.0749362 + 0.103141i
\(63\) −2.72225 3.74686i −0.342971 0.472060i
\(64\) 0.809017 + 0.587785i 0.101127 + 0.0734732i
\(65\) 0.0586344 0.316552i 0.00727270 0.0392634i
\(66\) 2.05464 1.49278i 0.252909 0.183749i
\(67\) 7.27491 + 2.36376i 0.888771 + 0.288779i 0.717595 0.696461i \(-0.245243\pi\)
0.171177 + 0.985240i \(0.445243\pi\)
\(68\) 7.49100i 0.908417i
\(69\) −0.518324 + 1.59524i −0.0623988 + 0.192044i
\(70\) −1.35283 10.2673i −0.161695 1.22718i
\(71\) −3.17196 9.76228i −0.376442 1.15857i −0.942501 0.334204i \(-0.891532\pi\)
0.566059 0.824365i \(-0.308468\pi\)
\(72\) 0.951057 0.309017i 0.112083 0.0364180i
\(73\) 1.15547 1.59036i 0.135237 0.186138i −0.736027 0.676952i \(-0.763301\pi\)
0.871264 + 0.490814i \(0.163301\pi\)
\(74\) 0.0889810 0.0103438
\(75\) −1.29513 4.82935i −0.149548 0.557646i
\(76\) −6.74065 −0.773206
\(77\) 6.91363 9.51580i 0.787881 1.08443i
\(78\) 0.136928 0.0444905i 0.0155040 0.00503756i
\(79\) −0.230908 0.710661i −0.0259792 0.0799556i 0.937226 0.348722i \(-0.113384\pi\)
−0.963205 + 0.268766i \(0.913384\pi\)
\(80\) 2.19867 + 0.407256i 0.245819 + 0.0455326i
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 3.07386i 0.339451i
\(83\) −2.95072 0.958745i −0.323883 0.105236i 0.142563 0.989786i \(-0.454466\pi\)
−0.466446 + 0.884550i \(0.654466\pi\)
\(84\) 3.74686 2.72225i 0.408816 0.297022i
\(85\) 7.21284 + 15.1179i 0.782343 + 1.63976i
\(86\) −7.30429 5.30688i −0.787642 0.572255i
\(87\) −1.32542 1.82428i −0.142099 0.195583i
\(88\) 1.49278 + 2.05464i 0.159131 + 0.219025i
\(89\) 0.593709 + 0.431355i 0.0629331 + 0.0457236i 0.618807 0.785543i \(-0.287616\pi\)
−0.555874 + 0.831267i \(0.687616\pi\)
\(90\) 1.62182 1.53938i 0.170955 0.162265i
\(91\) 0.539451 0.391934i 0.0565498 0.0410859i
\(92\) −1.59524 0.518324i −0.166315 0.0540390i
\(93\) 1.00385i 0.104094i
\(94\) −3.36376 + 10.3526i −0.346945 + 1.06779i
\(95\) −13.6036 + 6.49035i −1.39570 + 0.665896i
\(96\) 0.309017 + 0.951057i 0.0315389 + 0.0970668i
\(97\) −8.67406 + 2.81837i −0.880717 + 0.286162i −0.714255 0.699886i \(-0.753234\pi\)
−0.166462 + 0.986048i \(0.553234\pi\)
\(98\) 8.49326 11.6900i 0.857948 1.18086i
\(99\) 2.53967 0.255247
\(100\) 4.82935 1.29513i 0.482935 0.129513i
\(101\) −2.88013 −0.286583 −0.143292 0.989680i \(-0.545769\pi\)
−0.143292 + 0.989680i \(0.545769\pi\)
\(102\) −4.40310 + 6.06035i −0.435972 + 0.600064i
\(103\) 10.6246 3.45214i 1.04687 0.340149i 0.265432 0.964130i \(-0.414486\pi\)
0.781440 + 0.623981i \(0.214486\pi\)
\(104\) 0.0444905 + 0.136928i 0.00436265 + 0.0134269i
\(105\) 4.94051 9.10161i 0.482145 0.888226i
\(106\) −1.53429 + 4.72205i −0.149023 + 0.458646i
\(107\) 14.0538i 1.35863i −0.733846 0.679316i \(-0.762277\pi\)
0.733846 0.679316i \(-0.237723\pi\)
\(108\) 0.951057 + 0.309017i 0.0915155 + 0.0297352i
\(109\) 5.43552 3.94914i 0.520628 0.378259i −0.296212 0.955122i \(-0.595724\pi\)
0.816841 + 0.576863i \(0.195724\pi\)
\(110\) 4.99099 + 2.70920i 0.475872 + 0.258312i
\(111\) 0.0719871 + 0.0523017i 0.00683272 + 0.00496426i
\(112\) 2.72225 + 3.74686i 0.257229 + 0.354045i
\(113\) −0.586387 0.807092i −0.0551626 0.0759248i 0.780545 0.625100i \(-0.214942\pi\)
−0.835707 + 0.549175i \(0.814942\pi\)
\(114\) −5.45330 3.96205i −0.510748 0.371080i
\(115\) −3.71849 + 0.489952i −0.346751 + 0.0456883i
\(116\) 1.82428 1.32542i 0.169380 0.123062i
\(117\) 0.136928 + 0.0444905i 0.0126590 + 0.00411315i
\(118\) 5.25365i 0.483638i
\(119\) −10.7209 + 32.9956i −0.982784 + 3.02470i
\(120\) 1.53938 + 1.62182i 0.140526 + 0.148051i
\(121\) −1.40604 4.32736i −0.127822 0.393396i
\(122\) −13.0301 + 4.23374i −1.17969 + 0.383305i
\(123\) 1.80677 2.48680i 0.162911 0.224227i
\(124\) −1.00385 −0.0901484
\(125\) 8.49927 7.26377i 0.760198 0.649692i
\(126\) 4.63137 0.412595
\(127\) −6.77227 + 9.32123i −0.600942 + 0.827125i −0.995794 0.0916192i \(-0.970796\pi\)
0.394852 + 0.918745i \(0.370796\pi\)
\(128\) −0.951057 + 0.309017i −0.0840623 + 0.0273135i
\(129\) −2.78999 8.58671i −0.245645 0.756017i
\(130\) 0.221631 + 0.233501i 0.0194383 + 0.0204794i
\(131\) −0.551316 + 1.69677i −0.0481687 + 0.148248i −0.972248 0.233953i \(-0.924834\pi\)
0.924079 + 0.382201i \(0.124834\pi\)
\(132\) 2.53967i 0.221050i
\(133\) −29.6905 9.64703i −2.57449 0.836504i
\(134\) −6.18841 + 4.49614i −0.534597 + 0.388407i
\(135\) 2.21691 0.292102i 0.190801 0.0251402i
\(136\) −6.06035 4.40310i −0.519670 0.377563i
\(137\) 9.41828 + 12.9632i 0.804658 + 1.10752i 0.992126 + 0.125246i \(0.0399721\pi\)
−0.187467 + 0.982271i \(0.560028\pi\)
\(138\) −0.985910 1.35699i −0.0839262 0.115515i
\(139\) −2.99660 2.17716i −0.254168 0.184664i 0.453404 0.891305i \(-0.350210\pi\)
−0.707572 + 0.706641i \(0.750210\pi\)
\(140\) 9.10161 + 4.94051i 0.769226 + 0.417549i
\(141\) −8.80644 + 6.39825i −0.741636 + 0.538830i
\(142\) 9.76228 + 3.17196i 0.819232 + 0.266185i
\(143\) 0.365648i 0.0305770i
\(144\) −0.309017 + 0.951057i −0.0257514 + 0.0792547i
\(145\) 2.40545 4.43141i 0.199762 0.368009i
\(146\) 0.607465 + 1.86958i 0.0502741 + 0.154728i
\(147\) 13.7424 4.46517i 1.13345 0.368281i
\(148\) −0.0523017 + 0.0719871i −0.00429918 + 0.00591731i
\(149\) −1.88534 −0.154453 −0.0772267 0.997014i \(-0.524607\pi\)
−0.0772267 + 0.997014i \(0.524607\pi\)
\(150\) 4.66828 + 1.79084i 0.381164 + 0.146222i
\(151\) −6.15090 −0.500553 −0.250276 0.968174i \(-0.580522\pi\)
−0.250276 + 0.968174i \(0.580522\pi\)
\(152\) 3.96205 5.45330i 0.321365 0.442321i
\(153\) −7.12436 + 2.31485i −0.575971 + 0.187144i
\(154\) 3.63471 + 11.1865i 0.292893 + 0.901433i
\(155\) −2.02591 + 0.966575i −0.162725 + 0.0776371i
\(156\) −0.0444905 + 0.136928i −0.00356209 + 0.0109630i
\(157\) 23.4830i 1.87414i 0.349137 + 0.937072i \(0.386475\pi\)
−0.349137 + 0.937072i \(0.613525\pi\)
\(158\) 0.710661 + 0.230908i 0.0565372 + 0.0183700i
\(159\) −4.01682 + 2.91839i −0.318554 + 0.231443i
\(160\) −1.62182 + 1.53938i −0.128216 + 0.121699i
\(161\) −6.28472 4.56611i −0.495305 0.359860i
\(162\) 0.587785 + 0.809017i 0.0461808 + 0.0635624i
\(163\) 9.27366 + 12.7641i 0.726369 + 0.999762i 0.999288 + 0.0377245i \(0.0120109\pi\)
−0.272919 + 0.962037i \(0.587989\pi\)
\(164\) 2.48680 + 1.80677i 0.194187 + 0.141085i
\(165\) 2.44537 + 5.12542i 0.190372 + 0.399013i
\(166\) 2.51003 1.82364i 0.194816 0.141542i
\(167\) 3.84208 + 1.24837i 0.297309 + 0.0966016i 0.453873 0.891066i \(-0.350042\pi\)
−0.156564 + 0.987668i \(0.550042\pi\)
\(168\) 4.63137i 0.357318i
\(169\) 4.01082 12.3440i 0.308524 0.949540i
\(170\) −16.4702 3.05076i −1.26321 0.233982i
\(171\) −2.08298 6.41074i −0.159289 0.490241i
\(172\) 8.58671 2.78999i 0.654730 0.212735i
\(173\) 11.8495 16.3094i 0.900899 1.23998i −0.0692809 0.997597i \(-0.522070\pi\)
0.970180 0.242384i \(-0.0779295\pi\)
\(174\) 2.25493 0.170946
\(175\) 23.1254 + 1.20699i 1.74811 + 0.0912402i
\(176\) −2.53967 −0.191435
\(177\) −3.08802 + 4.25029i −0.232110 + 0.319472i
\(178\) −0.697947 + 0.226777i −0.0523134 + 0.0169976i
\(179\) 2.39818 + 7.38084i 0.179248 + 0.551670i 0.999802 0.0198998i \(-0.00633471\pi\)
−0.820554 + 0.571570i \(0.806335\pi\)
\(180\) 0.292102 + 2.21691i 0.0217720 + 0.165238i
\(181\) 3.64358 11.2138i 0.270825 0.833515i −0.719469 0.694525i \(-0.755615\pi\)
0.990294 0.138990i \(-0.0443855\pi\)
\(182\) 0.666798i 0.0494264i
\(183\) −13.0301 4.23374i −0.963214 0.312967i
\(184\) 1.35699 0.985910i 0.100039 0.0726822i
\(185\) −0.0362381 + 0.195640i −0.00266427 + 0.0143837i
\(186\) −0.812131 0.590048i −0.0595484 0.0432644i
\(187\) −11.1824 15.3913i −0.817741 1.12552i
\(188\) −6.39825 8.80644i −0.466641 0.642276i
\(189\) 3.74686 + 2.72225i 0.272544 + 0.198015i
\(190\) 2.74517 14.8205i 0.199156 1.07519i
\(191\) −3.95155 + 2.87097i −0.285924 + 0.207736i −0.721497 0.692417i \(-0.756546\pi\)
0.435573 + 0.900153i \(0.356546\pi\)
\(192\) −0.951057 0.309017i −0.0686366 0.0223014i
\(193\) 18.7342i 1.34852i −0.738496 0.674258i \(-0.764464\pi\)
0.738496 0.674258i \(-0.235536\pi\)
\(194\) 2.81837 8.67406i 0.202347 0.622761i
\(195\) 0.0420552 + 0.319178i 0.00301164 + 0.0228568i
\(196\) 4.46517 + 13.7424i 0.318941 + 0.981598i
\(197\) −1.19314 + 0.387674i −0.0850075 + 0.0276206i −0.351212 0.936296i \(-0.614230\pi\)
0.266204 + 0.963917i \(0.414230\pi\)
\(198\) −1.49278 + 2.05464i −0.106087 + 0.146017i
\(199\) −19.3703 −1.37312 −0.686562 0.727071i \(-0.740881\pi\)
−0.686562 + 0.727071i \(0.740881\pi\)
\(200\) −1.79084 + 4.66828i −0.126632 + 0.330098i
\(201\) −7.64929 −0.539539
\(202\) 1.69290 2.33007i 0.119112 0.163943i
\(203\) 9.93229 3.22720i 0.697110 0.226505i
\(204\) −2.31485 7.12436i −0.162072 0.498805i
\(205\) 6.75839 + 1.25185i 0.472027 + 0.0874328i
\(206\) −3.45214 + 10.6246i −0.240522 + 0.740250i
\(207\) 1.67733i 0.116583i
\(208\) −0.136928 0.0444905i −0.00949423 0.00308486i
\(209\) 13.8496 10.0623i 0.957997 0.696026i
\(210\) 4.45940 + 9.34675i 0.307728 + 0.644987i
\(211\) 1.01062 + 0.734260i 0.0695741 + 0.0505485i 0.622029 0.782994i \(-0.286309\pi\)
−0.552455 + 0.833543i \(0.686309\pi\)
\(212\) −2.91839 4.01682i −0.200436 0.275876i
\(213\) 6.03342 + 8.30429i 0.413403 + 0.569001i
\(214\) 11.3698 + 8.26061i 0.777221 + 0.564684i
\(215\) 14.6428 13.8985i 0.998629 0.947867i
\(216\) −0.809017 + 0.587785i −0.0550466 + 0.0399937i
\(217\) −4.42165 1.43668i −0.300161 0.0975283i
\(218\) 6.71867i 0.455046i
\(219\) −0.607465 + 1.86958i −0.0410487 + 0.126335i
\(220\) −5.12542 + 2.44537i −0.345556 + 0.164867i
\(221\) −0.333278 1.02573i −0.0224187 0.0689978i
\(222\) −0.0846260 + 0.0274966i −0.00567972 + 0.00184545i
\(223\) 12.8640 17.7058i 0.861437 1.18567i −0.119788 0.992800i \(-0.538221\pi\)
0.981225 0.192867i \(-0.0617787\pi\)
\(224\) −4.63137 −0.309446
\(225\) 2.72409 + 4.19277i 0.181606 + 0.279518i
\(226\) 0.997621 0.0663607
\(227\) −8.52486 + 11.7335i −0.565815 + 0.778777i −0.992051 0.125835i \(-0.959839\pi\)
0.426237 + 0.904612i \(0.359839\pi\)
\(228\) 6.41074 2.08298i 0.424562 0.137948i
\(229\) −1.45262 4.47071i −0.0959920 0.295433i 0.891519 0.452983i \(-0.149640\pi\)
−0.987511 + 0.157550i \(0.949640\pi\)
\(230\) 1.78929 3.29630i 0.117982 0.217352i
\(231\) −3.63471 + 11.1865i −0.239146 + 0.736017i
\(232\) 2.25493i 0.148044i
\(233\) −11.2403 3.65218i −0.736374 0.239262i −0.0832661 0.996527i \(-0.526535\pi\)
−0.653108 + 0.757265i \(0.726535\pi\)
\(234\) −0.116478 + 0.0846260i −0.00761438 + 0.00553217i
\(235\) −21.3920 11.6119i −1.39546 0.757480i
\(236\) −4.25029 3.08802i −0.276671 0.201013i
\(237\) 0.439213 + 0.604525i 0.0285299 + 0.0392681i
\(238\) −20.3924 28.0677i −1.32184 1.81936i
\(239\) 7.85849 + 5.70953i 0.508324 + 0.369319i 0.812187 0.583397i \(-0.198277\pi\)
−0.303864 + 0.952716i \(0.598277\pi\)
\(240\) −2.21691 + 0.292102i −0.143101 + 0.0188551i
\(241\) −5.40451 + 3.92661i −0.348135 + 0.252935i −0.748086 0.663601i \(-0.769027\pi\)
0.399951 + 0.916537i \(0.369027\pi\)
\(242\) 4.32736 + 1.40604i 0.278173 + 0.0903839i
\(243\) 1.00000i 0.0641500i
\(244\) 4.23374 13.0301i 0.271037 0.834168i
\(245\) 22.2434 + 23.4347i 1.42108 + 1.49719i
\(246\) 0.949874 + 2.92341i 0.0605618 + 0.186390i
\(247\) 0.922982 0.299895i 0.0587279 0.0190819i
\(248\) 0.590048 0.812131i 0.0374681 0.0515704i
\(249\) 3.10257 0.196617
\(250\) 0.880772 + 11.1456i 0.0557049 + 0.704909i
\(251\) −19.6023 −1.23729 −0.618644 0.785672i \(-0.712317\pi\)
−0.618644 + 0.785672i \(0.712317\pi\)
\(252\) −2.72225 + 3.74686i −0.171486 + 0.236030i
\(253\) 4.05138 1.31637i 0.254708 0.0827597i
\(254\) −3.56039 10.9578i −0.223399 0.687551i
\(255\) −11.5315 12.1491i −0.722131 0.760804i
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 9.46931i 0.590679i −0.955392 0.295340i \(-0.904567\pi\)
0.955392 0.295340i \(-0.0954328\pi\)
\(258\) 8.58671 + 2.78999i 0.534585 + 0.173697i
\(259\) −0.333399 + 0.242229i −0.0207164 + 0.0150514i
\(260\) −0.319178 + 0.0420552i −0.0197946 + 0.00260815i
\(261\) 1.82428 + 1.32542i 0.112920 + 0.0820412i
\(262\) −1.04866 1.44336i −0.0647867 0.0891713i
\(263\) 12.4296 + 17.1079i 0.766441 + 1.05492i 0.996651 + 0.0817747i \(0.0260588\pi\)
−0.230210 + 0.973141i \(0.573941\pi\)
\(264\) −2.05464 1.49278i −0.126454 0.0918745i
\(265\) −9.75738 5.29647i −0.599391 0.325360i
\(266\) 25.2563 18.3497i 1.54856 1.12509i
\(267\) −0.697947 0.226777i −0.0427137 0.0138785i
\(268\) 7.64929i 0.467255i
\(269\) 0.603355 1.85694i 0.0367872 0.113219i −0.930977 0.365079i \(-0.881042\pi\)
0.967764 + 0.251859i \(0.0810420\pi\)
\(270\) −1.06675 + 1.96521i −0.0649203 + 0.119599i
\(271\) −4.91521 15.1274i −0.298577 0.918927i −0.981996 0.188900i \(-0.939508\pi\)
0.683419 0.730027i \(-0.260492\pi\)
\(272\) 7.12436 2.31485i 0.431978 0.140358i
\(273\) −0.391934 + 0.539451i −0.0237209 + 0.0326491i
\(274\) −16.0233 −0.968006
\(275\) −7.98924 + 9.87020i −0.481769 + 0.595195i
\(276\) 1.67733 0.100963
\(277\) 1.16998 1.61033i 0.0702970 0.0967555i −0.772421 0.635111i \(-0.780954\pi\)
0.842718 + 0.538356i \(0.180954\pi\)
\(278\) 3.52272 1.14460i 0.211278 0.0686485i
\(279\) −0.310207 0.954718i −0.0185716 0.0571575i
\(280\) −9.34675 + 4.45940i −0.558575 + 0.266500i
\(281\) −7.78302 + 23.9537i −0.464296 + 1.42896i 0.395569 + 0.918436i \(0.370547\pi\)
−0.859866 + 0.510521i \(0.829453\pi\)
\(282\) 10.8854i 0.648214i
\(283\) 10.7090 + 3.47958i 0.636586 + 0.206839i 0.609490 0.792794i \(-0.291374\pi\)
0.0270957 + 0.999633i \(0.491374\pi\)
\(284\) −8.30429 + 6.03342i −0.492769 + 0.358018i
\(285\) 10.9321 10.3764i 0.647564 0.614647i
\(286\) −0.295815 0.214922i −0.0174919 0.0127086i
\(287\) 8.36781 + 11.5173i 0.493936 + 0.679845i
\(288\) −0.587785 0.809017i −0.0346356 0.0476718i
\(289\) 31.6448 + 22.9913i 1.86146 + 1.35243i
\(290\) 2.17120 + 4.55077i 0.127497 + 0.267230i
\(291\) 7.37859 5.36086i 0.432541 0.314259i
\(292\) −1.86958 0.607465i −0.109409 0.0355492i
\(293\) 20.0482i 1.17123i 0.810591 + 0.585613i \(0.199146\pi\)
−0.810591 + 0.585613i \(0.800854\pi\)
\(294\) −4.46517 + 13.7424i −0.260414 + 0.801472i
\(295\) −11.5510 2.13958i −0.672527 0.124571i
\(296\) −0.0274966 0.0846260i −0.00159821 0.00491878i
\(297\) −2.41537 + 0.784803i −0.140154 + 0.0455389i
\(298\) 1.10818 1.52528i 0.0641950 0.0883569i
\(299\) 0.241492 0.0139659
\(300\) −4.19277 + 2.72409i −0.242070 + 0.157275i
\(301\) 41.8148 2.41016
\(302\) 3.61541 4.97618i 0.208043 0.286347i
\(303\) 2.73916 0.890008i 0.157361 0.0511296i
\(304\) 2.08298 + 6.41074i 0.119467 + 0.367681i
\(305\) −4.00200 30.3731i −0.229154 1.73916i
\(306\) 2.31485 7.12436i 0.132331 0.407273i
\(307\) 14.4493i 0.824668i 0.911033 + 0.412334i \(0.135286\pi\)
−0.911033 + 0.412334i \(0.864714\pi\)
\(308\) −11.1865 3.63471i −0.637410 0.207107i
\(309\) −9.03781 + 6.56635i −0.514143 + 0.373547i
\(310\) 0.408824 2.20713i 0.0232196 0.125357i
\(311\) 19.0778 + 13.8608i 1.08180 + 0.785977i 0.977997 0.208621i \(-0.0668975\pi\)
0.103807 + 0.994597i \(0.466897\pi\)
\(312\) −0.0846260 0.116478i −0.00479100 0.00659425i
\(313\) 16.1598 + 22.2420i 0.913405 + 1.25719i 0.965991 + 0.258577i \(0.0832537\pi\)
−0.0525858 + 0.998616i \(0.516746\pi\)
\(314\) −18.9981 13.8029i −1.07213 0.778945i
\(315\) −1.88615 + 10.1828i −0.106273 + 0.573738i
\(316\) −0.604525 + 0.439213i −0.0340072 + 0.0247077i
\(317\) −5.74985 1.86824i −0.322944 0.104931i 0.143059 0.989714i \(-0.454306\pi\)
−0.466002 + 0.884783i \(0.654306\pi\)
\(318\) 4.96506i 0.278427i
\(319\) −1.76968 + 5.44650i −0.0990829 + 0.304946i
\(320\) −0.292102 2.21691i −0.0163290 0.123929i
\(321\) 4.34286 + 13.3660i 0.242395 + 0.746015i
\(322\) 7.38813 2.40055i 0.411724 0.133777i
\(323\) −29.6798 + 40.8507i −1.65143 + 2.27299i
\(324\) −1.00000 −0.0555556
\(325\) −0.603651 + 0.392199i −0.0334845 + 0.0217553i
\(326\) −15.7773 −0.873824
\(327\) −3.94914 + 5.43552i −0.218388 + 0.300585i
\(328\) −2.92341 + 0.949874i −0.161418 + 0.0524480i
\(329\) −15.5788 47.9467i −0.858888 2.64339i
\(330\) −5.58390 1.03430i −0.307384 0.0569362i
\(331\) 5.23211 16.1028i 0.287583 0.885089i −0.698030 0.716069i \(-0.745940\pi\)
0.985613 0.169020i \(-0.0540603\pi\)
\(332\) 3.10257i 0.170275i
\(333\) −0.0846260 0.0274966i −0.00463747 0.00150681i
\(334\) −3.26827 + 2.37454i −0.178832 + 0.129929i
\(335\) −7.36525 15.4373i −0.402407 0.843432i
\(336\) −3.74686 2.72225i −0.204408 0.148511i
\(337\) −13.3205 18.3341i −0.725616 0.998724i −0.999319 0.0369100i \(-0.988249\pi\)
0.273703 0.961814i \(-0.411751\pi\)
\(338\) 7.62902 + 10.5005i 0.414964 + 0.571149i
\(339\) 0.807092 + 0.586387i 0.0438352 + 0.0318482i
\(340\) 12.1491 11.5315i 0.658876 0.625384i
\(341\) 2.06255 1.49853i 0.111693 0.0811500i
\(342\) 6.41074 + 2.08298i 0.346653 + 0.112634i
\(343\) 34.5018i 1.86292i
\(344\) −2.78999 + 8.58671i −0.150426 + 0.462964i
\(345\) 3.38509 1.61505i 0.182247 0.0869512i
\(346\) 6.22964 + 19.1729i 0.334908 + 1.03074i
\(347\) −9.75025 + 3.16805i −0.523421 + 0.170070i −0.558797 0.829304i \(-0.688737\pi\)
0.0353763 + 0.999374i \(0.488737\pi\)
\(348\) −1.32542 + 1.82428i −0.0710497 + 0.0977916i
\(349\) −1.38746 −0.0742691 −0.0371346 0.999310i \(-0.511823\pi\)
−0.0371346 + 0.999310i \(0.511823\pi\)
\(350\) −14.5692 + 17.9994i −0.778758 + 0.962107i
\(351\) −0.143974 −0.00768478
\(352\) 1.49278 2.05464i 0.0795656 0.109513i
\(353\) −12.2858 + 3.99189i −0.653906 + 0.212467i −0.617136 0.786857i \(-0.711707\pi\)
−0.0367706 + 0.999324i \(0.511707\pi\)
\(354\) −1.62347 4.99652i −0.0862863 0.265562i
\(355\) −10.9498 + 20.1722i −0.581156 + 1.07063i
\(356\) 0.226777 0.697947i 0.0120191 0.0369911i
\(357\) 34.6936i 1.83618i
\(358\) −7.38084 2.39818i −0.390089 0.126748i
\(359\) 7.98876 5.80417i 0.421630 0.306332i −0.356663 0.934233i \(-0.616086\pi\)
0.778294 + 0.627901i \(0.216086\pi\)
\(360\) −1.96521 1.06675i −0.103576 0.0562226i
\(361\) −21.3875 15.5389i −1.12566 0.817837i
\(362\) 6.93051 + 9.53902i 0.364259 + 0.501360i
\(363\) 2.67445 + 3.68107i 0.140372 + 0.193206i
\(364\) −0.539451 0.391934i −0.0282749 0.0205429i
\(365\) −4.35799 + 0.574214i −0.228108 + 0.0300557i
\(366\) 11.0841 8.05305i 0.579374 0.420940i
\(367\) −5.05886 1.64372i −0.264070 0.0858016i 0.173989 0.984748i \(-0.444334\pi\)
−0.438060 + 0.898946i \(0.644334\pi\)
\(368\) 1.67733i 0.0874369i
\(369\) −0.949874 + 2.92341i −0.0494485 + 0.152187i
\(370\) −0.136976 0.144311i −0.00712103 0.00750239i
\(371\) −7.10585 21.8696i −0.368918 1.13541i
\(372\) 0.954718 0.310207i 0.0494998 0.0160835i
\(373\) −5.69246 + 7.83499i −0.294744 + 0.405681i −0.930548 0.366170i \(-0.880669\pi\)
0.635804 + 0.771851i \(0.280669\pi\)
\(374\) 19.0247 0.983744
\(375\) −5.83866 + 9.53468i −0.301507 + 0.492369i
\(376\) 10.8854 0.561369
\(377\) −0.190826 + 0.262649i −0.00982803 + 0.0135271i
\(378\) −4.40469 + 1.43117i −0.226553 + 0.0736116i
\(379\) 6.95968 + 21.4197i 0.357495 + 1.10026i 0.954549 + 0.298055i \(0.0963379\pi\)
−0.597054 + 0.802201i \(0.703662\pi\)
\(380\) 10.3764 + 10.9321i 0.532300 + 0.560807i
\(381\) 3.56039 10.9578i 0.182404 0.561383i
\(382\) 4.88438i 0.249907i
\(383\) −6.85864 2.22851i −0.350460 0.113871i 0.128497 0.991710i \(-0.458985\pi\)
−0.478957 + 0.877839i \(0.658985\pi\)
\(384\) 0.809017 0.587785i 0.0412850 0.0299953i
\(385\) −26.0756 + 3.43576i −1.32894 + 0.175102i
\(386\) 15.1563 + 11.0117i 0.771434 + 0.560479i
\(387\) 5.30688 + 7.30429i 0.269764 + 0.371298i
\(388\) 5.36086 + 7.37859i 0.272157 + 0.374591i
\(389\) 10.7139 + 7.78411i 0.543217 + 0.394670i 0.825278 0.564726i \(-0.191018\pi\)
−0.282062 + 0.959396i \(0.591018\pi\)
\(390\) −0.282940 0.153584i −0.0143272 0.00777705i
\(391\) −10.1652 + 7.38545i −0.514076 + 0.373498i
\(392\) −13.7424 4.46517i −0.694095 0.225525i
\(393\) 1.78409i 0.0899957i
\(394\) 0.387674 1.19314i 0.0195307 0.0601094i
\(395\) −0.797111 + 1.46847i −0.0401070 + 0.0738867i
\(396\) −0.784803 2.41537i −0.0394378 0.121377i
\(397\) −27.8304 + 9.04265i −1.39677 + 0.453838i −0.908144 0.418657i \(-0.862501\pi\)
−0.488624 + 0.872494i \(0.662501\pi\)
\(398\) 11.3856 15.6709i 0.570707 0.785511i
\(399\) 31.2184 1.56288
\(400\) −2.72409 4.19277i −0.136205 0.209639i
\(401\) 27.4005 1.36832 0.684158 0.729334i \(-0.260170\pi\)
0.684158 + 0.729334i \(0.260170\pi\)
\(402\) 4.49614 6.18841i 0.224247 0.308650i
\(403\) 0.137455 0.0446618i 0.00684711 0.00222476i
\(404\) 0.890008 + 2.73916i 0.0442796 + 0.136279i
\(405\) −2.01814 + 0.962868i −0.100282 + 0.0478453i
\(406\) −3.22720 + 9.93229i −0.160163 + 0.492931i
\(407\) 0.225983i 0.0112016i
\(408\) 7.12436 + 2.31485i 0.352709 + 0.114602i
\(409\) 8.09226 5.87937i 0.400137 0.290716i −0.369460 0.929247i \(-0.620457\pi\)
0.769597 + 0.638530i \(0.220457\pi\)
\(410\) −4.98525 + 4.73184i −0.246204 + 0.233689i
\(411\) −12.9632 9.41828i −0.639425 0.464570i
\(412\) −6.56635 9.03781i −0.323501 0.445261i
\(413\) −14.3018 19.6847i −0.703744 0.968620i
\(414\) 1.35699 + 0.985910i 0.0666924 + 0.0484548i
\(415\) 2.98736 + 6.26141i 0.146644 + 0.307360i
\(416\) 0.116478 0.0846260i 0.00571079 0.00414913i
\(417\) 3.52272 + 1.14460i 0.172508 + 0.0560513i
\(418\) 17.1191i 0.837320i
\(419\) 2.48795 7.65713i 0.121544 0.374075i −0.871711 0.490020i \(-0.836990\pi\)
0.993256 + 0.115945i \(0.0369895\pi\)
\(420\) −10.1828 1.88615i −0.496872 0.0920349i
\(421\) 3.10662 + 9.56120i 0.151408 + 0.465984i 0.997779 0.0666083i \(-0.0212178\pi\)
−0.846372 + 0.532593i \(0.821218\pi\)
\(422\) −1.18806 + 0.386023i −0.0578337 + 0.0187913i
\(423\) 6.39825 8.80644i 0.311094 0.428184i
\(424\) 4.96506 0.241125
\(425\) 13.4152 34.9701i 0.650733 1.69630i
\(426\) −10.2647 −0.497325
\(427\) 37.2967 51.3345i 1.80491 2.48425i
\(428\) −13.3660 + 4.34286i −0.646068 + 0.209920i
\(429\) −0.112991 0.347752i −0.00545528 0.0167896i
\(430\) 2.63727 + 20.0156i 0.127181 + 0.965236i
\(431\) 7.09793 21.8452i 0.341895 1.05225i −0.621329 0.783549i \(-0.713407\pi\)
0.963225 0.268697i \(-0.0865929\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) 17.1156 + 5.56121i 0.822525 + 0.267254i 0.689893 0.723911i \(-0.257657\pi\)
0.132631 + 0.991165i \(0.457657\pi\)
\(434\) 3.76128 2.73273i 0.180547 0.131175i
\(435\) −0.918335 + 4.95785i −0.0440308 + 0.237711i
\(436\) −5.43552 3.94914i −0.260314 0.189129i
\(437\) −6.64567 9.14699i −0.317906 0.437560i
\(438\) −1.15547 1.59036i −0.0552103 0.0759905i
\(439\) −21.1610 15.3743i −1.00996 0.733777i −0.0457572 0.998953i \(-0.514570\pi\)
−0.964200 + 0.265176i \(0.914570\pi\)
\(440\) 1.03430 5.58390i 0.0493082 0.266202i
\(441\) −11.6900 + 8.49326i −0.556665 + 0.404441i
\(442\) 1.02573 + 0.333278i 0.0487888 + 0.0158524i
\(443\) 40.5689i 1.92749i −0.266833 0.963743i \(-0.585977\pi\)
0.266833 0.963743i \(-0.414023\pi\)
\(444\) 0.0274966 0.0846260i 0.00130493 0.00401617i
\(445\) −0.214364 1.62691i −0.0101618 0.0771230i
\(446\) 6.76301 + 20.8144i 0.320238 + 0.985590i
\(447\) 1.79307 0.582604i 0.0848093 0.0275562i
\(448\) 2.72225 3.74686i 0.128614 0.177022i
\(449\) 23.1589 1.09294 0.546468 0.837480i \(-0.315972\pi\)
0.546468 + 0.837480i \(0.315972\pi\)
\(450\) −4.99320 0.260613i −0.235382 0.0122854i
\(451\) −7.80660 −0.367598
\(452\) −0.586387 + 0.807092i −0.0275813 + 0.0379624i
\(453\) 5.84985 1.90073i 0.274850 0.0893042i
\(454\) −4.48178 13.7935i −0.210340 0.647361i
\(455\) −1.46607 0.271558i −0.0687303 0.0127308i
\(456\) −2.08298 + 6.41074i −0.0975443 + 0.300210i
\(457\) 38.3997i 1.79626i 0.439728 + 0.898131i \(0.355075\pi\)
−0.439728 + 0.898131i \(0.644925\pi\)
\(458\) 4.47071 + 1.45262i 0.208903 + 0.0678766i
\(459\) 6.06035 4.40310i 0.282873 0.205519i
\(460\) 1.61505 + 3.38509i 0.0753020 + 0.157830i
\(461\) 26.3670 + 19.1567i 1.22803 + 0.892217i 0.996741 0.0806677i \(-0.0257053\pi\)
0.231290 + 0.972885i \(0.425705\pi\)
\(462\) −6.91363 9.51580i −0.321651 0.442715i
\(463\) 1.49167 + 2.05311i 0.0693238 + 0.0954160i 0.842271 0.539054i \(-0.181218\pi\)
−0.772947 + 0.634470i \(0.781218\pi\)
\(464\) −1.82428 1.32542i −0.0846900 0.0615309i
\(465\) 1.62807 1.54531i 0.0754997 0.0716619i
\(466\) 9.56154 6.94686i 0.442930 0.321807i
\(467\) −1.42329 0.462456i −0.0658622 0.0213999i 0.275901 0.961186i \(-0.411024\pi\)
−0.341763 + 0.939786i \(0.611024\pi\)
\(468\) 0.143974i 0.00665521i
\(469\) 10.9475 33.6928i 0.505506 1.55579i
\(470\) 21.9682 10.4812i 1.01332 0.483460i
\(471\) −7.25663 22.3336i −0.334368 1.02908i
\(472\) 4.99652 1.62347i 0.229983 0.0747262i
\(473\) −13.4777 + 18.5505i −0.619707 + 0.852954i
\(474\) −0.747233 −0.0343216
\(475\) 31.4673 + 12.0714i 1.44382 + 0.553876i
\(476\) 34.6936 1.59018
\(477\) 2.91839 4.01682i 0.133624 0.183917i
\(478\) −9.23821 + 3.00168i −0.422546 + 0.137294i
\(479\) −7.50880 23.1097i −0.343086 1.05591i −0.962600 0.270925i \(-0.912670\pi\)
0.619514 0.784985i \(-0.287330\pi\)
\(480\) 1.06675 1.96521i 0.0486902 0.0896991i
\(481\) 0.00395881 0.0121840i 0.000180506 0.000555541i
\(482\) 6.68035i 0.304281i
\(483\) 7.38813 + 2.40055i 0.336171 + 0.109229i
\(484\) −3.68107 + 2.67445i −0.167321 + 0.121566i
\(485\) 17.9236 + 9.72923i 0.813868 + 0.441782i
\(486\) −0.809017 0.587785i −0.0366978 0.0266625i
\(487\) −5.87877 8.09143i −0.266392 0.366658i 0.654775 0.755824i \(-0.272763\pi\)
−0.921168 + 0.389166i \(0.872763\pi\)
\(488\) 8.05305 + 11.0841i 0.364545 + 0.501753i
\(489\) −12.7641 9.27366i −0.577213 0.419370i
\(490\) −32.0334 + 4.22076i −1.44712 + 0.190674i
\(491\) −3.38163 + 2.45690i −0.152611 + 0.110878i −0.661470 0.749971i \(-0.730067\pi\)
0.508860 + 0.860850i \(0.330067\pi\)
\(492\) −2.92341 0.949874i −0.131798 0.0428236i
\(493\) 16.8917i 0.760764i
\(494\) −0.299895 + 0.922982i −0.0134929 + 0.0415269i
\(495\) −3.90953 4.11890i −0.175720 0.185131i
\(496\) 0.310207 + 0.954718i 0.0139287 + 0.0428681i
\(497\) −45.2127 + 14.6905i −2.02807 + 0.658959i
\(498\) −1.82364 + 2.51003i −0.0817194 + 0.112477i
\(499\) −1.70548 −0.0763476 −0.0381738 0.999271i \(-0.512154\pi\)
−0.0381738 + 0.999271i \(0.512154\pi\)
\(500\) −9.53468 5.83866i −0.426404 0.261113i
\(501\) −4.03980 −0.180485
\(502\) 11.5220 15.8586i 0.514250 0.707804i
\(503\) 29.4265 9.56125i 1.31206 0.426315i 0.432301 0.901729i \(-0.357702\pi\)
0.879762 + 0.475414i \(0.157702\pi\)
\(504\) −1.43117 4.40469i −0.0637495 0.196201i
\(505\) 4.43361 + 4.67105i 0.197293 + 0.207859i
\(506\) −1.31637 + 4.05138i −0.0585199 + 0.180106i
\(507\) 12.9793i 0.576430i
\(508\) 10.9578 + 3.56039i 0.486172 + 0.157967i
\(509\) −29.2182 + 21.2283i −1.29507 + 0.940926i −0.999895 0.0145162i \(-0.995379\pi\)
−0.295179 + 0.955442i \(0.595379\pi\)
\(510\) 16.6068 2.18814i 0.735364 0.0968924i
\(511\) −7.36556 5.35139i −0.325833 0.236732i
\(512\) 0.587785 + 0.809017i 0.0259767 + 0.0357538i
\(513\) 3.96205 + 5.45330i 0.174929 + 0.240769i
\(514\) 7.66083 + 5.56592i 0.337905 + 0.245502i
\(515\) −21.9540 11.9170i −0.967410 0.525127i
\(516\) −7.30429 + 5.30688i −0.321553 + 0.233622i
\(517\) 26.2922 + 8.54286i 1.15633 + 0.375714i
\(518\) 0.412104i 0.0181068i
\(519\) −6.22964 + 19.1729i −0.273451 + 0.841595i
\(520\) 0.153584 0.282940i 0.00673513 0.0124077i
\(521\) 1.38131 + 4.25122i 0.0605161 + 0.186249i 0.976744 0.214407i \(-0.0687820\pi\)
−0.916228 + 0.400657i \(0.868782\pi\)
\(522\) −2.14457 + 0.696812i −0.0938652 + 0.0304986i
\(523\) −18.0150 + 24.7955i −0.787741 + 1.08423i 0.206644 + 0.978416i \(0.433746\pi\)
−0.994386 + 0.105817i \(0.966254\pi\)
\(524\) 1.78409 0.0779385
\(525\) −22.3665 + 5.99821i −0.976155 + 0.261784i
\(526\) −21.1465 −0.922030
\(527\) −4.42005 + 6.08368i −0.192540 + 0.265009i
\(528\) 2.41537 0.784803i 0.105116 0.0341541i
\(529\) 6.23799 + 19.1986i 0.271217 + 0.834720i
\(530\) 10.0202 4.78070i 0.435249 0.207660i
\(531\) 1.62347 4.99652i 0.0704525 0.216830i
\(532\) 31.2184i 1.35349i
\(533\) −0.420896 0.136757i −0.0182310 0.00592362i
\(534\) 0.593709 0.431355i 0.0256923 0.0186666i
\(535\) −22.7928 + 21.6341i −0.985417 + 0.935326i
\(536\) 6.18841 + 4.49614i 0.267298 + 0.194204i
\(537\) −4.56161 6.27852i −0.196848 0.270938i
\(538\) 1.14765 + 1.57960i 0.0494787 + 0.0681016i
\(539\) −29.6887 21.5701i −1.27878 0.929090i
\(540\) −0.962868 2.01814i −0.0414352 0.0868469i
\(541\) −11.9065 + 8.65055i −0.511899 + 0.371916i −0.813543 0.581504i \(-0.802464\pi\)
0.301645 + 0.953420i \(0.402464\pi\)
\(542\) 15.1274 + 4.91521i 0.649780 + 0.211126i
\(543\) 11.7909i 0.505995i
\(544\) −2.31485 + 7.12436i −0.0992482 + 0.305455i
\(545\) −14.7721 2.73622i −0.632769 0.117207i
\(546\) −0.206052 0.634163i −0.00881821 0.0271397i
\(547\) 10.1457 3.29653i 0.433798 0.140950i −0.0839742 0.996468i \(-0.526761\pi\)
0.517773 + 0.855518i \(0.326761\pi\)
\(548\) 9.41828 12.9632i 0.402329 0.553759i
\(549\) 13.7007 0.584730
\(550\) −3.28920 12.2650i −0.140252 0.522981i
\(551\) 15.1997 0.647529
\(552\) −0.985910 + 1.35699i −0.0419631 + 0.0577573i
\(553\) −3.29134 + 1.06942i −0.139962 + 0.0454764i
\(554\) 0.615092 + 1.89306i 0.0261328 + 0.0804284i
\(555\) −0.0259916 0.197263i −0.00110328 0.00837333i
\(556\) −1.14460 + 3.52272i −0.0485418 + 0.149396i
\(557\) 16.1652i 0.684942i 0.939528 + 0.342471i \(0.111264\pi\)
−0.939528 + 0.342471i \(0.888736\pi\)
\(558\) 0.954718 + 0.310207i 0.0404164 + 0.0131321i
\(559\) −1.05163 + 0.764054i −0.0444792 + 0.0323160i
\(560\) 1.88615 10.1828i 0.0797045 0.430304i
\(561\) 15.3913 + 11.1824i 0.649821 + 0.472123i
\(562\) −14.8042 20.3762i −0.624477 0.859519i
\(563\) −25.5559 35.1746i −1.07705 1.48243i −0.862726 0.505672i \(-0.831245\pi\)
−0.214326 0.976762i \(-0.568755\pi\)
\(564\) 8.80644 + 6.39825i 0.370818 + 0.269415i
\(565\) −0.406287 + 2.19344i −0.0170926 + 0.0922786i
\(566\) −9.10965 + 6.61855i −0.382907 + 0.278198i
\(567\) −4.40469 1.43117i −0.184980 0.0601036i
\(568\) 10.2647i 0.430696i
\(569\) −3.71683 + 11.4392i −0.155818 + 0.479558i −0.998243 0.0592558i \(-0.981127\pi\)
0.842425 + 0.538813i \(0.181127\pi\)
\(570\) 1.96896 + 14.9434i 0.0824706 + 0.625910i
\(571\) 5.80332 + 17.8608i 0.242861 + 0.747450i 0.995981 + 0.0895664i \(0.0285481\pi\)
−0.753120 + 0.657884i \(0.771452\pi\)
\(572\) 0.347752 0.112991i 0.0145402 0.00472441i
\(573\) 2.87097 3.95155i 0.119936 0.165078i
\(574\) −14.2362 −0.594206
\(575\) 6.51878 + 5.27650i 0.271852 + 0.220045i
\(576\) 1.00000 0.0416667
\(577\) −12.4817 + 17.1796i −0.519619 + 0.715195i −0.985504 0.169651i \(-0.945736\pi\)
0.465885 + 0.884845i \(0.345736\pi\)
\(578\) −37.2007 + 12.0872i −1.54734 + 0.502762i
\(579\) 5.78918 + 17.8173i 0.240590 + 0.740460i
\(580\) −4.95785 0.918335i −0.205863 0.0381318i
\(581\) −4.44031 + 13.6659i −0.184215 + 0.566955i
\(582\) 9.12044i 0.378055i
\(583\) 11.9925 + 3.89659i 0.496678 + 0.161380i
\(584\) 1.59036 1.15547i 0.0658097 0.0478135i
\(585\) −0.138628 0.290560i −0.00573157 0.0120132i
\(586\) −16.2193 11.7840i −0.670013 0.486793i
\(587\) 19.1781 + 26.3964i 0.791566 + 1.08950i 0.993911 + 0.110183i \(0.0351438\pi\)
−0.202345 + 0.979314i \(0.564856\pi\)
\(588\) −8.49326 11.6900i −0.350256 0.482086i
\(589\) −5.47429 3.97731i −0.225564 0.163882i
\(590\) 8.52049 8.08737i 0.350783 0.332952i
\(591\) 1.01494 0.737399i 0.0417492 0.0303326i
\(592\) 0.0846260 + 0.0274966i 0.00347811 + 0.00113011i
\(593\) 0.911868i 0.0374460i 0.999825 + 0.0187230i \(0.00596006\pi\)
−0.999825 + 0.0187230i \(0.994040\pi\)
\(594\) 0.784803 2.41537i 0.0322008 0.0991040i
\(595\) 70.0165 33.4053i 2.87040 1.36949i
\(596\) 0.582604 + 1.79307i 0.0238644 + 0.0734470i
\(597\) 18.4222 5.98575i 0.753972 0.244980i
\(598\) −0.141946 + 0.195371i −0.00580459 + 0.00798933i
\(599\) 35.5516 1.45260 0.726300 0.687378i \(-0.241238\pi\)
0.726300 + 0.687378i \(0.241238\pi\)
\(600\) 0.260613 4.99320i 0.0106395 0.203847i
\(601\) −42.8608 −1.74833 −0.874164 0.485630i \(-0.838590\pi\)
−0.874164 + 0.485630i \(0.838590\pi\)
\(602\) −24.5781 + 33.8289i −1.00173 + 1.37876i
\(603\) 7.27491 2.36376i 0.296257 0.0962598i
\(604\) 1.90073 + 5.84985i 0.0773397 + 0.238027i
\(605\) −4.85377 + 8.94180i −0.197334 + 0.363536i
\(606\) −0.890008 + 2.73916i −0.0361541 + 0.111271i
\(607\) 47.7389i 1.93766i −0.247724 0.968831i \(-0.579683\pi\)
0.247724 0.968831i \(-0.420317\pi\)
\(608\) −6.41074 2.08298i −0.259990 0.0844758i
\(609\) −8.44891 + 6.13849i −0.342367 + 0.248744i
\(610\) 26.9247 + 14.6152i 1.09015 + 0.591752i
\(611\) 1.26790 + 0.921184i 0.0512938 + 0.0372671i
\(612\) 4.40310 + 6.06035i 0.177985 + 0.244975i
\(613\) −14.4025 19.8234i −0.581713 0.800660i 0.412169 0.911108i \(-0.364771\pi\)
−0.993882 + 0.110448i \(0.964771\pi\)
\(614\) −11.6898 8.49311i −0.471761 0.342754i
\(615\) −6.81446 + 0.897881i −0.274785 + 0.0362061i
\(616\) 9.51580 6.91363i 0.383402 0.278558i
\(617\) −2.49230 0.809796i −0.100336 0.0326012i 0.258419 0.966033i \(-0.416799\pi\)
−0.358755 + 0.933432i \(0.616799\pi\)
\(618\) 11.1713i 0.449378i
\(619\) 2.08751 6.42470i 0.0839041 0.258230i −0.900299 0.435271i \(-0.856652\pi\)
0.984204 + 0.177041i \(0.0566525\pi\)
\(620\) 1.54531 + 1.62807i 0.0620610 + 0.0653847i
\(621\) 0.518324 + 1.59524i 0.0207996 + 0.0640146i
\(622\) −22.4273 + 7.28708i −0.899254 + 0.292185i
\(623\) 1.99777 2.74969i 0.0800388 0.110164i
\(624\) 0.143974 0.00576358
\(625\) −24.8642 2.60258i −0.994566 0.104103i
\(626\) −27.4927 −1.09883
\(627\) −10.0623 + 13.8496i −0.401851 + 0.553100i
\(628\) 22.3336 7.25663i 0.891208 0.289571i
\(629\) 0.205977 + 0.633933i 0.00821285 + 0.0252766i
\(630\) −7.12944 7.51126i −0.284044 0.299256i
\(631\) −9.31855 + 28.6796i −0.370966 + 1.14172i 0.575194 + 0.818017i \(0.304926\pi\)
−0.946160 + 0.323699i \(0.895074\pi\)
\(632\) 0.747233i 0.0297234i
\(633\) −1.18806 0.386023i −0.0472210 0.0153430i
\(634\) 4.89111 3.55360i 0.194251 0.141132i
\(635\) 25.5425 3.36551i 1.01362 0.133556i
\(636\) 4.01682 + 2.91839i 0.159277 + 0.115722i
\(637\) −1.22281 1.68305i −0.0484495 0.0666850i
\(638\) −3.36612 4.63307i −0.133266 0.183425i
\(639\) −8.30429 6.03342i −0.328513 0.238678i
\(640\) 1.96521 + 1.06675i 0.0776817 + 0.0421670i
\(641\) −16.6059 + 12.0649i −0.655892 + 0.476534i −0.865273 0.501301i \(-0.832855\pi\)
0.209381 + 0.977834i \(0.432855\pi\)
\(642\) −13.3660 4.34286i −0.527512 0.171399i
\(643\) 33.4413i 1.31880i −0.751793 0.659399i \(-0.770811\pi\)
0.751793 0.659399i \(-0.229189\pi\)
\(644\) −2.40055 + 7.38813i −0.0945949 + 0.291133i
\(645\) −9.63125 + 17.7431i −0.379230 + 0.698633i
\(646\) −15.6036 48.0228i −0.613914 1.88943i
\(647\) 17.2006 5.58881i 0.676224 0.219719i 0.0492828 0.998785i \(-0.484306\pi\)
0.626942 + 0.779066i \(0.284306\pi\)
\(648\) 0.587785 0.809017i 0.0230904 0.0317812i
\(649\) 13.3426 0.523742
\(650\) 0.0375215 0.718893i 0.00147172 0.0281973i
\(651\) 4.64920 0.182217
\(652\) 9.27366 12.7641i 0.363185 0.499881i
\(653\) −29.4770 + 9.57766i −1.15352 + 0.374803i −0.822470 0.568809i \(-0.807404\pi\)
−0.331055 + 0.943612i \(0.607404\pi\)
\(654\) −2.07618 6.38984i −0.0811852 0.249862i
\(655\) 3.60055 1.71785i 0.140685 0.0671218i
\(656\) 0.949874 2.92341i 0.0370864 0.114140i
\(657\) 1.96580i 0.0766930i
\(658\) 47.9467 + 15.5788i 1.86916 + 0.607326i
\(659\) −17.4953 + 12.7110i −0.681519 + 0.495152i −0.873861 0.486176i \(-0.838392\pi\)
0.192343 + 0.981328i \(0.438392\pi\)
\(660\) 4.11890 3.90953i 0.160328 0.152178i
\(661\) 29.7396 + 21.6071i 1.15674 + 0.840418i 0.989362 0.145476i \(-0.0464713\pi\)
0.167374 + 0.985893i \(0.446471\pi\)
\(662\) 9.95207 + 13.6978i 0.386798 + 0.532382i
\(663\) 0.633933 + 0.872534i 0.0246199 + 0.0338864i
\(664\) −2.51003 1.82364i −0.0974080 0.0707710i
\(665\) 30.0592 + 63.0032i 1.16565 + 2.44316i
\(666\) 0.0719871 0.0523017i 0.00278945 0.00202665i
\(667\) 3.59715 + 1.16878i 0.139282 + 0.0452555i
\(668\) 4.03980i 0.156305i
\(669\) −6.76301 + 20.8144i −0.261473 + 0.804731i
\(670\) 16.8183 + 3.11522i 0.649746 + 0.120351i
\(671\) 10.7523 + 33.0923i 0.415089 + 1.27751i
\(672\) 4.40469 1.43117i 0.169915 0.0552087i
\(673\) 18.1235 24.9448i 0.698608 0.961552i −0.301360 0.953511i \(-0.597440\pi\)
0.999968 0.00804101i \(-0.00255956\pi\)
\(674\) 22.6622 0.872917
\(675\) −3.88640 3.14577i −0.149588 0.121081i
\(676\) −12.9793 −0.499203
\(677\) 15.1708 20.8808i 0.583061 0.802515i −0.410966 0.911651i \(-0.634808\pi\)
0.994027 + 0.109136i \(0.0348085\pi\)
\(678\) −0.948794 + 0.308282i −0.0364382 + 0.0118395i
\(679\) 13.0529 + 40.1728i 0.500925 + 1.54169i
\(680\) 2.18814 + 16.6068i 0.0839113 + 0.636844i
\(681\) 4.48178 13.7935i 0.171742 0.528568i
\(682\) 2.54945i 0.0976235i
\(683\) 19.8582 + 6.45234i 0.759855 + 0.246892i 0.663216 0.748428i \(-0.269191\pi\)
0.0966385 + 0.995320i \(0.469191\pi\)
\(684\) −5.45330 + 3.96205i −0.208512 + 0.151493i
\(685\) 6.52560 35.2300i 0.249331 1.34607i
\(686\) −27.9126 20.2797i −1.06571 0.774281i
\(687\) 2.76305 + 3.80302i 0.105417 + 0.145094i
\(688\) −5.30688 7.30429i −0.202323 0.278473i
\(689\) 0.578318 + 0.420173i 0.0220322 + 0.0160073i
\(690\) −0.683103 + 3.68789i −0.0260053 + 0.140396i
\(691\) −16.7033 + 12.1357i −0.635424 + 0.461662i −0.858275 0.513190i \(-0.828464\pi\)
0.222851 + 0.974852i \(0.428464\pi\)
\(692\) −19.1729 6.22964i −0.728843 0.236815i
\(693\) 11.7622i 0.446808i
\(694\) 3.16805 9.75025i 0.120258 0.370115i
\(695\) 1.08195 + 8.21143i 0.0410406 + 0.311477i
\(696\) −0.696812 2.14457i −0.0264126 0.0812896i
\(697\) 21.8993 7.11551i 0.829494 0.269519i
\(698\) 0.815529 1.12248i 0.0308682 0.0424865i
\(699\) 11.8187 0.447025
\(700\) −5.99821 22.3665i −0.226711 0.845375i
\(701\) −12.3050 −0.464752 −0.232376 0.972626i \(-0.574650\pi\)
−0.232376 + 0.972626i \(0.574650\pi\)
\(702\) 0.0846260 0.116478i 0.00319400 0.00439617i
\(703\) −0.570434 + 0.185345i −0.0215143 + 0.00699043i
\(704\) 0.784803 + 2.41537i 0.0295784 + 0.0910328i
\(705\) 23.9333 + 4.43313i 0.901380 + 0.166961i
\(706\) 3.99189 12.2858i 0.150237 0.462382i
\(707\) 13.3389i 0.501662i
\(708\) 4.99652 + 1.62347i 0.187781 + 0.0610137i
\(709\) −19.9814 + 14.5173i −0.750417 + 0.545210i −0.895956 0.444143i \(-0.853508\pi\)
0.145539 + 0.989353i \(0.453508\pi\)
\(710\) −9.88352 20.7155i −0.370922 0.777440i
\(711\) −0.604525 0.439213i −0.0226714 0.0164718i
\(712\) 0.431355 + 0.593709i 0.0161657 + 0.0222502i
\(713\) −0.989705 1.36221i −0.0370648 0.0510153i
\(714\) 28.0677 + 20.3924i 1.05041 + 0.763166i
\(715\) 0.593016 0.562871i 0.0221775 0.0210502i
\(716\) 6.27852 4.56161i 0.234639 0.170475i
\(717\) −9.23821 3.00168i −0.345007 0.112100i
\(718\) 9.87465i 0.368519i
\(719\) 6.49650 19.9942i 0.242279 0.745657i −0.753793 0.657111i \(-0.771778\pi\)
0.996072 0.0885457i \(-0.0282219\pi\)
\(720\) 2.01814 0.962868i 0.0752116 0.0358840i
\(721\) −15.9881 49.2064i −0.595429 1.83254i
\(722\) 25.1425 8.16929i 0.935706 0.304029i
\(723\) 3.92661 5.40451i 0.146032 0.200996i
\(724\) −11.7909 −0.438205
\(725\) −10.8899 + 2.92042i −0.404439 + 0.108462i
\(726\) −4.55005 −0.168868
\(727\) −5.09683 + 7.01519i −0.189031 + 0.260179i −0.893005 0.450047i \(-0.851407\pi\)
0.703974 + 0.710226i \(0.251407\pi\)
\(728\) 0.634163 0.206052i 0.0235036 0.00763680i
\(729\) −0.309017 0.951057i −0.0114451 0.0352243i
\(730\) 2.09701 3.86320i 0.0776139 0.142983i
\(731\) 20.8998 64.3230i 0.773008 2.37907i
\(732\) 13.7007i 0.506391i
\(733\) −32.2766 10.4873i −1.19216 0.387357i −0.355291 0.934756i \(-0.615618\pi\)
−0.836872 + 0.547398i \(0.815618\pi\)
\(734\) 4.30332 3.12654i 0.158838 0.115403i
\(735\) −28.3965 15.4141i −1.04742 0.568557i
\(736\) −1.35699 0.985910i −0.0500193 0.0363411i
\(737\) 11.4187 + 15.7165i 0.420614 + 0.578926i
\(738\) −1.80677 2.48680i −0.0665080 0.0915405i
\(739\) −13.2781 9.64708i −0.488442 0.354874i 0.316143 0.948712i \(-0.397612\pi\)
−0.804585 + 0.593838i \(0.797612\pi\)
\(740\) 0.197263 0.0259916i 0.00725152 0.000955469i
\(741\) −0.785135 + 0.570434i −0.0288427 + 0.0209554i
\(742\) 21.8696 + 7.10585i 0.802857 + 0.260864i
\(743\) 3.98742i 0.146284i −0.997322 0.0731422i \(-0.976697\pi\)
0.997322 0.0731422i \(-0.0233027\pi\)
\(744\) −0.310207 + 0.954718i −0.0113727 + 0.0350017i
\(745\) 2.90226 + 3.05769i 0.106331 + 0.112025i
\(746\) −2.99270 9.21059i −0.109571 0.337224i
\(747\) −2.95072 + 0.958745i −0.107961 + 0.0350787i
\(748\) −11.1824 + 15.3913i −0.408870 + 0.562762i
\(749\) −65.0883 −2.37828
\(750\) −4.28184 10.3279i −0.156351 0.377122i
\(751\) 37.5827 1.37141 0.685706 0.727879i \(-0.259494\pi\)
0.685706 + 0.727879i \(0.259494\pi\)
\(752\) −6.39825 + 8.80644i −0.233320 + 0.321138i
\(753\) 18.6429 6.05745i 0.679385 0.220746i
\(754\) −0.100323 0.308763i −0.00365355 0.0112445i
\(755\) 9.46858 + 9.97566i 0.344597 + 0.363051i
\(756\) 1.43117 4.40469i 0.0520512 0.160197i
\(757\) 31.2749i 1.13671i −0.822785 0.568353i \(-0.807581\pi\)
0.822785 0.568353i \(-0.192419\pi\)
\(758\) −21.4197 6.95968i −0.777999 0.252787i
\(759\) −3.44631 + 2.50389i −0.125093 + 0.0908855i
\(760\) −14.9434 + 1.96896i −0.542054 + 0.0714217i
\(761\) −24.2292 17.6035i −0.878306 0.638127i 0.0544967 0.998514i \(-0.482645\pi\)
−0.932803 + 0.360387i \(0.882645\pi\)
\(762\) 6.77227 + 9.32123i 0.245333 + 0.337673i
\(763\) −18.2899 25.1739i −0.662139 0.911357i
\(764\) 3.95155 + 2.87097i 0.142962 + 0.103868i
\(765\) 14.7214 + 7.99102i 0.532253 + 0.288916i
\(766\) 5.83431 4.23887i 0.210802 0.153157i
\(767\) 0.719370 + 0.233738i 0.0259750 + 0.00843978i
\(768\) 1.00000i 0.0360844i