Properties

Label 150.2.g.b.61.1
Level $150$
Weight $2$
Character 150.61
Analytic conductor $1.198$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 150.g (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Defining polynomial: \(x^{4} - x^{3} + x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 61.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 150.61
Dual form 150.2.g.b.91.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.809017 - 0.587785i) q^{2} +(-0.309017 + 0.951057i) q^{3} +(0.309017 - 0.951057i) q^{4} +(0.690983 + 2.12663i) q^{5} +(0.309017 + 0.951057i) q^{6} +2.00000 q^{7} +(-0.309017 - 0.951057i) q^{8} +(-0.809017 - 0.587785i) q^{9} +O(q^{10})\) \(q+(0.809017 - 0.587785i) q^{2} +(-0.309017 + 0.951057i) q^{3} +(0.309017 - 0.951057i) q^{4} +(0.690983 + 2.12663i) q^{5} +(0.309017 + 0.951057i) q^{6} +2.00000 q^{7} +(-0.309017 - 0.951057i) q^{8} +(-0.809017 - 0.587785i) q^{9} +(1.80902 + 1.31433i) q^{10} +(0.618034 - 0.449028i) q^{11} +(0.809017 + 0.587785i) q^{12} +(-1.50000 - 1.08981i) q^{13} +(1.61803 - 1.17557i) q^{14} -2.23607 q^{15} +(-0.809017 - 0.587785i) q^{16} +(0.354102 + 1.08981i) q^{17} -1.00000 q^{18} +(-2.23607 - 6.88191i) q^{19} +2.23607 q^{20} +(-0.618034 + 1.90211i) q^{21} +(0.236068 - 0.726543i) q^{22} +(-4.85410 + 3.52671i) q^{23} +1.00000 q^{24} +(-4.04508 + 2.93893i) q^{25} -1.85410 q^{26} +(0.809017 - 0.587785i) q^{27} +(0.618034 - 1.90211i) q^{28} +(-1.11803 + 3.44095i) q^{29} +(-1.80902 + 1.31433i) q^{30} +(-3.00000 - 9.23305i) q^{31} -1.00000 q^{32} +(0.236068 + 0.726543i) q^{33} +(0.927051 + 0.673542i) q^{34} +(1.38197 + 4.25325i) q^{35} +(-0.809017 + 0.587785i) q^{36} +(7.16312 + 5.20431i) q^{37} +(-5.85410 - 4.25325i) q^{38} +(1.50000 - 1.08981i) q^{39} +(1.80902 - 1.31433i) q^{40} +(-4.11803 - 2.99193i) q^{41} +(0.618034 + 1.90211i) q^{42} +3.23607 q^{43} +(-0.236068 - 0.726543i) q^{44} +(0.690983 - 2.12663i) q^{45} +(-1.85410 + 5.70634i) q^{46} +(2.85410 - 8.78402i) q^{47} +(0.809017 - 0.587785i) q^{48} -3.00000 q^{49} +(-1.54508 + 4.75528i) q^{50} -1.14590 q^{51} +(-1.50000 + 1.08981i) q^{52} +(-3.57295 + 10.9964i) q^{53} +(0.309017 - 0.951057i) q^{54} +(1.38197 + 1.00406i) q^{55} +(-0.618034 - 1.90211i) q^{56} +7.23607 q^{57} +(1.11803 + 3.44095i) q^{58} +(7.23607 + 5.25731i) q^{59} +(-0.690983 + 2.12663i) q^{60} +(1.73607 - 1.26133i) q^{61} +(-7.85410 - 5.70634i) q^{62} +(-1.61803 - 1.17557i) q^{63} +(-0.809017 + 0.587785i) q^{64} +(1.28115 - 3.94298i) q^{65} +(0.618034 + 0.449028i) q^{66} +(1.14590 + 3.52671i) q^{67} +1.14590 q^{68} +(-1.85410 - 5.70634i) q^{69} +(3.61803 + 2.62866i) q^{70} +(2.52786 - 7.77997i) q^{71} +(-0.309017 + 0.951057i) q^{72} +(7.97214 - 5.79210i) q^{73} +8.85410 q^{74} +(-1.54508 - 4.75528i) q^{75} -7.23607 q^{76} +(1.23607 - 0.898056i) q^{77} +(0.572949 - 1.76336i) q^{78} +(0.690983 - 2.12663i) q^{80} +(0.309017 + 0.951057i) q^{81} -5.09017 q^{82} +(1.85410 + 5.70634i) q^{83} +(1.61803 + 1.17557i) q^{84} +(-2.07295 + 1.50609i) q^{85} +(2.61803 - 1.90211i) q^{86} +(-2.92705 - 2.12663i) q^{87} +(-0.618034 - 0.449028i) q^{88} +(-2.92705 + 2.12663i) q^{89} +(-0.690983 - 2.12663i) q^{90} +(-3.00000 - 2.17963i) q^{91} +(1.85410 + 5.70634i) q^{92} +9.70820 q^{93} +(-2.85410 - 8.78402i) q^{94} +(13.0902 - 9.51057i) q^{95} +(0.309017 - 0.951057i) q^{96} +(-2.20820 + 6.79615i) q^{97} +(-2.42705 + 1.76336i) q^{98} -0.763932 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + q^{2} + q^{3} - q^{4} + 5q^{5} - q^{6} + 8q^{7} + q^{8} - q^{9} + O(q^{10}) \) \( 4q + q^{2} + q^{3} - q^{4} + 5q^{5} - q^{6} + 8q^{7} + q^{8} - q^{9} + 5q^{10} - 2q^{11} + q^{12} - 6q^{13} + 2q^{14} - q^{16} - 12q^{17} - 4q^{18} + 2q^{21} - 8q^{22} - 6q^{23} + 4q^{24} - 5q^{25} + 6q^{26} + q^{27} - 2q^{28} - 5q^{30} - 12q^{31} - 4q^{32} - 8q^{33} - 3q^{34} + 10q^{35} - q^{36} + 13q^{37} - 10q^{38} + 6q^{39} + 5q^{40} - 12q^{41} - 2q^{42} + 4q^{43} + 8q^{44} + 5q^{45} + 6q^{46} - 2q^{47} + q^{48} - 12q^{49} + 5q^{50} - 18q^{51} - 6q^{52} - 21q^{53} - q^{54} + 10q^{55} + 2q^{56} + 20q^{57} + 20q^{59} - 5q^{60} - 2q^{61} - 18q^{62} - 2q^{63} - q^{64} - 15q^{65} - 2q^{66} + 18q^{67} + 18q^{68} + 6q^{69} + 10q^{70} + 28q^{71} + q^{72} + 14q^{73} + 22q^{74} + 5q^{75} - 20q^{76} - 4q^{77} + 9q^{78} + 5q^{80} - q^{81} + 2q^{82} - 6q^{83} + 2q^{84} - 15q^{85} + 6q^{86} - 5q^{87} + 2q^{88} - 5q^{89} - 5q^{90} - 12q^{91} - 6q^{92} + 12q^{93} + 2q^{94} + 30q^{95} - q^{96} + 18q^{97} - 3q^{98} - 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 0.587785i 0.572061 0.415627i
\(3\) −0.309017 + 0.951057i −0.178411 + 0.549093i
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) 0.690983 + 2.12663i 0.309017 + 0.951057i
\(6\) 0.309017 + 0.951057i 0.126156 + 0.388267i
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) −0.309017 0.951057i −0.109254 0.336249i
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) 1.80902 + 1.31433i 0.572061 + 0.415627i
\(11\) 0.618034 0.449028i 0.186344 0.135387i −0.490702 0.871327i \(-0.663260\pi\)
0.677046 + 0.735940i \(0.263260\pi\)
\(12\) 0.809017 + 0.587785i 0.233543 + 0.169679i
\(13\) −1.50000 1.08981i −0.416025 0.302260i 0.360011 0.932948i \(-0.382773\pi\)
−0.776037 + 0.630688i \(0.782773\pi\)
\(14\) 1.61803 1.17557i 0.432438 0.314184i
\(15\) −2.23607 −0.577350
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 0.354102 + 1.08981i 0.0858823 + 0.264319i 0.984770 0.173860i \(-0.0556239\pi\)
−0.898888 + 0.438178i \(0.855624\pi\)
\(18\) −1.00000 −0.235702
\(19\) −2.23607 6.88191i −0.512989 1.57882i −0.786911 0.617066i \(-0.788321\pi\)
0.273922 0.961752i \(-0.411679\pi\)
\(20\) 2.23607 0.500000
\(21\) −0.618034 + 1.90211i −0.134866 + 0.415075i
\(22\) 0.236068 0.726543i 0.0503299 0.154899i
\(23\) −4.85410 + 3.52671i −1.01215 + 0.735370i −0.964659 0.263501i \(-0.915123\pi\)
−0.0474912 + 0.998872i \(0.515123\pi\)
\(24\) 1.00000 0.204124
\(25\) −4.04508 + 2.93893i −0.809017 + 0.587785i
\(26\) −1.85410 −0.363619
\(27\) 0.809017 0.587785i 0.155695 0.113119i
\(28\) 0.618034 1.90211i 0.116797 0.359466i
\(29\) −1.11803 + 3.44095i −0.207614 + 0.638969i 0.791982 + 0.610544i \(0.209049\pi\)
−0.999596 + 0.0284251i \(0.990951\pi\)
\(30\) −1.80902 + 1.31433i −0.330280 + 0.239962i
\(31\) −3.00000 9.23305i −0.538816 1.65830i −0.735256 0.677789i \(-0.762938\pi\)
0.196440 0.980516i \(-0.437062\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0.236068 + 0.726543i 0.0410942 + 0.126475i
\(34\) 0.927051 + 0.673542i 0.158988 + 0.115511i
\(35\) 1.38197 + 4.25325i 0.233595 + 0.718931i
\(36\) −0.809017 + 0.587785i −0.134836 + 0.0979642i
\(37\) 7.16312 + 5.20431i 1.17761 + 0.855583i 0.991900 0.127021i \(-0.0405417\pi\)
0.185710 + 0.982605i \(0.440542\pi\)
\(38\) −5.85410 4.25325i −0.949661 0.689969i
\(39\) 1.50000 1.08981i 0.240192 0.174510i
\(40\) 1.80902 1.31433i 0.286031 0.207813i
\(41\) −4.11803 2.99193i −0.643129 0.467260i 0.217795 0.975995i \(-0.430114\pi\)
−0.860924 + 0.508734i \(0.830114\pi\)
\(42\) 0.618034 + 1.90211i 0.0953647 + 0.293502i
\(43\) 3.23607 0.493496 0.246748 0.969080i \(-0.420638\pi\)
0.246748 + 0.969080i \(0.420638\pi\)
\(44\) −0.236068 0.726543i −0.0355886 0.109530i
\(45\) 0.690983 2.12663i 0.103006 0.317019i
\(46\) −1.85410 + 5.70634i −0.273372 + 0.841354i
\(47\) 2.85410 8.78402i 0.416314 1.28128i −0.494757 0.869031i \(-0.664743\pi\)
0.911071 0.412250i \(-0.135257\pi\)
\(48\) 0.809017 0.587785i 0.116772 0.0848395i
\(49\) −3.00000 −0.428571
\(50\) −1.54508 + 4.75528i −0.218508 + 0.672499i
\(51\) −1.14590 −0.160458
\(52\) −1.50000 + 1.08981i −0.208013 + 0.151130i
\(53\) −3.57295 + 10.9964i −0.490782 + 1.51047i 0.332646 + 0.943052i \(0.392059\pi\)
−0.823428 + 0.567421i \(0.807941\pi\)
\(54\) 0.309017 0.951057i 0.0420519 0.129422i
\(55\) 1.38197 + 1.00406i 0.186344 + 0.135387i
\(56\) −0.618034 1.90211i −0.0825883 0.254181i
\(57\) 7.23607 0.958441
\(58\) 1.11803 + 3.44095i 0.146805 + 0.451820i
\(59\) 7.23607 + 5.25731i 0.942056 + 0.684444i 0.948915 0.315533i \(-0.102183\pi\)
−0.00685884 + 0.999976i \(0.502183\pi\)
\(60\) −0.690983 + 2.12663i −0.0892055 + 0.274546i
\(61\) 1.73607 1.26133i 0.222281 0.161496i −0.471072 0.882095i \(-0.656133\pi\)
0.693353 + 0.720598i \(0.256133\pi\)
\(62\) −7.85410 5.70634i −0.997472 0.724706i
\(63\) −1.61803 1.17557i −0.203853 0.148108i
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) 1.28115 3.94298i 0.158907 0.489067i
\(66\) 0.618034 + 0.449028i 0.0760747 + 0.0552715i
\(67\) 1.14590 + 3.52671i 0.139994 + 0.430856i 0.996333 0.0855568i \(-0.0272669\pi\)
−0.856340 + 0.516413i \(0.827267\pi\)
\(68\) 1.14590 0.138961
\(69\) −1.85410 5.70634i −0.223208 0.686963i
\(70\) 3.61803 + 2.62866i 0.432438 + 0.314184i
\(71\) 2.52786 7.77997i 0.300002 0.923312i −0.681493 0.731825i \(-0.738669\pi\)
0.981495 0.191487i \(-0.0613311\pi\)
\(72\) −0.309017 + 0.951057i −0.0364180 + 0.112083i
\(73\) 7.97214 5.79210i 0.933068 0.677914i −0.0136741 0.999907i \(-0.504353\pi\)
0.946742 + 0.321993i \(0.104353\pi\)
\(74\) 8.85410 1.02927
\(75\) −1.54508 4.75528i −0.178411 0.549093i
\(76\) −7.23607 −0.830034
\(77\) 1.23607 0.898056i 0.140863 0.102343i
\(78\) 0.572949 1.76336i 0.0648737 0.199661i
\(79\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(80\) 0.690983 2.12663i 0.0772542 0.237764i
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) −5.09017 −0.562115
\(83\) 1.85410 + 5.70634i 0.203514 + 0.626352i 0.999771 + 0.0213936i \(0.00681031\pi\)
−0.796257 + 0.604959i \(0.793190\pi\)
\(84\) 1.61803 + 1.17557i 0.176542 + 0.128265i
\(85\) −2.07295 + 1.50609i −0.224843 + 0.163358i
\(86\) 2.61803 1.90211i 0.282310 0.205110i
\(87\) −2.92705 2.12663i −0.313813 0.227998i
\(88\) −0.618034 0.449028i −0.0658826 0.0478665i
\(89\) −2.92705 + 2.12663i −0.310267 + 0.225422i −0.732011 0.681293i \(-0.761418\pi\)
0.421744 + 0.906715i \(0.361418\pi\)
\(90\) −0.690983 2.12663i −0.0728360 0.224166i
\(91\) −3.00000 2.17963i −0.314485 0.228487i
\(92\) 1.85410 + 5.70634i 0.193303 + 0.594927i
\(93\) 9.70820 1.00669
\(94\) −2.85410 8.78402i −0.294378 0.906003i
\(95\) 13.0902 9.51057i 1.34302 0.975763i
\(96\) 0.309017 0.951057i 0.0315389 0.0970668i
\(97\) −2.20820 + 6.79615i −0.224209 + 0.690045i 0.774162 + 0.632988i \(0.218172\pi\)
−0.998371 + 0.0570570i \(0.981828\pi\)
\(98\) −2.42705 + 1.76336i −0.245169 + 0.178126i
\(99\) −0.763932 −0.0767781
\(100\) 1.54508 + 4.75528i 0.154508 + 0.475528i
\(101\) 17.3262 1.72403 0.862013 0.506887i \(-0.169204\pi\)
0.862013 + 0.506887i \(0.169204\pi\)
\(102\) −0.927051 + 0.673542i −0.0917917 + 0.0666906i
\(103\) −4.85410 + 14.9394i −0.478289 + 1.47202i 0.363181 + 0.931718i \(0.381691\pi\)
−0.841470 + 0.540303i \(0.818309\pi\)
\(104\) −0.572949 + 1.76336i −0.0561823 + 0.172911i
\(105\) −4.47214 −0.436436
\(106\) 3.57295 + 10.9964i 0.347035 + 1.06807i
\(107\) −6.94427 −0.671328 −0.335664 0.941982i \(-0.608961\pi\)
−0.335664 + 0.941982i \(0.608961\pi\)
\(108\) −0.309017 0.951057i −0.0297352 0.0915155i
\(109\) 14.2082 + 10.3229i 1.36090 + 0.988751i 0.998387 + 0.0567720i \(0.0180808\pi\)
0.362512 + 0.931979i \(0.381919\pi\)
\(110\) 1.70820 0.162871
\(111\) −7.16312 + 5.20431i −0.679893 + 0.493971i
\(112\) −1.61803 1.17557i −0.152890 0.111081i
\(113\) −6.92705 5.03280i −0.651642 0.473446i 0.212188 0.977229i \(-0.431941\pi\)
−0.863830 + 0.503783i \(0.831941\pi\)
\(114\) 5.85410 4.25325i 0.548287 0.398354i
\(115\) −10.8541 7.88597i −1.01215 0.735370i
\(116\) 2.92705 + 2.12663i 0.271770 + 0.197452i
\(117\) 0.572949 + 1.76336i 0.0529692 + 0.163022i
\(118\) 8.94427 0.823387
\(119\) 0.708204 + 2.17963i 0.0649209 + 0.199806i
\(120\) 0.690983 + 2.12663i 0.0630778 + 0.194134i
\(121\) −3.21885 + 9.90659i −0.292622 + 0.900599i
\(122\) 0.663119 2.04087i 0.0600360 0.184772i
\(123\) 4.11803 2.99193i 0.371311 0.269773i
\(124\) −9.70820 −0.871822
\(125\) −9.04508 6.57164i −0.809017 0.587785i
\(126\) −2.00000 −0.178174
\(127\) −11.0902 + 8.05748i −0.984093 + 0.714986i −0.958620 0.284690i \(-0.908109\pi\)
−0.0254737 + 0.999675i \(0.508109\pi\)
\(128\) −0.309017 + 0.951057i −0.0273135 + 0.0840623i
\(129\) −1.00000 + 3.07768i −0.0880451 + 0.270975i
\(130\) −1.28115 3.94298i −0.112365 0.345823i
\(131\) −1.61803 4.97980i −0.141368 0.435087i 0.855158 0.518368i \(-0.173460\pi\)
−0.996526 + 0.0832809i \(0.973460\pi\)
\(132\) 0.763932 0.0664917
\(133\) −4.47214 13.7638i −0.387783 1.19347i
\(134\) 3.00000 + 2.17963i 0.259161 + 0.188291i
\(135\) 1.80902 + 1.31433i 0.155695 + 0.113119i
\(136\) 0.927051 0.673542i 0.0794940 0.0577557i
\(137\) −11.3541 8.24924i −0.970046 0.704780i −0.0145842 0.999894i \(-0.504642\pi\)
−0.955462 + 0.295114i \(0.904642\pi\)
\(138\) −4.85410 3.52671i −0.413209 0.300214i
\(139\) −10.8541 + 7.88597i −0.920633 + 0.668879i −0.943681 0.330855i \(-0.892663\pi\)
0.0230486 + 0.999734i \(0.492663\pi\)
\(140\) 4.47214 0.377964
\(141\) 7.47214 + 5.42882i 0.629267 + 0.457190i
\(142\) −2.52786 7.77997i −0.212134 0.652880i
\(143\) −1.41641 −0.118446
\(144\) 0.309017 + 0.951057i 0.0257514 + 0.0792547i
\(145\) −8.09017 −0.671852
\(146\) 3.04508 9.37181i 0.252013 0.775616i
\(147\) 0.927051 2.85317i 0.0764619 0.235325i
\(148\) 7.16312 5.20431i 0.588805 0.427792i
\(149\) −22.0344 −1.80513 −0.902566 0.430552i \(-0.858319\pi\)
−0.902566 + 0.430552i \(0.858319\pi\)
\(150\) −4.04508 2.93893i −0.330280 0.239962i
\(151\) 10.9443 0.890632 0.445316 0.895373i \(-0.353091\pi\)
0.445316 + 0.895373i \(0.353091\pi\)
\(152\) −5.85410 + 4.25325i −0.474830 + 0.344984i
\(153\) 0.354102 1.08981i 0.0286274 0.0881062i
\(154\) 0.472136 1.45309i 0.0380458 0.117093i
\(155\) 17.5623 12.7598i 1.41064 1.02489i
\(156\) −0.572949 1.76336i −0.0458726 0.141181i
\(157\) 11.1459 0.889540 0.444770 0.895645i \(-0.353286\pi\)
0.444770 + 0.895645i \(0.353286\pi\)
\(158\) 0 0
\(159\) −9.35410 6.79615i −0.741829 0.538970i
\(160\) −0.690983 2.12663i −0.0546270 0.168125i
\(161\) −9.70820 + 7.05342i −0.765114 + 0.555888i
\(162\) 0.809017 + 0.587785i 0.0635624 + 0.0461808i
\(163\) −9.32624 6.77591i −0.730487 0.530730i 0.159230 0.987241i \(-0.449099\pi\)
−0.889718 + 0.456511i \(0.849099\pi\)
\(164\) −4.11803 + 2.99193i −0.321564 + 0.233630i
\(165\) −1.38197 + 1.00406i −0.107586 + 0.0781657i
\(166\) 4.85410 + 3.52671i 0.376751 + 0.273726i
\(167\) −0.763932 2.35114i −0.0591148 0.181937i 0.917139 0.398569i \(-0.130493\pi\)
−0.976253 + 0.216632i \(0.930493\pi\)
\(168\) 2.00000 0.154303
\(169\) −2.95492 9.09429i −0.227301 0.699561i
\(170\) −0.791796 + 2.43690i −0.0607280 + 0.186902i
\(171\) −2.23607 + 6.88191i −0.170996 + 0.526273i
\(172\) 1.00000 3.07768i 0.0762493 0.234671i
\(173\) 17.8713 12.9843i 1.35873 0.987176i 0.360207 0.932872i \(-0.382706\pi\)
0.998524 0.0543039i \(-0.0172940\pi\)
\(174\) −3.61803 −0.274282
\(175\) −8.09017 + 5.87785i −0.611559 + 0.444324i
\(176\) −0.763932 −0.0575835
\(177\) −7.23607 + 5.25731i −0.543896 + 0.395164i
\(178\) −1.11803 + 3.44095i −0.0838002 + 0.257910i
\(179\) −8.09017 + 24.8990i −0.604688 + 1.86104i −0.105764 + 0.994391i \(0.533729\pi\)
−0.498923 + 0.866646i \(0.666271\pi\)
\(180\) −1.80902 1.31433i −0.134836 0.0979642i
\(181\) 2.79180 + 8.59226i 0.207513 + 0.638658i 0.999601 + 0.0282515i \(0.00899392\pi\)
−0.792088 + 0.610407i \(0.791006\pi\)
\(182\) −3.70820 −0.274870
\(183\) 0.663119 + 2.04087i 0.0490192 + 0.150865i
\(184\) 4.85410 + 3.52671i 0.357849 + 0.259993i
\(185\) −6.11803 + 18.8294i −0.449807 + 1.38436i
\(186\) 7.85410 5.70634i 0.575891 0.418409i
\(187\) 0.708204 + 0.514540i 0.0517890 + 0.0376269i
\(188\) −7.47214 5.42882i −0.544962 0.395938i
\(189\) 1.61803 1.17557i 0.117695 0.0855102i
\(190\) 5.00000 15.3884i 0.362738 1.11639i
\(191\) 4.23607 + 3.07768i 0.306511 + 0.222693i 0.730398 0.683022i \(-0.239335\pi\)
−0.423887 + 0.905715i \(0.639335\pi\)
\(192\) −0.309017 0.951057i −0.0223014 0.0686366i
\(193\) 4.61803 0.332413 0.166207 0.986091i \(-0.446848\pi\)
0.166207 + 0.986091i \(0.446848\pi\)
\(194\) 2.20820 + 6.79615i 0.158540 + 0.487935i
\(195\) 3.35410 + 2.43690i 0.240192 + 0.174510i
\(196\) −0.927051 + 2.85317i −0.0662179 + 0.203798i
\(197\) 0.718847 2.21238i 0.0512157 0.157626i −0.922177 0.386767i \(-0.873592\pi\)
0.973393 + 0.229141i \(0.0735918\pi\)
\(198\) −0.618034 + 0.449028i −0.0439218 + 0.0319110i
\(199\) 16.1803 1.14699 0.573497 0.819208i \(-0.305586\pi\)
0.573497 + 0.819208i \(0.305586\pi\)
\(200\) 4.04508 + 2.93893i 0.286031 + 0.207813i
\(201\) −3.70820 −0.261557
\(202\) 14.0172 10.1841i 0.986248 0.716551i
\(203\) −2.23607 + 6.88191i −0.156941 + 0.483015i
\(204\) −0.354102 + 1.08981i −0.0247921 + 0.0763022i
\(205\) 3.51722 10.8249i 0.245653 0.756043i
\(206\) 4.85410 + 14.9394i 0.338201 + 1.04088i
\(207\) 6.00000 0.417029
\(208\) 0.572949 + 1.76336i 0.0397269 + 0.122267i
\(209\) −4.47214 3.24920i −0.309344 0.224752i
\(210\) −3.61803 + 2.62866i −0.249668 + 0.181394i
\(211\) 6.47214 4.70228i 0.445560 0.323718i −0.342280 0.939598i \(-0.611199\pi\)
0.787840 + 0.615880i \(0.211199\pi\)
\(212\) 9.35410 + 6.79615i 0.642442 + 0.466762i
\(213\) 6.61803 + 4.80828i 0.453460 + 0.329458i
\(214\) −5.61803 + 4.08174i −0.384041 + 0.279022i
\(215\) 2.23607 + 6.88191i 0.152499 + 0.469342i
\(216\) −0.809017 0.587785i −0.0550466 0.0399937i
\(217\) −6.00000 18.4661i −0.407307 1.25356i
\(218\) 17.5623 1.18947
\(219\) 3.04508 + 9.37181i 0.205768 + 0.633288i
\(220\) 1.38197 1.00406i 0.0931721 0.0676935i
\(221\) 0.656541 2.02063i 0.0441637 0.135922i
\(222\) −2.73607 + 8.42075i −0.183633 + 0.565164i
\(223\) 12.7082 9.23305i 0.851004 0.618291i −0.0744185 0.997227i \(-0.523710\pi\)
0.925423 + 0.378936i \(0.123710\pi\)
\(224\) −2.00000 −0.133631
\(225\) 5.00000 0.333333
\(226\) −8.56231 −0.569556
\(227\) −0.763932 + 0.555029i −0.0507039 + 0.0368386i −0.612849 0.790200i \(-0.709976\pi\)
0.562145 + 0.827039i \(0.309976\pi\)
\(228\) 2.23607 6.88191i 0.148087 0.455766i
\(229\) 2.86475 8.81678i 0.189308 0.582629i −0.810688 0.585478i \(-0.800907\pi\)
0.999996 + 0.00284891i \(0.000906837\pi\)
\(230\) −13.4164 −0.884652
\(231\) 0.472136 + 1.45309i 0.0310643 + 0.0956060i
\(232\) 3.61803 0.237536
\(233\) −3.37132 10.3759i −0.220863 0.679746i −0.998685 0.0512616i \(-0.983676\pi\)
0.777823 0.628484i \(-0.216324\pi\)
\(234\) 1.50000 + 1.08981i 0.0980581 + 0.0712434i
\(235\) 20.6525 1.34722
\(236\) 7.23607 5.25731i 0.471028 0.342222i
\(237\) 0 0
\(238\) 1.85410 + 1.34708i 0.120184 + 0.0873185i
\(239\) 21.7082 15.7719i 1.40419 1.02020i 0.410051 0.912063i \(-0.365511\pi\)
0.994136 0.108139i \(-0.0344892\pi\)
\(240\) 1.80902 + 1.31433i 0.116772 + 0.0848395i
\(241\) 5.78115 + 4.20025i 0.372397 + 0.270562i 0.758204 0.652017i \(-0.226077\pi\)
−0.385807 + 0.922579i \(0.626077\pi\)
\(242\) 3.21885 + 9.90659i 0.206915 + 0.636820i
\(243\) −1.00000 −0.0641500
\(244\) −0.663119 2.04087i −0.0424518 0.130653i
\(245\) −2.07295 6.37988i −0.132436 0.407596i
\(246\) 1.57295 4.84104i 0.100288 0.308653i
\(247\) −4.14590 + 12.7598i −0.263797 + 0.811884i
\(248\) −7.85410 + 5.70634i −0.498736 + 0.362353i
\(249\) −6.00000 −0.380235
\(250\) −11.1803 −0.707107
\(251\) −3.52786 −0.222677 −0.111338 0.993783i \(-0.535514\pi\)
−0.111338 + 0.993783i \(0.535514\pi\)
\(252\) −1.61803 + 1.17557i −0.101927 + 0.0740540i
\(253\) −1.41641 + 4.35926i −0.0890488 + 0.274064i
\(254\) −4.23607 + 13.0373i −0.265795 + 0.818031i
\(255\) −0.791796 2.43690i −0.0495842 0.152604i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) −9.38197 −0.585231 −0.292615 0.956230i \(-0.594526\pi\)
−0.292615 + 0.956230i \(0.594526\pi\)
\(258\) 1.00000 + 3.07768i 0.0622573 + 0.191608i
\(259\) 14.3262 + 10.4086i 0.890189 + 0.646760i
\(260\) −3.35410 2.43690i −0.208013 0.151130i
\(261\) 2.92705 2.12663i 0.181180 0.131635i
\(262\) −4.23607 3.07768i −0.261705 0.190140i
\(263\) 6.85410 + 4.97980i 0.422642 + 0.307067i 0.778700 0.627396i \(-0.215879\pi\)
−0.356058 + 0.934464i \(0.615879\pi\)
\(264\) 0.618034 0.449028i 0.0380374 0.0276358i
\(265\) −25.8541 −1.58820
\(266\) −11.7082 8.50651i −0.717876 0.521567i
\(267\) −1.11803 3.44095i −0.0684226 0.210583i
\(268\) 3.70820 0.226515
\(269\) −4.04508 12.4495i −0.246633 0.759059i −0.995364 0.0961842i \(-0.969336\pi\)
0.748730 0.662875i \(-0.230664\pi\)
\(270\) 2.23607 0.136083
\(271\) 1.79837 5.53483i 0.109243 0.336217i −0.881460 0.472260i \(-0.843438\pi\)
0.990703 + 0.136043i \(0.0434385\pi\)
\(272\) 0.354102 1.08981i 0.0214706 0.0660797i
\(273\) 3.00000 2.17963i 0.181568 0.131917i
\(274\) −14.0344 −0.847852
\(275\) −1.18034 + 3.63271i −0.0711772 + 0.219061i
\(276\) −6.00000 −0.361158
\(277\) 23.3435 16.9600i 1.40257 1.01903i 0.408222 0.912883i \(-0.366149\pi\)
0.994351 0.106146i \(-0.0338510\pi\)
\(278\) −4.14590 + 12.7598i −0.248654 + 0.765280i
\(279\) −3.00000 + 9.23305i −0.179605 + 0.552768i
\(280\) 3.61803 2.62866i 0.216219 0.157092i
\(281\) 1.57295 + 4.84104i 0.0938343 + 0.288792i 0.986948 0.161038i \(-0.0514843\pi\)
−0.893114 + 0.449831i \(0.851484\pi\)
\(282\) 9.23607 0.550000
\(283\) −0.381966 1.17557i −0.0227055 0.0698804i 0.939062 0.343749i \(-0.111697\pi\)
−0.961767 + 0.273868i \(0.911697\pi\)
\(284\) −6.61803 4.80828i −0.392708 0.285319i
\(285\) 5.00000 + 15.3884i 0.296174 + 0.911531i
\(286\) −1.14590 + 0.832544i −0.0677584 + 0.0492293i
\(287\) −8.23607 5.98385i −0.486160 0.353216i
\(288\) 0.809017 + 0.587785i 0.0476718 + 0.0346356i
\(289\) 12.6910 9.22054i 0.746528 0.542385i
\(290\) −6.54508 + 4.75528i −0.384341 + 0.279240i
\(291\) −5.78115 4.20025i −0.338897 0.246223i
\(292\) −3.04508 9.37181i −0.178200 0.548444i
\(293\) −4.20163 −0.245462 −0.122731 0.992440i \(-0.539165\pi\)
−0.122731 + 0.992440i \(0.539165\pi\)
\(294\) −0.927051 2.85317i −0.0540667 0.166400i
\(295\) −6.18034 + 19.0211i −0.359833 + 1.10745i
\(296\) 2.73607 8.42075i 0.159031 0.489446i
\(297\) 0.236068 0.726543i 0.0136981 0.0421583i
\(298\) −17.8262 + 12.9515i −1.03265 + 0.750261i
\(299\) 11.1246 0.643353
\(300\) −5.00000 −0.288675
\(301\) 6.47214 0.373048
\(302\) 8.85410 6.43288i 0.509496 0.370171i
\(303\) −5.35410 + 16.4782i −0.307585 + 0.946650i
\(304\) −2.23607 + 6.88191i −0.128247 + 0.394705i
\(305\) 3.88197 + 2.82041i 0.222281 + 0.161496i
\(306\) −0.354102 1.08981i −0.0202427 0.0623005i
\(307\) −29.7082 −1.69554 −0.847768 0.530367i \(-0.822054\pi\)
−0.847768 + 0.530367i \(0.822054\pi\)
\(308\) −0.472136 1.45309i −0.0269024 0.0827972i
\(309\) −12.7082 9.23305i −0.722944 0.525250i
\(310\) 6.70820 20.6457i 0.381000 1.17260i
\(311\) −10.2361 + 7.43694i −0.580434 + 0.421710i −0.838881 0.544315i \(-0.816789\pi\)
0.258446 + 0.966026i \(0.416789\pi\)
\(312\) −1.50000 1.08981i −0.0849208 0.0616986i
\(313\) −14.8541 10.7921i −0.839603 0.610008i 0.0826564 0.996578i \(-0.473660\pi\)
−0.922260 + 0.386570i \(0.873660\pi\)
\(314\) 9.01722 6.55139i 0.508871 0.369717i
\(315\) 1.38197 4.25325i 0.0778650 0.239644i
\(316\) 0 0
\(317\) 3.38197 + 10.4086i 0.189950 + 0.584606i 0.999998 0.00175672i \(-0.000559182\pi\)
−0.810048 + 0.586363i \(0.800559\pi\)
\(318\) −11.5623 −0.648382
\(319\) 0.854102 + 2.62866i 0.0478205 + 0.147176i
\(320\) −1.80902 1.31433i −0.101127 0.0734732i
\(321\) 2.14590 6.60440i 0.119772 0.368621i
\(322\) −3.70820 + 11.4127i −0.206650 + 0.636004i
\(323\) 6.70820 4.87380i 0.373254 0.271185i
\(324\) 1.00000 0.0555556
\(325\) 9.27051 0.514235
\(326\) −11.5279 −0.638469
\(327\) −14.2082 + 10.3229i −0.785715 + 0.570856i
\(328\) −1.57295 + 4.84104i −0.0868516 + 0.267302i
\(329\) 5.70820 17.5680i 0.314703 0.968558i
\(330\) −0.527864 + 1.62460i −0.0290580 + 0.0894312i
\(331\) −7.27051 22.3763i −0.399623 1.22991i −0.925302 0.379231i \(-0.876189\pi\)
0.525679 0.850683i \(-0.323811\pi\)
\(332\) 6.00000 0.329293
\(333\) −2.73607 8.42075i −0.149936 0.461454i
\(334\) −2.00000 1.45309i −0.109435 0.0795093i
\(335\) −6.70820 + 4.87380i −0.366508 + 0.266284i
\(336\) 1.61803 1.17557i 0.0882710 0.0641326i
\(337\) 20.0902 + 14.5964i 1.09438 + 0.795115i 0.980134 0.198338i \(-0.0635543\pi\)
0.114248 + 0.993452i \(0.463554\pi\)
\(338\) −7.73607 5.62058i −0.420787 0.305719i
\(339\) 6.92705 5.03280i 0.376226 0.273344i
\(340\) 0.791796 + 2.43690i 0.0429412 + 0.132159i
\(341\) −6.00000 4.35926i −0.324918 0.236067i
\(342\) 2.23607 + 6.88191i 0.120913 + 0.372131i
\(343\) −20.0000 −1.07990
\(344\) −1.00000 3.07768i −0.0539164 0.165938i
\(345\) 10.8541 7.88597i 0.584365 0.424566i
\(346\) 6.82624 21.0090i 0.366981 1.12945i
\(347\) −0.236068 + 0.726543i −0.0126728 + 0.0390028i −0.957193 0.289451i \(-0.906527\pi\)
0.944520 + 0.328453i \(0.106527\pi\)
\(348\) −2.92705 + 2.12663i −0.156906 + 0.113999i
\(349\) −9.79837 −0.524495 −0.262247 0.965001i \(-0.584464\pi\)
−0.262247 + 0.965001i \(0.584464\pi\)
\(350\) −3.09017 + 9.51057i −0.165177 + 0.508361i
\(351\) −1.85410 −0.0989646
\(352\) −0.618034 + 0.449028i −0.0329413 + 0.0239333i
\(353\) 3.56231 10.9637i 0.189602 0.583536i −0.810395 0.585884i \(-0.800747\pi\)
0.999997 + 0.00234791i \(0.000747364\pi\)
\(354\) −2.76393 + 8.50651i −0.146901 + 0.452116i
\(355\) 18.2918 0.970828
\(356\) 1.11803 + 3.44095i 0.0592557 + 0.182370i
\(357\) −2.29180 −0.121295
\(358\) 8.09017 + 24.8990i 0.427579 + 1.31595i
\(359\) −6.38197 4.63677i −0.336827 0.244719i 0.406495 0.913653i \(-0.366751\pi\)
−0.743322 + 0.668934i \(0.766751\pi\)
\(360\) −2.23607 −0.117851
\(361\) −26.9894 + 19.6089i −1.42049 + 1.03205i
\(362\) 7.30902 + 5.31031i 0.384153 + 0.279104i
\(363\) −8.42705 6.12261i −0.442305 0.321354i
\(364\) −3.00000 + 2.17963i −0.157243 + 0.114244i
\(365\) 17.8262 + 12.9515i 0.933068 + 0.677914i
\(366\) 1.73607 + 1.26133i 0.0907457 + 0.0659306i
\(367\) −1.09017 3.35520i −0.0569064 0.175140i 0.918563 0.395274i \(-0.129350\pi\)
−0.975470 + 0.220134i \(0.929350\pi\)
\(368\) 6.00000 0.312772
\(369\) 1.57295 + 4.84104i 0.0818845 + 0.252014i
\(370\) 6.11803 + 18.8294i 0.318061 + 0.978892i
\(371\) −7.14590 + 21.9928i −0.370997 + 1.14181i
\(372\) 3.00000 9.23305i 0.155543 0.478711i
\(373\) −23.7984 + 17.2905i −1.23223 + 0.895270i −0.997056 0.0766827i \(-0.975567\pi\)
−0.235178 + 0.971952i \(0.575567\pi\)
\(374\) 0.875388 0.0452652
\(375\) 9.04508 6.57164i 0.467086 0.339358i
\(376\) −9.23607 −0.476314
\(377\) 5.42705 3.94298i 0.279507 0.203074i
\(378\) 0.618034 1.90211i 0.0317882 0.0978341i
\(379\) 7.23607 22.2703i 0.371692 1.14395i −0.573992 0.818861i \(-0.694606\pi\)
0.945684 0.325089i \(-0.105394\pi\)
\(380\) −5.00000 15.3884i −0.256495 0.789409i
\(381\) −4.23607 13.0373i −0.217020 0.667920i
\(382\) 5.23607 0.267901
\(383\) 3.56231 + 10.9637i 0.182025 + 0.560216i 0.999884 0.0152022i \(-0.00483919\pi\)
−0.817859 + 0.575419i \(0.804839\pi\)
\(384\) −0.809017 0.587785i −0.0412850 0.0299953i
\(385\) 2.76393 + 2.00811i 0.140863 + 0.102343i
\(386\) 3.73607 2.71441i 0.190161 0.138160i
\(387\) −2.61803 1.90211i −0.133082 0.0966898i
\(388\) 5.78115 + 4.20025i 0.293494 + 0.213236i
\(389\) 25.0623 18.2088i 1.27071 0.923224i 0.271479 0.962444i \(-0.412487\pi\)
0.999231 + 0.0392200i \(0.0124873\pi\)
\(390\) 4.14590 0.209936
\(391\) −5.56231 4.04125i −0.281298 0.204375i
\(392\) 0.927051 + 2.85317i 0.0468231 + 0.144107i
\(393\) 5.23607 0.264125
\(394\) −0.718847 2.21238i −0.0362150 0.111458i
\(395\) 0 0
\(396\) −0.236068 + 0.726543i −0.0118629 + 0.0365101i
\(397\) −7.67376 + 23.6174i −0.385135 + 1.18532i 0.551247 + 0.834342i \(0.314152\pi\)
−0.936382 + 0.350982i \(0.885848\pi\)
\(398\) 13.0902 9.51057i 0.656151 0.476722i
\(399\) 14.4721 0.724513
\(400\) 5.00000 0.250000
\(401\) −14.9098 −0.744561 −0.372281 0.928120i \(-0.621424\pi\)
−0.372281 + 0.928120i \(0.621424\pi\)
\(402\) −3.00000 + 2.17963i −0.149626 + 0.108710i
\(403\) −5.56231 + 17.1190i −0.277078 + 0.852759i
\(404\) 5.35410 16.4782i 0.266377 0.819823i
\(405\) −1.80902 + 1.31433i −0.0898908 + 0.0653095i
\(406\) 2.23607 + 6.88191i 0.110974 + 0.341543i
\(407\) 6.76393 0.335276
\(408\) 0.354102 + 1.08981i 0.0175307 + 0.0539538i
\(409\) 21.0172 + 15.2699i 1.03923 + 0.755048i 0.970136 0.242562i \(-0.0779877\pi\)
0.0690987 + 0.997610i \(0.477988\pi\)
\(410\) −3.51722 10.8249i −0.173703 0.534603i
\(411\) 11.3541 8.24924i 0.560057 0.406905i
\(412\) 12.7082 + 9.23305i 0.626088 + 0.454880i
\(413\) 14.4721 + 10.5146i 0.712127 + 0.517391i
\(414\) 4.85410 3.52671i 0.238566 0.173328i
\(415\) −10.8541 + 7.88597i −0.532807 + 0.387107i
\(416\) 1.50000 + 1.08981i 0.0735436 + 0.0534325i
\(417\) −4.14590 12.7598i −0.203026 0.624848i
\(418\) −5.52786 −0.270377
\(419\) −0.652476 2.00811i −0.0318755 0.0981028i 0.933853 0.357657i \(-0.116424\pi\)
−0.965729 + 0.259554i \(0.916424\pi\)
\(420\) −1.38197 + 4.25325i −0.0674330 + 0.207538i
\(421\) 0.0278640 0.0857567i 0.00135801 0.00417953i −0.950375 0.311106i \(-0.899301\pi\)
0.951733 + 0.306926i \(0.0993006\pi\)
\(422\) 2.47214 7.60845i 0.120342 0.370374i
\(423\) −7.47214 + 5.42882i −0.363308 + 0.263958i
\(424\) 11.5623 0.561515
\(425\) −4.63525 3.36771i −0.224843 0.163358i
\(426\) 8.18034 0.396339
\(427\) 3.47214 2.52265i 0.168028 0.122080i
\(428\) −2.14590 + 6.60440i −0.103726 + 0.319235i
\(429\) 0.437694 1.34708i 0.0211321 0.0650378i
\(430\) 5.85410 + 4.25325i 0.282310 + 0.205110i
\(431\) −3.00000 9.23305i −0.144505 0.444740i 0.852442 0.522822i \(-0.175121\pi\)
−0.996947 + 0.0780813i \(0.975121\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −9.22542 28.3929i −0.443346 1.36448i −0.884288 0.466942i \(-0.845356\pi\)
0.440942 0.897535i \(-0.354644\pi\)
\(434\) −15.7082 11.4127i −0.754018 0.547826i
\(435\) 2.50000 7.69421i 0.119866 0.368909i
\(436\) 14.2082 10.3229i 0.680450 0.494376i
\(437\) 35.1246 + 25.5195i 1.68024 + 1.22076i
\(438\) 7.97214 + 5.79210i 0.380923 + 0.276757i
\(439\) −12.2361 + 8.89002i −0.583996 + 0.424298i −0.840162 0.542335i \(-0.817540\pi\)
0.256167 + 0.966633i \(0.417540\pi\)
\(440\) 0.527864 1.62460i 0.0251649 0.0774497i
\(441\) 2.42705 + 1.76336i 0.115574 + 0.0839693i
\(442\) −0.656541 2.02063i −0.0312285 0.0961114i
\(443\) −28.0689 −1.33359 −0.666796 0.745240i \(-0.732335\pi\)
−0.666796 + 0.745240i \(0.732335\pi\)
\(444\) 2.73607 + 8.42075i 0.129848 + 0.399631i
\(445\) −6.54508 4.75528i −0.310267 0.225422i
\(446\) 4.85410 14.9394i 0.229848 0.707401i
\(447\) 6.80902 20.9560i 0.322055 0.991185i
\(448\) −1.61803 + 1.17557i −0.0764449 + 0.0555405i
\(449\) −19.7984 −0.934343 −0.467172 0.884167i \(-0.654727\pi\)
−0.467172 + 0.884167i \(0.654727\pi\)
\(450\) 4.04508 2.93893i 0.190687 0.138542i
\(451\) −3.88854 −0.183104
\(452\) −6.92705 + 5.03280i −0.325821 + 0.236723i
\(453\) −3.38197 + 10.4086i −0.158899 + 0.489040i
\(454\) −0.291796 + 0.898056i −0.0136947 + 0.0421479i
\(455\) 2.56231 7.88597i 0.120123 0.369700i
\(456\) −2.23607 6.88191i −0.104713 0.322275i
\(457\) −3.52786 −0.165027 −0.0825133 0.996590i \(-0.526295\pi\)
−0.0825133 + 0.996590i \(0.526295\pi\)
\(458\) −2.86475 8.81678i −0.133861 0.411981i
\(459\) 0.927051 + 0.673542i 0.0432710 + 0.0314382i
\(460\) −10.8541 + 7.88597i −0.506075 + 0.367685i
\(461\) −11.2533 + 8.17599i −0.524118 + 0.380794i −0.818153 0.575001i \(-0.805002\pi\)
0.294035 + 0.955795i \(0.405002\pi\)
\(462\) 1.23607 + 0.898056i 0.0575071 + 0.0417813i
\(463\) 20.7984 + 15.1109i 0.966582 + 0.702263i 0.954670 0.297666i \(-0.0962081\pi\)
0.0119123 + 0.999929i \(0.496208\pi\)
\(464\) 2.92705 2.12663i 0.135885 0.0987262i
\(465\) 6.70820 + 20.6457i 0.311086 + 0.957423i
\(466\) −8.82624 6.41264i −0.408868 0.297060i
\(467\) 11.7984 + 36.3117i 0.545964 + 1.68030i 0.718688 + 0.695333i \(0.244743\pi\)
−0.172724 + 0.984970i \(0.555257\pi\)
\(468\) 1.85410 0.0857059
\(469\) 2.29180 + 7.05342i 0.105825 + 0.325697i
\(470\) 16.7082 12.1392i 0.770692 0.559940i
\(471\) −3.44427 + 10.6004i −0.158704 + 0.488440i
\(472\) 2.76393 8.50651i 0.127220 0.391544i
\(473\) 2.00000 1.45309i 0.0919601 0.0668129i
\(474\) 0 0
\(475\) 29.2705 + 21.2663i 1.34302 + 0.975763i
\(476\) 2.29180 0.105044
\(477\) 9.35410 6.79615i 0.428295 0.311174i
\(478\) 8.29180 25.5195i 0.379258 1.16724i
\(479\) −1.38197 + 4.25325i −0.0631436 + 0.194336i −0.977652 0.210232i \(-0.932578\pi\)
0.914508 + 0.404568i \(0.132578\pi\)
\(480\) 2.23607 0.102062
\(481\) −5.07295 15.6129i −0.231307 0.711888i
\(482\) 7.14590 0.325487
\(483\) −3.70820 11.4127i −0.168729 0.519295i
\(484\) 8.42705 + 6.12261i 0.383048 + 0.278300i
\(485\) −15.9787 −0.725556
\(486\) −0.809017 + 0.587785i −0.0366978 + 0.0266625i
\(487\) −19.1803 13.9353i −0.869144 0.631470i 0.0612130 0.998125i \(-0.480503\pi\)
−0.930357 + 0.366655i \(0.880503\pi\)
\(488\) −1.73607 1.26133i −0.0785881 0.0570976i
\(489\) 9.32624 6.77591i 0.421747 0.306417i
\(490\) −5.42705 3.94298i −0.245169 0.178126i
\(491\) 4.76393 + 3.46120i 0.214993 + 0.156202i 0.690070 0.723743i \(-0.257580\pi\)
−0.475077 + 0.879944i \(0.657580\pi\)
\(492\) −1.57295 4.84104i −0.0709140 0.218251i
\(493\) −4.14590 −0.186722
\(494\) 4.14590 + 12.7598i 0.186533 + 0.574089i
\(495\) −0.527864 1.62460i −0.0237257 0.0730203i
\(496\) −3.00000 + 9.23305i −0.134704 + 0.414576i
\(497\) 5.05573 15.5599i 0.226780 0.697958i
\(498\) −4.85410 + 3.52671i −0.217518 + 0.158036i
\(499\) −6.58359 −0.294722 −0.147361 0.989083i \(-0.547078\pi\)
−0.147361 + 0.989083i \(0.547078\pi\)
\(500\) −9.04508 + 6.57164i −0.404508 + 0.293893i
\(501\) 2.47214 0.110447
\(502\) −2.85410 + 2.07363i −0.127385 + 0.0925505i
\(503\) 9.41641 28.9807i 0.419857 1.29219i −0.487977 0.872857i \(-0.662265\pi\)
0.907834 0.419330i \(-0.137735\pi\)
\(504\) −0.618034 + 1.90211i −0.0275294 + 0.0847268i
\(505\) 11.9721 + 36.8464i 0.532753 + 1.63965i
\(506\) 1.41641 + 4.35926i 0.0629670 + 0.193793i
\(507\) 9.56231 0.424677
\(508\) 4.23607 + 13.0373i 0.187945 + 0.578436i
\(509\) −23.2533 16.8945i −1.03068 0.748836i −0.0622385 0.998061i \(-0.519824\pi\)
−0.968445 + 0.249226i \(0.919824\pi\)
\(510\) −2.07295 1.50609i −0.0917917 0.0666906i
\(511\) 15.9443 11.5842i 0.705333 0.512454i
\(512\) 0.809017 + 0.587785i 0.0357538 + 0.0259767i
\(513\) −5.85410 4.25325i −0.258465 0.187786i
\(514\) −7.59017 + 5.51458i −0.334788 + 0.243238i
\(515\) −35.1246 −1.54778
\(516\) 2.61803 + 1.90211i 0.115253 + 0.0837359i
\(517\) −2.18034 6.71040i −0.0958912 0.295123i
\(518\) 17.7082 0.778054
\(519\) 6.82624 + 21.0090i 0.299639 + 0.922193i
\(520\) −4.14590 −0.181810
\(521\) −8.42705 + 25.9358i −0.369196 + 1.13627i 0.578116 + 0.815955i \(0.303788\pi\)
−0.947312 + 0.320313i \(0.896212\pi\)
\(522\) 1.11803 3.44095i 0.0489350 0.150607i
\(523\) 12.7082 9.23305i 0.555691 0.403733i −0.274188 0.961676i \(-0.588409\pi\)
0.829879 + 0.557943i \(0.188409\pi\)
\(524\) −5.23607 −0.228739
\(525\) −3.09017 9.51057i −0.134866 0.415075i
\(526\) 8.47214 0.369403
\(527\) 9.00000 6.53888i 0.392046 0.284838i
\(528\) 0.236068 0.726543i 0.0102735 0.0316187i
\(529\) 4.01722 12.3637i 0.174662 0.537554i
\(530\) −20.9164 + 15.1967i −0.908551 + 0.660101i
\(531\) −2.76393 8.50651i −0.119944 0.369151i
\(532\) −14.4721 −0.627447
\(533\) 2.91641 + 8.97578i 0.126324 + 0.388784i
\(534\) −2.92705 2.12663i −0.126666 0.0920282i
\(535\) −4.79837 14.7679i −0.207452 0.638471i
\(536\) 3.00000 2.17963i 0.129580 0.0941456i
\(537\) −21.1803 15.3884i −0.913999 0.664059i
\(538\) −10.5902 7.69421i −0.456575 0.331721i
\(539\) −1.85410 + 1.34708i −0.0798618 + 0.0580230i
\(540\) 1.80902 1.31433i 0.0778477 0.0565597i
\(541\) 9.92705 + 7.21242i 0.426797 + 0.310086i 0.780367 0.625322i \(-0.215032\pi\)
−0.353570 + 0.935408i \(0.615032\pi\)
\(542\) −1.79837 5.53483i −0.0772468 0.237741i
\(543\) −9.03444 −0.387705
\(544\) −0.354102 1.08981i −0.0151820 0.0467254i
\(545\) −12.1353 + 37.3485i −0.519817 + 1.59983i
\(546\) 1.14590 3.52671i 0.0490399 0.150929i
\(547\) 0.618034 1.90211i 0.0264252 0.0813285i −0.936974 0.349399i \(-0.886386\pi\)
0.963399 + 0.268070i \(0.0863859\pi\)
\(548\) −11.3541 + 8.24924i −0.485023 + 0.352390i
\(549\) −2.14590 −0.0915847
\(550\) 1.18034 + 3.63271i 0.0503299 + 0.154899i
\(551\) 26.1803 1.11532
\(552\) −4.85410 + 3.52671i −0.206604 + 0.150107i
\(553\) 0 0
\(554\) 8.91641 27.4419i 0.378822 1.16589i
\(555\) −16.0172 11.6372i −0.679893 0.493971i
\(556\) 4.14590 + 12.7598i 0.175825 + 0.541134i
\(557\) 6.27051 0.265690 0.132845 0.991137i \(-0.457589\pi\)
0.132845 + 0.991137i \(0.457589\pi\)
\(558\) 3.00000 + 9.23305i 0.127000 + 0.390866i
\(559\) −4.85410 3.52671i −0.205307 0.149164i
\(560\) 1.38197 4.25325i 0.0583987 0.179733i
\(561\) −0.708204 + 0.514540i −0.0299004 + 0.0217239i
\(562\) 4.11803 + 2.99193i 0.173709 + 0.126207i
\(563\) −1.23607 0.898056i −0.0520941 0.0378485i 0.561434 0.827522i \(-0.310250\pi\)
−0.613528 + 0.789673i \(0.710250\pi\)
\(564\) 7.47214 5.42882i 0.314634 0.228595i
\(565\) 5.91641 18.2088i 0.248905 0.766051i
\(566\) −1.00000 0.726543i −0.0420331 0.0305389i
\(567\) 0.618034 + 1.90211i 0.0259550 + 0.0798812i
\(568\) −8.18034 −0.343239
\(569\) 7.29837 + 22.4621i 0.305964 + 0.941660i 0.979316 + 0.202338i \(0.0648538\pi\)
−0.673352 + 0.739322i \(0.735146\pi\)
\(570\) 13.0902 + 9.51057i 0.548287 + 0.398354i
\(571\) 6.27051 19.2986i 0.262413 0.807623i −0.729866 0.683591i \(-0.760417\pi\)
0.992278 0.124032i \(-0.0395827\pi\)
\(572\) −0.437694 + 1.34708i −0.0183009 + 0.0563244i
\(573\) −4.23607 + 3.07768i −0.176964 + 0.128572i
\(574\) −10.1803 −0.424919
\(575\) 9.27051 28.5317i 0.386607 1.18985i
\(576\) 1.00000 0.0416667
\(577\) 20.0902 14.5964i 0.836365 0.607655i −0.0849881 0.996382i \(-0.527085\pi\)
0.921353 + 0.388727i \(0.127085\pi\)
\(578\) 4.84752 14.9191i 0.201630 0.620555i
\(579\) −1.42705 + 4.39201i −0.0593062 + 0.182526i
\(580\) −2.50000 + 7.69421i −0.103807 + 0.319485i
\(581\) 3.70820 + 11.4127i 0.153842 + 0.473478i
\(582\) −7.14590 −0.296207
\(583\) 2.72949 + 8.40051i 0.113044 + 0.347913i
\(584\) −7.97214 5.79210i −0.329889 0.239679i
\(585\) −3.35410 + 2.43690i −0.138675 + 0.100753i
\(586\) −3.39919 + 2.46965i −0.140419 + 0.102020i
\(587\) −16.0902 11.6902i −0.664112 0.482506i 0.203937 0.978984i \(-0.434626\pi\)
−0.868049 + 0.496478i \(0.834626\pi\)
\(588\) −2.42705 1.76336i −0.100090 0.0727196i
\(589\) −56.8328 + 41.2915i −2.34176 + 1.70138i
\(590\) 6.18034 + 19.0211i 0.254441 + 0.783088i
\(591\) 1.88197 + 1.36733i 0.0774137 + 0.0562444i
\(592\) −2.73607 8.42075i −0.112452 0.346091i
\(593\) 23.0344 0.945911 0.472956 0.881086i \(-0.343187\pi\)
0.472956 + 0.881086i \(0.343187\pi\)
\(594\) −0.236068 0.726543i −0.00968599 0.0298104i
\(595\) −4.14590 + 3.01217i −0.169965 + 0.123487i
\(596\) −6.80902 + 20.9560i −0.278908 + 0.858391i
\(597\) −5.00000 + 15.3884i −0.204636 + 0.629806i
\(598\) 9.00000 6.53888i 0.368037 0.267395i
\(599\) 18.9443 0.774042 0.387021 0.922071i \(-0.373504\pi\)
0.387021 + 0.922071i \(0.373504\pi\)
\(600\) −4.04508 + 2.93893i −0.165140 + 0.119981i
\(601\) −8.32624 −0.339634 −0.169817 0.985476i \(-0.554318\pi\)
−0.169817 + 0.985476i \(0.554318\pi\)
\(602\) 5.23607 3.80423i 0.213406 0.155049i
\(603\) 1.14590 3.52671i 0.0466646 0.143619i
\(604\) 3.38197 10.4086i 0.137610 0.423521i
\(605\) −23.2918 −0.946946
\(606\) 5.35410 + 16.4782i 0.217496 + 0.669382i
\(607\) −24.1803 −0.981450 −0.490725 0.871315i \(-0.663268\pi\)
−0.490725 + 0.871315i \(0.663268\pi\)
\(608\) 2.23607 + 6.88191i 0.0906845 + 0.279098i
\(609\) −5.85410 4.25325i −0.237220 0.172351i
\(610\) 4.79837 0.194280
\(611\) −13.8541 + 10.0656i −0.560477 + 0.407210i
\(612\) −0.927051 0.673542i −0.0374738 0.0272263i
\(613\) 1.16312 + 0.845055i 0.0469779 + 0.0341315i 0.611026 0.791610i \(-0.290757\pi\)
−0.564048 + 0.825742i \(0.690757\pi\)
\(614\) −24.0344 + 17.4620i −0.969951 + 0.704711i
\(615\) 9.20820 + 6.69015i 0.371311 + 0.269773i
\(616\) −1.23607 0.898056i −0.0498026 0.0361837i
\(617\) 3.28115 + 10.0984i 0.132094 + 0.406544i 0.995127 0.0986041i \(-0.0314378\pi\)
−0.863032 + 0.505148i \(0.831438\pi\)
\(618\) −15.7082 −0.631877
\(619\) −7.23607 22.2703i −0.290842 0.895120i −0.984586 0.174899i \(-0.944040\pi\)
0.693744 0.720221i \(-0.255960\pi\)
\(620\) −6.70820 20.6457i −0.269408 0.829152i
\(621\) −1.85410 + 5.70634i −0.0744025 + 0.228988i
\(622\) −3.90983 + 12.0332i −0.156770 + 0.482488i
\(623\) −5.85410 + 4.25325i −0.234540 + 0.170403i
\(624\) −1.85410 −0.0742235
\(625\) 7.72542 23.7764i 0.309017 0.951057i
\(626\) −18.3607 −0.733840
\(627\) 4.47214 3.24920i 0.178600 0.129760i
\(628\) 3.44427 10.6004i 0.137441 0.423001i
\(629\) −3.13525 + 9.64932i −0.125011 + 0.384744i
\(630\) −1.38197 4.25325i −0.0550588 0.169454i
\(631\) −0.888544 2.73466i −0.0353724 0.108865i 0.931811 0.362943i \(-0.118228\pi\)
−0.967184 + 0.254078i \(0.918228\pi\)
\(632\) 0 0
\(633\) 2.47214 + 7.60845i 0.0982586 + 0.302409i
\(634\) 8.85410 + 6.43288i 0.351641 + 0.255482i
\(635\) −24.7984 18.0171i −0.984093 0.714986i
\(636\) −9.35410 + 6.79615i −0.370914 + 0.269485i
\(637\) 4.50000 + 3.26944i 0.178296 + 0.129540i
\(638\) 2.23607 + 1.62460i 0.0885268 + 0.0643185i
\(639\) −6.61803 + 4.80828i −0.261805 + 0.190213i
\(640\) −2.23607 −0.0883883
\(641\) 7.32624 + 5.32282i 0.289369 + 0.210239i 0.722994 0.690855i \(-0.242766\pi\)
−0.433625 + 0.901094i \(0.642766\pi\)
\(642\) −2.14590 6.60440i −0.0846918 0.260655i
\(643\) 31.7771 1.25317 0.626583 0.779355i \(-0.284453\pi\)
0.626583 + 0.779355i \(0.284453\pi\)
\(644\) 3.70820 + 11.4127i 0.146124 + 0.449723i
\(645\) −7.23607 −0.284920
\(646\) 2.56231 7.88597i 0.100813 0.310269i
\(647\) −0.0344419 + 0.106001i −0.00135405 + 0.00416733i −0.951731 0.306933i \(-0.900697\pi\)
0.950377 + 0.311100i \(0.100697\pi\)
\(648\) 0.809017 0.587785i 0.0317812 0.0230904i
\(649\) 6.83282 0.268211
\(650\) 7.50000 5.44907i 0.294174 0.213730i
\(651\) 19.4164 0.760989
\(652\) −9.32624 + 6.77591i −0.365244 + 0.265365i
\(653\) 5.93769 18.2743i 0.232360 0.715130i −0.765101 0.643911i \(-0.777311\pi\)
0.997461 0.0712197i \(-0.0226891\pi\)
\(654\) −5.42705 + 16.7027i −0.212214 + 0.653129i
\(655\) 9.47214 6.88191i 0.370107 0.268898i
\(656\) 1.57295 + 4.84104i 0.0614133 + 0.189011i
\(657\) −9.85410 −0.384445
\(658\) −5.70820 17.5680i −0.222529 0.684874i
\(659\) −17.0344 12.3762i −0.663568 0.482110i 0.204298 0.978909i \(-0.434509\pi\)
−0.867866 + 0.496799i \(0.834509\pi\)
\(660\) 0.527864 + 1.62460i 0.0205471 + 0.0632374i
\(661\) 26.2705 19.0866i 1.02180 0.742384i 0.0551524 0.998478i \(-0.482436\pi\)
0.966652 + 0.256094i \(0.0824355\pi\)
\(662\) −19.0344 13.8293i −0.739795 0.537492i
\(663\) 1.71885 + 1.24882i 0.0667545 + 0.0485000i
\(664\) 4.85410 3.52671i 0.188376 0.136863i
\(665\) 26.1803 19.0211i 1.01523 0.737608i
\(666\) −7.16312 5.20431i −0.277565 0.201663i
\(667\) −6.70820 20.6457i −0.259743 0.799406i
\(668\) −2.47214 −0.0956498
\(669\) 4.85410 + 14.9394i 0.187670 + 0.577590i
\(670\) −2.56231 + 7.88597i −0.0989905 + 0.304661i
\(671\) 0.506578 1.55909i 0.0195562 0.0601879i
\(672\) 0.618034 1.90211i 0.0238412 0.0733756i
\(673\) −4.69098 + 3.40820i −0.180824 + 0.131376i −0.674515 0.738261i \(-0.735647\pi\)
0.493691 + 0.869637i \(0.335647\pi\)
\(674\) 24.8328 0.956524
\(675\) −1.54508 + 4.75528i −0.0594703 + 0.183031i
\(676\) −9.56231 −0.367781
\(677\) −22.2705 + 16.1805i −0.855925 + 0.621866i −0.926773 0.375621i \(-0.877429\pi\)
0.0708481 + 0.997487i \(0.477429\pi\)
\(678\) 2.64590 8.14324i 0.101615 0.312739i
\(679\) −4.41641 + 13.5923i −0.169486 + 0.521625i
\(680\) 2.07295 + 1.50609i 0.0794940 + 0.0577557i
\(681\) −0.291796 0.898056i −0.0111816 0.0344136i
\(682\) −7.41641 −0.283989
\(683\) −2.29180 7.05342i −0.0876931 0.269892i 0.897588 0.440836i \(-0.145318\pi\)
−0.985281 + 0.170945i \(0.945318\pi\)
\(684\) 5.85410 + 4.25325i 0.223837 + 0.162627i
\(685\) 9.69756 29.8460i 0.370525 1.14036i
\(686\) −16.1803 + 11.7557i −0.617768 + 0.448835i
\(687\) 7.50000 + 5.44907i 0.286143 + 0.207895i
\(688\) −2.61803 1.90211i −0.0998116 0.0725174i
\(689\) 17.3435 12.6008i 0.660733 0.480051i
\(690\) 4.14590 12.7598i 0.157832 0.485756i
\(691\) 1.47214 + 1.06957i 0.0560027 + 0.0406883i 0.615434 0.788188i \(-0.288981\pi\)
−0.559432 + 0.828876i \(0.688981\pi\)
\(692\) −6.82624 21.0090i −0.259495 0.798642i
\(693\) −1.52786 −0.0580388
\(694\) 0.236068 + 0.726543i 0.00896102 + 0.0275792i
\(695\) −24.2705 17.6336i −0.920633 0.668879i
\(696\) −1.11803 + 3.44095i −0.0423790 + 0.130429i
\(697\) 1.80244 5.54734i 0.0682723 0.210120i
\(698\) −7.92705 + 5.75934i −0.300043 + 0.217994i
\(699\) 10.9098 0.412648
\(700\) 3.09017 + 9.51057i 0.116797 + 0.359466i
\(701\) 49.1591 1.85671 0.928356 0.371692i \(-0.121222\pi\)
0.928356 + 0.371692i \(0.121222\pi\)
\(702\) −1.50000 + 1.08981i −0.0566139 + 0.0411324i
\(703\) 19.7984 60.9331i 0.746710 2.29814i
\(704\) −0.236068 + 0.726543i −0.00889715 + 0.0273826i
\(705\) −6.38197 + 19.6417i −0.240359 + 0.739748i
\(706\) −3.56231 10.9637i −0.134069 0.412622i
\(707\) 34.6525 1.30324
\(708\) 2.76393 + 8.50651i 0.103875 + 0.319694i
\(709\) 4.20820 + 3.05744i 0.158042 + 0.114825i 0.663996 0.747736i \(-0.268859\pi\)
−0.505953 + 0.862561i \(0.668859\pi\)
\(710\) 14.7984 10.7516i 0.555373 0.403502i
\(711\) 0 0
\(712\) 2.92705 + 2.12663i 0.109696 + 0.0796987i
\(713\) 47.1246 + 34.2380i 1.76483 + 1.28222i
\(714\) −1.85410 + 1.34708i −0.0693880 + 0.0504133i
\(715\) −0.978714 3.01217i −0.0366018 0.112649i
\(716\) 21.1803 + 15.3884i 0.791546 + 0.575092i
\(717\) 8.29180 + 25.5195i 0.309663 + 0.953044i
\(718\) −7.88854 −0.294398
\(719\) −6.90983 21.2663i −0.257693 0.793098i −0.993287 0.115675i \(-0.963097\pi\)
0.735594 0.677423i \(-0.236903\pi\)
\(720\) −1.80902 + 1.31433i −0.0674181 + 0.0489821i
\(721\) −9.70820 + 29.8788i −0.361552 + 1.11274i
\(722\) −10.3090 + 31.7279i −0.383662 + 1.18079i
\(723\) −5.78115 + 4.20025i −0.215003 + 0.156209i
\(724\) 9.03444 0.335762
\(725\) −5.59017 17.2048i −0.207614 0.638969i
\(726\) −10.4164 −0.386589
\(727\) −19.1803 + 13.9353i −0.711359 + 0.516833i −0.883612 0.468220i \(-0.844895\pi\)
0.172253 + 0.985053i \(0.444895\pi\)
\(728\) −1.14590 + 3.52671i −0.0424698 + 0.130709i
\(729\) 0.309017 0.951057i 0.0114451 0.0352243i
\(730\) 22.0344 0.815531
\(731\) 1.14590 + 3.52671i 0.0423826 + 0.130440i
\(732\) 2.14590 0.0793147
\(733\) 11.8541 + 36.4832i 0.437841 + 1.34754i 0.890147 + 0.455674i \(0.150602\pi\)
−0.452306 + 0.891863i \(0.649398\pi\)
\(734\) −2.85410 2.07363i −0.105347 0.0765389i
\(735\) 6.70820 0.247436
\(736\) 4.85410 3.52671i 0.178925 0.129996i
\(737\) 2.29180 + 1.66509i 0.0844194 + 0.0613343i
\(738\) 4.11803 + 2.99193i 0.151587 + 0.110134i
\(739\) −17.5623 + 12.7598i −0.646040 + 0.469375i −0.861920 0.507044i \(-0.830738\pi\)
0.215880 + 0.976420i \(0.430738\pi\)
\(740\) 16.0172 + 11.6372i 0.588805 + 0.427792i
\(741\) −10.8541 7.88597i −0.398735 0.289698i
\(742\) 7.14590 + 21.9928i 0.262334 + 0.807382i
\(743\) −24.6525 −0.904412 −0.452206 0.891914i \(-0.649363\pi\)
−0.452206 + 0.891914i \(0.649363\pi\)
\(744\) −3.00000 9.23305i −0.109985 0.338500i
\(745\) −15.2254 46.8590i −0.557816 1.71678i
\(746\) −9.09017 + 27.9767i −0.332815 + 1.02430i
\(747\) 1.85410 5.70634i 0.0678380 0.208784i
\(748\) 0.708204 0.514540i 0.0258945 0.0188135i
\(749\) −13.8885 −0.507476
\(750\) 3.45492 10.6331i 0.126156 0.388267i
\(751\) 19.2361 0.701934 0.350967 0.936388i \(-0.385853\pi\)
0.350967 + 0.936388i \(0.385853\pi\)
\(752\) −7.47214 + 5.42882i −0.272481 + 0.197969i
\(753\) 1.09017 3.35520i 0.0397280 0.122270i
\(754\) 2.07295 6.37988i 0.0754924 0.232342i
\(755\) 7.56231 + 23.2744i 0.275220 + 0.847042i
\(756\) −0.618034 1.90211i −0.0224777 0.0691792i
\(757\) −22.1459 −0.804906 −0.402453 0.915441i \(-0.631842\pi\)
−0.402453 + 0.915441i \(0.631842\pi\)
\(758\) −7.23607 22.2703i −0.262826 0.808895i
\(759\) −3.70820 2.69417i −0.134599 0.0977921i
\(760\) −13.0902 9.51057i −0.474830 0.344984i
\(761\) 36.5344 26.5438i 1.32437 0.962213i 0.324506 0.945884i \(-0.394802\pi\)
0.999867 0.0163292i \(-0.00519799\pi\)
\(762\) −11.0902 8.05748i −0.401754 0.291892i
\(763\) 28.4164 + 20.6457i 1.02874 + 0.747426i
\(764\) 4.23607 3.07768i 0.153256 0.111347i
\(765\) 2.56231 0.0926404
\(766\) 9.32624 + 6.77591i 0.336971 + 0.244824i
\(767\) −5.12461 15.7719i −0.185039 0.569492i
\(768\) −1.00000 −0.0360844
\(769\) 13.0902 + 40.2874i 0.472044 + 1.45280i 0.849904 + 0.526938i \(0.176660\pi\)
−0.377860 + 0.925863i \(0.623340\pi\)
\(770\) 3.41641 0.123119
\(771\) 2.89919 8.92278i 0.104412 0.321346i
\(772\) 1.42705 4.39201i 0.0513607 0.158072i
\(773\) −2.35410 + 1.71036i −0.0846712 + 0.0615172i −0.629315 0.777150i \(-0.716665\pi\)
0.544644 + 0.838667i \(0.316665\pi\)
\(774\) −3.23607 −0.116318