Properties

Label 150.2.g.a.61.1
Level 150
Weight 2
Character 150.61
Analytic conductor 1.198
Analytic rank 0
Dimension 4
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.g (of order \(5\) and degree \(4\))

Newform invariants

Self dual: No
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 61.1
Root \(0.809017 + 0.587785i\)
Character \(\chi\) = 150.61
Dual form 150.2.g.a.91.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-0.809017 + 0.587785i) q^{2}\) \(+(-0.309017 + 0.951057i) q^{3}\) \(+(0.309017 - 0.951057i) q^{4}\) \(+(1.80902 - 1.31433i) q^{5}\) \(+(-0.309017 - 0.951057i) q^{6}\) \(+2.61803 q^{7}\) \(+(0.309017 + 0.951057i) q^{8}\) \(+(-0.809017 - 0.587785i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-0.809017 + 0.587785i) q^{2}\) \(+(-0.309017 + 0.951057i) q^{3}\) \(+(0.309017 - 0.951057i) q^{4}\) \(+(1.80902 - 1.31433i) q^{5}\) \(+(-0.309017 - 0.951057i) q^{6}\) \(+2.61803 q^{7}\) \(+(0.309017 + 0.951057i) q^{8}\) \(+(-0.809017 - 0.587785i) q^{9}\) \(+(-0.690983 + 2.12663i) q^{10}\) \(+(-2.92705 + 2.12663i) q^{11}\) \(+(0.809017 + 0.587785i) q^{12}\) \(+(5.23607 + 3.80423i) q^{13}\) \(+(-2.11803 + 1.53884i) q^{14}\) \(+(0.690983 + 2.12663i) q^{15}\) \(+(-0.809017 - 0.587785i) q^{16}\) \(+(0.381966 + 1.17557i) q^{17}\) \(+1.00000 q^{18}\) \(+(-1.76393 - 5.42882i) q^{19}\) \(+(-0.690983 - 2.12663i) q^{20}\) \(+(-0.809017 + 2.48990i) q^{21}\) \(+(1.11803 - 3.44095i) q^{22}\) \(+(-3.61803 + 2.62866i) q^{23}\) \(-1.00000 q^{24}\) \(+(1.54508 - 4.75528i) q^{25}\) \(-6.47214 q^{26}\) \(+(0.809017 - 0.587785i) q^{27}\) \(+(0.809017 - 2.48990i) q^{28}\) \(+(2.61803 - 8.05748i) q^{29}\) \(+(-1.80902 - 1.31433i) q^{30}\) \(+(2.04508 + 6.29412i) q^{31}\) \(+1.00000 q^{32}\) \(+(-1.11803 - 3.44095i) q^{33}\) \(+(-1.00000 - 0.726543i) q^{34}\) \(+(4.73607 - 3.44095i) q^{35}\) \(+(-0.809017 + 0.587785i) q^{36}\) \(+(-6.47214 - 4.70228i) q^{37}\) \(+(4.61803 + 3.35520i) q^{38}\) \(+(-5.23607 + 3.80423i) q^{39}\) \(+(1.80902 + 1.31433i) q^{40}\) \(+(-4.61803 - 3.35520i) q^{41}\) \(+(-0.809017 - 2.48990i) q^{42}\) \(-7.70820 q^{43}\) \(+(1.11803 + 3.44095i) q^{44}\) \(-2.23607 q^{45}\) \(+(1.38197 - 4.25325i) q^{46}\) \(+(0.527864 - 1.62460i) q^{47}\) \(+(0.809017 - 0.587785i) q^{48}\) \(-0.145898 q^{49}\) \(+(1.54508 + 4.75528i) q^{50}\) \(-1.23607 q^{51}\) \(+(5.23607 - 3.80423i) q^{52}\) \(+(-0.645898 + 1.98787i) q^{53}\) \(+(-0.309017 + 0.951057i) q^{54}\) \(+(-2.50000 + 7.69421i) q^{55}\) \(+(0.809017 + 2.48990i) q^{56}\) \(+5.70820 q^{57}\) \(+(2.61803 + 8.05748i) q^{58}\) \(+(2.92705 + 2.12663i) q^{59}\) \(+2.23607 q^{60}\) \(+(-2.23607 + 1.62460i) q^{61}\) \(+(-5.35410 - 3.88998i) q^{62}\) \(+(-2.11803 - 1.53884i) q^{63}\) \(+(-0.809017 + 0.587785i) q^{64}\) \(+14.4721 q^{65}\) \(+(2.92705 + 2.12663i) q^{66}\) \(+(-0.472136 - 1.45309i) q^{67}\) \(+1.23607 q^{68}\) \(+(-1.38197 - 4.25325i) q^{69}\) \(+(-1.80902 + 5.56758i) q^{70}\) \(+(1.70820 - 5.25731i) q^{71}\) \(+(0.309017 - 0.951057i) q^{72}\) \(+(-2.85410 + 2.07363i) q^{73}\) \(+8.00000 q^{74}\) \(+(4.04508 + 2.93893i) q^{75}\) \(-5.70820 q^{76}\) \(+(-7.66312 + 5.56758i) q^{77}\) \(+(2.00000 - 6.15537i) q^{78}\) \(+(-1.73607 + 5.34307i) q^{79}\) \(-2.23607 q^{80}\) \(+(0.309017 + 0.951057i) q^{81}\) \(+5.70820 q^{82}\) \(+(0.663119 + 2.04087i) q^{83}\) \(+(2.11803 + 1.53884i) q^{84}\) \(+(2.23607 + 1.62460i) q^{85}\) \(+(6.23607 - 4.53077i) q^{86}\) \(+(6.85410 + 4.97980i) q^{87}\) \(+(-2.92705 - 2.12663i) q^{88}\) \(+(-2.85410 + 2.07363i) q^{89}\) \(+(1.80902 - 1.31433i) q^{90}\) \(+(13.7082 + 9.95959i) q^{91}\) \(+(1.38197 + 4.25325i) q^{92}\) \(-6.61803 q^{93}\) \(+(0.527864 + 1.62460i) q^{94}\) \(+(-10.3262 - 7.50245i) q^{95}\) \(+(-0.309017 + 0.951057i) q^{96}\) \(+(-1.04508 + 3.21644i) q^{97}\) \(+(0.118034 - 0.0857567i) q^{98}\) \(+3.61803 q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(4q \) \(\mathstrut -\mathstrut q^{2} \) \(\mathstrut +\mathstrut q^{3} \) \(\mathstrut -\mathstrut q^{4} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut +\mathstrut q^{6} \) \(\mathstrut +\mathstrut 6q^{7} \) \(\mathstrut -\mathstrut q^{8} \) \(\mathstrut -\mathstrut q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(4q \) \(\mathstrut -\mathstrut q^{2} \) \(\mathstrut +\mathstrut q^{3} \) \(\mathstrut -\mathstrut q^{4} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut +\mathstrut q^{6} \) \(\mathstrut +\mathstrut 6q^{7} \) \(\mathstrut -\mathstrut q^{8} \) \(\mathstrut -\mathstrut q^{9} \) \(\mathstrut -\mathstrut 5q^{10} \) \(\mathstrut -\mathstrut 5q^{11} \) \(\mathstrut +\mathstrut q^{12} \) \(\mathstrut +\mathstrut 12q^{13} \) \(\mathstrut -\mathstrut 4q^{14} \) \(\mathstrut +\mathstrut 5q^{15} \) \(\mathstrut -\mathstrut q^{16} \) \(\mathstrut +\mathstrut 6q^{17} \) \(\mathstrut +\mathstrut 4q^{18} \) \(\mathstrut -\mathstrut 16q^{19} \) \(\mathstrut -\mathstrut 5q^{20} \) \(\mathstrut -\mathstrut q^{21} \) \(\mathstrut -\mathstrut 10q^{23} \) \(\mathstrut -\mathstrut 4q^{24} \) \(\mathstrut -\mathstrut 5q^{25} \) \(\mathstrut -\mathstrut 8q^{26} \) \(\mathstrut +\mathstrut q^{27} \) \(\mathstrut +\mathstrut q^{28} \) \(\mathstrut +\mathstrut 6q^{29} \) \(\mathstrut -\mathstrut 5q^{30} \) \(\mathstrut -\mathstrut 3q^{31} \) \(\mathstrut +\mathstrut 4q^{32} \) \(\mathstrut -\mathstrut 4q^{34} \) \(\mathstrut +\mathstrut 10q^{35} \) \(\mathstrut -\mathstrut q^{36} \) \(\mathstrut -\mathstrut 8q^{37} \) \(\mathstrut +\mathstrut 14q^{38} \) \(\mathstrut -\mathstrut 12q^{39} \) \(\mathstrut +\mathstrut 5q^{40} \) \(\mathstrut -\mathstrut 14q^{41} \) \(\mathstrut -\mathstrut q^{42} \) \(\mathstrut -\mathstrut 4q^{43} \) \(\mathstrut +\mathstrut 10q^{46} \) \(\mathstrut +\mathstrut 20q^{47} \) \(\mathstrut +\mathstrut q^{48} \) \(\mathstrut -\mathstrut 14q^{49} \) \(\mathstrut -\mathstrut 5q^{50} \) \(\mathstrut +\mathstrut 4q^{51} \) \(\mathstrut +\mathstrut 12q^{52} \) \(\mathstrut -\mathstrut 16q^{53} \) \(\mathstrut +\mathstrut q^{54} \) \(\mathstrut -\mathstrut 10q^{55} \) \(\mathstrut +\mathstrut q^{56} \) \(\mathstrut -\mathstrut 4q^{57} \) \(\mathstrut +\mathstrut 6q^{58} \) \(\mathstrut +\mathstrut 5q^{59} \) \(\mathstrut -\mathstrut 8q^{62} \) \(\mathstrut -\mathstrut 4q^{63} \) \(\mathstrut -\mathstrut q^{64} \) \(\mathstrut +\mathstrut 40q^{65} \) \(\mathstrut +\mathstrut 5q^{66} \) \(\mathstrut +\mathstrut 16q^{67} \) \(\mathstrut -\mathstrut 4q^{68} \) \(\mathstrut -\mathstrut 10q^{69} \) \(\mathstrut -\mathstrut 5q^{70} \) \(\mathstrut -\mathstrut 20q^{71} \) \(\mathstrut -\mathstrut q^{72} \) \(\mathstrut +\mathstrut 2q^{73} \) \(\mathstrut +\mathstrut 32q^{74} \) \(\mathstrut +\mathstrut 5q^{75} \) \(\mathstrut +\mathstrut 4q^{76} \) \(\mathstrut -\mathstrut 15q^{77} \) \(\mathstrut +\mathstrut 8q^{78} \) \(\mathstrut +\mathstrut 2q^{79} \) \(\mathstrut -\mathstrut q^{81} \) \(\mathstrut -\mathstrut 4q^{82} \) \(\mathstrut -\mathstrut 13q^{83} \) \(\mathstrut +\mathstrut 4q^{84} \) \(\mathstrut +\mathstrut 16q^{86} \) \(\mathstrut +\mathstrut 14q^{87} \) \(\mathstrut -\mathstrut 5q^{88} \) \(\mathstrut +\mathstrut 2q^{89} \) \(\mathstrut +\mathstrut 5q^{90} \) \(\mathstrut +\mathstrut 28q^{91} \) \(\mathstrut +\mathstrut 10q^{92} \) \(\mathstrut -\mathstrut 22q^{93} \) \(\mathstrut +\mathstrut 20q^{94} \) \(\mathstrut -\mathstrut 10q^{95} \) \(\mathstrut +\mathstrut q^{96} \) \(\mathstrut +\mathstrut 7q^{97} \) \(\mathstrut -\mathstrut 4q^{98} \) \(\mathstrut +\mathstrut 10q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 0.587785i −0.572061 + 0.415627i
\(3\) −0.309017 + 0.951057i −0.178411 + 0.549093i
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) 1.80902 1.31433i 0.809017 0.587785i
\(6\) −0.309017 0.951057i −0.126156 0.388267i
\(7\) 2.61803 0.989524 0.494762 0.869029i \(-0.335255\pi\)
0.494762 + 0.869029i \(0.335255\pi\)
\(8\) 0.309017 + 0.951057i 0.109254 + 0.336249i
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) −0.690983 + 2.12663i −0.218508 + 0.672499i
\(11\) −2.92705 + 2.12663i −0.882539 + 0.641202i −0.933922 0.357477i \(-0.883637\pi\)
0.0513829 + 0.998679i \(0.483637\pi\)
\(12\) 0.809017 + 0.587785i 0.233543 + 0.169679i
\(13\) 5.23607 + 3.80423i 1.45222 + 1.05510i 0.985305 + 0.170802i \(0.0546359\pi\)
0.466919 + 0.884300i \(0.345364\pi\)
\(14\) −2.11803 + 1.53884i −0.566068 + 0.411273i
\(15\) 0.690983 + 2.12663i 0.178411 + 0.549093i
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 0.381966 + 1.17557i 0.0926404 + 0.285118i 0.986632 0.162967i \(-0.0521064\pi\)
−0.893991 + 0.448085i \(0.852106\pi\)
\(18\) 1.00000 0.235702
\(19\) −1.76393 5.42882i −0.404674 1.24546i −0.921167 0.389167i \(-0.872763\pi\)
0.516494 0.856291i \(-0.327237\pi\)
\(20\) −0.690983 2.12663i −0.154508 0.475528i
\(21\) −0.809017 + 2.48990i −0.176542 + 0.543340i
\(22\) 1.11803 3.44095i 0.238366 0.733614i
\(23\) −3.61803 + 2.62866i −0.754412 + 0.548113i −0.897191 0.441642i \(-0.854396\pi\)
0.142779 + 0.989755i \(0.454396\pi\)
\(24\) −1.00000 −0.204124
\(25\) 1.54508 4.75528i 0.309017 0.951057i
\(26\) −6.47214 −1.26929
\(27\) 0.809017 0.587785i 0.155695 0.113119i
\(28\) 0.809017 2.48990i 0.152890 0.470547i
\(29\) 2.61803 8.05748i 0.486157 1.49624i −0.344142 0.938918i \(-0.611830\pi\)
0.830299 0.557319i \(-0.188170\pi\)
\(30\) −1.80902 1.31433i −0.330280 0.239962i
\(31\) 2.04508 + 6.29412i 0.367308 + 1.13046i 0.948523 + 0.316708i \(0.102578\pi\)
−0.581215 + 0.813750i \(0.697422\pi\)
\(32\) 1.00000 0.176777
\(33\) −1.11803 3.44095i −0.194625 0.598993i
\(34\) −1.00000 0.726543i −0.171499 0.124601i
\(35\) 4.73607 3.44095i 0.800542 0.581628i
\(36\) −0.809017 + 0.587785i −0.134836 + 0.0979642i
\(37\) −6.47214 4.70228i −1.06401 0.773050i −0.0891861 0.996015i \(-0.528427\pi\)
−0.974827 + 0.222965i \(0.928427\pi\)
\(38\) 4.61803 + 3.35520i 0.749144 + 0.544285i
\(39\) −5.23607 + 3.80423i −0.838442 + 0.609164i
\(40\) 1.80902 + 1.31433i 0.286031 + 0.207813i
\(41\) −4.61803 3.35520i −0.721216 0.523994i 0.165557 0.986200i \(-0.447058\pi\)
−0.886772 + 0.462206i \(0.847058\pi\)
\(42\) −0.809017 2.48990i −0.124834 0.384200i
\(43\) −7.70820 −1.17549 −0.587745 0.809046i \(-0.699984\pi\)
−0.587745 + 0.809046i \(0.699984\pi\)
\(44\) 1.11803 + 3.44095i 0.168550 + 0.518743i
\(45\) −2.23607 −0.333333
\(46\) 1.38197 4.25325i 0.203760 0.627108i
\(47\) 0.527864 1.62460i 0.0769969 0.236972i −0.905149 0.425096i \(-0.860241\pi\)
0.982145 + 0.188123i \(0.0602405\pi\)
\(48\) 0.809017 0.587785i 0.116772 0.0848395i
\(49\) −0.145898 −0.0208426
\(50\) 1.54508 + 4.75528i 0.218508 + 0.672499i
\(51\) −1.23607 −0.173084
\(52\) 5.23607 3.80423i 0.726112 0.527551i
\(53\) −0.645898 + 1.98787i −0.0887209 + 0.273055i −0.985566 0.169289i \(-0.945853\pi\)
0.896846 + 0.442344i \(0.145853\pi\)
\(54\) −0.309017 + 0.951057i −0.0420519 + 0.129422i
\(55\) −2.50000 + 7.69421i −0.337100 + 1.03749i
\(56\) 0.809017 + 2.48990i 0.108109 + 0.332727i
\(57\) 5.70820 0.756070
\(58\) 2.61803 + 8.05748i 0.343765 + 1.05800i
\(59\) 2.92705 + 2.12663i 0.381070 + 0.276863i 0.761786 0.647829i \(-0.224323\pi\)
−0.380717 + 0.924692i \(0.624323\pi\)
\(60\) 2.23607 0.288675
\(61\) −2.23607 + 1.62460i −0.286299 + 0.208009i −0.721660 0.692247i \(-0.756621\pi\)
0.435361 + 0.900256i \(0.356621\pi\)
\(62\) −5.35410 3.88998i −0.679972 0.494028i
\(63\) −2.11803 1.53884i −0.266847 0.193876i
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) 14.4721 1.79505
\(66\) 2.92705 + 2.12663i 0.360295 + 0.261770i
\(67\) −0.472136 1.45309i −0.0576806 0.177523i 0.918065 0.396430i \(-0.129751\pi\)
−0.975746 + 0.218907i \(0.929751\pi\)
\(68\) 1.23607 0.149895
\(69\) −1.38197 4.25325i −0.166369 0.512032i
\(70\) −1.80902 + 5.56758i −0.216219 + 0.665453i
\(71\) 1.70820 5.25731i 0.202727 0.623928i −0.797073 0.603884i \(-0.793619\pi\)
0.999799 0.0200445i \(-0.00638080\pi\)
\(72\) 0.309017 0.951057i 0.0364180 0.112083i
\(73\) −2.85410 + 2.07363i −0.334047 + 0.242700i −0.742146 0.670238i \(-0.766192\pi\)
0.408099 + 0.912938i \(0.366192\pi\)
\(74\) 8.00000 0.929981
\(75\) 4.04508 + 2.93893i 0.467086 + 0.339358i
\(76\) −5.70820 −0.654776
\(77\) −7.66312 + 5.56758i −0.873293 + 0.634485i
\(78\) 2.00000 6.15537i 0.226455 0.696958i
\(79\) −1.73607 + 5.34307i −0.195323 + 0.601142i 0.804650 + 0.593750i \(0.202353\pi\)
−0.999973 + 0.00739236i \(0.997647\pi\)
\(80\) −2.23607 −0.250000
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 5.70820 0.630366
\(83\) 0.663119 + 2.04087i 0.0727868 + 0.224015i 0.980831 0.194859i \(-0.0624250\pi\)
−0.908044 + 0.418874i \(0.862425\pi\)
\(84\) 2.11803 + 1.53884i 0.231096 + 0.167901i
\(85\) 2.23607 + 1.62460i 0.242536 + 0.176212i
\(86\) 6.23607 4.53077i 0.672453 0.488565i
\(87\) 6.85410 + 4.97980i 0.734837 + 0.533890i
\(88\) −2.92705 2.12663i −0.312025 0.226699i
\(89\) −2.85410 + 2.07363i −0.302534 + 0.219804i −0.728686 0.684848i \(-0.759869\pi\)
0.426152 + 0.904651i \(0.359869\pi\)
\(90\) 1.80902 1.31433i 0.190687 0.138542i
\(91\) 13.7082 + 9.95959i 1.43701 + 1.04405i
\(92\) 1.38197 + 4.25325i 0.144080 + 0.443432i
\(93\) −6.61803 −0.686258
\(94\) 0.527864 + 1.62460i 0.0544450 + 0.167565i
\(95\) −10.3262 7.50245i −1.05945 0.769735i
\(96\) −0.309017 + 0.951057i −0.0315389 + 0.0970668i
\(97\) −1.04508 + 3.21644i −0.106112 + 0.326580i −0.989990 0.141138i \(-0.954924\pi\)
0.883878 + 0.467718i \(0.154924\pi\)
\(98\) 0.118034 0.0857567i 0.0119232 0.00866274i
\(99\) 3.61803 0.363626
\(100\) −4.04508 2.93893i −0.404508 0.293893i
\(101\) 4.38197 0.436022 0.218011 0.975946i \(-0.430043\pi\)
0.218011 + 0.975946i \(0.430043\pi\)
\(102\) 1.00000 0.726543i 0.0990148 0.0719384i
\(103\) 4.42705 13.6251i 0.436210 1.34252i −0.455631 0.890169i \(-0.650586\pi\)
0.891841 0.452348i \(-0.149414\pi\)
\(104\) −2.00000 + 6.15537i −0.196116 + 0.603583i
\(105\) 1.80902 + 5.56758i 0.176542 + 0.543340i
\(106\) −0.645898 1.98787i −0.0627352 0.193079i
\(107\) −11.6180 −1.12316 −0.561579 0.827423i \(-0.689806\pi\)
−0.561579 + 0.827423i \(0.689806\pi\)
\(108\) −0.309017 0.951057i −0.0297352 0.0915155i
\(109\) −13.9443 10.1311i −1.33562 0.970384i −0.999593 0.0285313i \(-0.990917\pi\)
−0.336026 0.941853i \(-0.609083\pi\)
\(110\) −2.50000 7.69421i −0.238366 0.733614i
\(111\) 6.47214 4.70228i 0.614308 0.446321i
\(112\) −2.11803 1.53884i −0.200135 0.145407i
\(113\) 15.5623 + 11.3067i 1.46398 + 1.06364i 0.982304 + 0.187292i \(0.0599712\pi\)
0.481674 + 0.876350i \(0.340029\pi\)
\(114\) −4.61803 + 3.35520i −0.432519 + 0.314243i
\(115\) −3.09017 + 9.51057i −0.288160 + 0.886865i
\(116\) −6.85410 4.97980i −0.636387 0.462363i
\(117\) −2.00000 6.15537i −0.184900 0.569064i
\(118\) −3.61803 −0.333067
\(119\) 1.00000 + 3.07768i 0.0916698 + 0.282131i
\(120\) −1.80902 + 1.31433i −0.165140 + 0.119981i
\(121\) 0.645898 1.98787i 0.0587180 0.180715i
\(122\) 0.854102 2.62866i 0.0773268 0.237987i
\(123\) 4.61803 3.35520i 0.416394 0.302528i
\(124\) 6.61803 0.594317
\(125\) −3.45492 10.6331i −0.309017 0.951057i
\(126\) 2.61803 0.233233
\(127\) −11.0172 + 8.00448i −0.977620 + 0.710283i −0.957176 0.289508i \(-0.906508\pi\)
−0.0204448 + 0.999791i \(0.506508\pi\)
\(128\) 0.309017 0.951057i 0.0273135 0.0840623i
\(129\) 2.38197 7.33094i 0.209720 0.645453i
\(130\) −11.7082 + 8.50651i −1.02688 + 0.746070i
\(131\) −5.52786 17.0130i −0.482972 1.48643i −0.834897 0.550406i \(-0.814473\pi\)
0.351925 0.936028i \(-0.385527\pi\)
\(132\) −3.61803 −0.314909
\(133\) −4.61803 14.2128i −0.400434 1.23241i
\(134\) 1.23607 + 0.898056i 0.106780 + 0.0775802i
\(135\) 0.690983 2.12663i 0.0594703 0.183031i
\(136\) −1.00000 + 0.726543i −0.0857493 + 0.0623005i
\(137\) 9.85410 + 7.15942i 0.841893 + 0.611671i 0.922899 0.385043i \(-0.125813\pi\)
−0.0810060 + 0.996714i \(0.525813\pi\)
\(138\) 3.61803 + 2.62866i 0.307988 + 0.223766i
\(139\) −8.47214 + 6.15537i −0.718597 + 0.522091i −0.885936 0.463808i \(-0.846483\pi\)
0.167339 + 0.985899i \(0.446483\pi\)
\(140\) −1.80902 5.56758i −0.152890 0.470547i
\(141\) 1.38197 + 1.00406i 0.116383 + 0.0845569i
\(142\) 1.70820 + 5.25731i 0.143349 + 0.441184i
\(143\) −23.4164 −1.95818
\(144\) 0.309017 + 0.951057i 0.0257514 + 0.0792547i
\(145\) −5.85410 18.0171i −0.486157 1.49624i
\(146\) 1.09017 3.35520i 0.0902231 0.277678i
\(147\) 0.0450850 0.138757i 0.00371855 0.0114445i
\(148\) −6.47214 + 4.70228i −0.532006 + 0.386525i
\(149\) 22.0902 1.80970 0.904849 0.425733i \(-0.139984\pi\)
0.904849 + 0.425733i \(0.139984\pi\)
\(150\) −5.00000 −0.408248
\(151\) 18.3262 1.49137 0.745684 0.666300i \(-0.232123\pi\)
0.745684 + 0.666300i \(0.232123\pi\)
\(152\) 4.61803 3.35520i 0.374572 0.272143i
\(153\) 0.381966 1.17557i 0.0308801 0.0950392i
\(154\) 2.92705 9.00854i 0.235868 0.725929i
\(155\) 11.9721 + 8.69827i 0.961625 + 0.698662i
\(156\) 2.00000 + 6.15537i 0.160128 + 0.492824i
\(157\) 8.65248 0.690543 0.345271 0.938503i \(-0.387787\pi\)
0.345271 + 0.938503i \(0.387787\pi\)
\(158\) −1.73607 5.34307i −0.138114 0.425072i
\(159\) −1.69098 1.22857i −0.134104 0.0974320i
\(160\) 1.80902 1.31433i 0.143015 0.103907i
\(161\) −9.47214 + 6.88191i −0.746509 + 0.542370i
\(162\) −0.809017 0.587785i −0.0635624 0.0461808i
\(163\) 0.381966 + 0.277515i 0.0299179 + 0.0217366i 0.602644 0.798010i \(-0.294114\pi\)
−0.572726 + 0.819747i \(0.694114\pi\)
\(164\) −4.61803 + 3.35520i −0.360608 + 0.261997i
\(165\) −6.54508 4.75528i −0.509534 0.370198i
\(166\) −1.73607 1.26133i −0.134745 0.0978980i
\(167\) 3.61803 + 11.1352i 0.279972 + 0.861665i 0.987861 + 0.155341i \(0.0496477\pi\)
−0.707889 + 0.706324i \(0.750352\pi\)
\(168\) −2.61803 −0.201986
\(169\) 8.92705 + 27.4746i 0.686696 + 2.11343i
\(170\) −2.76393 −0.211984
\(171\) −1.76393 + 5.42882i −0.134891 + 0.415153i
\(172\) −2.38197 + 7.33094i −0.181623 + 0.558979i
\(173\) −4.11803 + 2.99193i −0.313088 + 0.227472i −0.733221 0.679991i \(-0.761984\pi\)
0.420132 + 0.907463i \(0.361984\pi\)
\(174\) −8.47214 −0.642271
\(175\) 4.04508 12.4495i 0.305780 0.941093i
\(176\) 3.61803 0.272720
\(177\) −2.92705 + 2.12663i −0.220011 + 0.159847i
\(178\) 1.09017 3.35520i 0.0817117 0.251483i
\(179\) 3.04508 9.37181i 0.227600 0.700482i −0.770417 0.637540i \(-0.779952\pi\)
0.998017 0.0629414i \(-0.0200481\pi\)
\(180\) −0.690983 + 2.12663i −0.0515028 + 0.158509i
\(181\) −2.05573 6.32688i −0.152801 0.470273i 0.845130 0.534560i \(-0.179523\pi\)
−0.997931 + 0.0642869i \(0.979523\pi\)
\(182\) −16.9443 −1.25599
\(183\) −0.854102 2.62866i −0.0631370 0.194316i
\(184\) −3.61803 2.62866i −0.266725 0.193787i
\(185\) −17.8885 −1.31519
\(186\) 5.35410 3.88998i 0.392582 0.285227i
\(187\) −3.61803 2.62866i −0.264577 0.192226i
\(188\) −1.38197 1.00406i −0.100790 0.0732284i
\(189\) 2.11803 1.53884i 0.154064 0.111934i
\(190\) 12.7639 0.925993
\(191\) −3.47214 2.52265i −0.251235 0.182533i 0.455039 0.890472i \(-0.349625\pi\)
−0.706274 + 0.707939i \(0.749625\pi\)
\(192\) −0.309017 0.951057i −0.0223014 0.0686366i
\(193\) 17.8541 1.28517 0.642583 0.766216i \(-0.277863\pi\)
0.642583 + 0.766216i \(0.277863\pi\)
\(194\) −1.04508 3.21644i −0.0750327 0.230927i
\(195\) −4.47214 + 13.7638i −0.320256 + 0.985648i
\(196\) −0.0450850 + 0.138757i −0.00322036 + 0.00991123i
\(197\) −5.28115 + 16.2537i −0.376267 + 1.15803i 0.566354 + 0.824162i \(0.308354\pi\)
−0.942620 + 0.333867i \(0.891646\pi\)
\(198\) −2.92705 + 2.12663i −0.208016 + 0.151133i
\(199\) 19.5066 1.38278 0.691392 0.722480i \(-0.256998\pi\)
0.691392 + 0.722480i \(0.256998\pi\)
\(200\) 5.00000 0.353553
\(201\) 1.52786 0.107767
\(202\) −3.54508 + 2.57565i −0.249431 + 0.181222i
\(203\) 6.85410 21.0948i 0.481064 1.48056i
\(204\) −0.381966 + 1.17557i −0.0267430 + 0.0823064i
\(205\) −12.7639 −0.891472
\(206\) 4.42705 + 13.6251i 0.308447 + 0.949303i
\(207\) 4.47214 0.310835
\(208\) −2.00000 6.15537i −0.138675 0.426798i
\(209\) 16.7082 + 12.1392i 1.15573 + 0.839687i
\(210\) −4.73607 3.44095i −0.326820 0.237448i
\(211\) 2.76393 2.00811i 0.190277 0.138244i −0.488568 0.872526i \(-0.662481\pi\)
0.678845 + 0.734281i \(0.262481\pi\)
\(212\) 1.69098 + 1.22857i 0.116137 + 0.0843786i
\(213\) 4.47214 + 3.24920i 0.306426 + 0.222631i
\(214\) 9.39919 6.82891i 0.642515 0.466815i
\(215\) −13.9443 + 10.1311i −0.950991 + 0.690936i
\(216\) 0.809017 + 0.587785i 0.0550466 + 0.0399937i
\(217\) 5.35410 + 16.4782i 0.363460 + 1.11862i
\(218\) 17.2361 1.16737
\(219\) −1.09017 3.35520i −0.0736669 0.226723i
\(220\) 6.54508 + 4.75528i 0.441270 + 0.320601i
\(221\) −2.47214 + 7.60845i −0.166294 + 0.511800i
\(222\) −2.47214 + 7.60845i −0.165919 + 0.510646i
\(223\) 6.54508 4.75528i 0.438291 0.318437i −0.346664 0.937989i \(-0.612686\pi\)
0.784956 + 0.619552i \(0.212686\pi\)
\(224\) 2.61803 0.174925
\(225\) −4.04508 + 2.93893i −0.269672 + 0.195928i
\(226\) −19.2361 −1.27956
\(227\) 18.0172 13.0903i 1.19584 0.868832i 0.201975 0.979391i \(-0.435264\pi\)
0.993870 + 0.110558i \(0.0352639\pi\)
\(228\) 1.76393 5.42882i 0.116819 0.359533i
\(229\) −1.70820 + 5.25731i −0.112881 + 0.347413i −0.991499 0.130113i \(-0.958466\pi\)
0.878618 + 0.477525i \(0.158466\pi\)
\(230\) −3.09017 9.51057i −0.203760 0.627108i
\(231\) −2.92705 9.00854i −0.192586 0.592718i
\(232\) 8.47214 0.556223
\(233\) 5.76393 + 17.7396i 0.377608 + 1.16216i 0.941702 + 0.336447i \(0.109225\pi\)
−0.564095 + 0.825710i \(0.690775\pi\)
\(234\) 5.23607 + 3.80423i 0.342292 + 0.248690i
\(235\) −1.18034 3.63271i −0.0769969 0.236972i
\(236\) 2.92705 2.12663i 0.190535 0.138432i
\(237\) −4.54508 3.30220i −0.295235 0.214501i
\(238\) −2.61803 1.90211i −0.169702 0.123296i
\(239\) −9.94427 + 7.22494i −0.643241 + 0.467342i −0.860962 0.508669i \(-0.830138\pi\)
0.217721 + 0.976011i \(0.430138\pi\)
\(240\) 0.690983 2.12663i 0.0446028 0.137273i
\(241\) −7.73607 5.62058i −0.498324 0.362054i 0.310052 0.950719i \(-0.399653\pi\)
−0.808376 + 0.588666i \(0.799653\pi\)
\(242\) 0.645898 + 1.98787i 0.0415199 + 0.127785i
\(243\) −1.00000 −0.0641500
\(244\) 0.854102 + 2.62866i 0.0546783 + 0.168282i
\(245\) −0.263932 + 0.191758i −0.0168620 + 0.0122510i
\(246\) −1.76393 + 5.42882i −0.112464 + 0.346129i
\(247\) 11.4164 35.1361i 0.726409 2.23566i
\(248\) −5.35410 + 3.88998i −0.339986 + 0.247014i
\(249\) −2.14590 −0.135991
\(250\) 9.04508 + 6.57164i 0.572061 + 0.415627i
\(251\) 13.5623 0.856045 0.428023 0.903768i \(-0.359210\pi\)
0.428023 + 0.903768i \(0.359210\pi\)
\(252\) −2.11803 + 1.53884i −0.133424 + 0.0969379i
\(253\) 5.00000 15.3884i 0.314347 0.967462i
\(254\) 4.20820 12.9515i 0.264046 0.812651i
\(255\) −2.23607 + 1.62460i −0.140028 + 0.101736i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) −22.0000 −1.37232 −0.686161 0.727450i \(-0.740706\pi\)
−0.686161 + 0.727450i \(0.740706\pi\)
\(258\) 2.38197 + 7.33094i 0.148295 + 0.456404i
\(259\) −16.9443 12.3107i −1.05287 0.764952i
\(260\) 4.47214 13.7638i 0.277350 0.853596i
\(261\) −6.85410 + 4.97980i −0.424258 + 0.308242i
\(262\) 14.4721 + 10.5146i 0.894092 + 0.649596i
\(263\) 9.47214 + 6.88191i 0.584077 + 0.424357i 0.840192 0.542290i \(-0.182442\pi\)
−0.256115 + 0.966646i \(0.582442\pi\)
\(264\) 2.92705 2.12663i 0.180148 0.130885i
\(265\) 1.44427 + 4.44501i 0.0887209 + 0.273055i
\(266\) 12.0902 + 8.78402i 0.741296 + 0.538583i
\(267\) −1.09017 3.35520i −0.0667173 0.205335i
\(268\) −1.52786 −0.0933292
\(269\) −2.80902 8.64527i −0.171269 0.527111i 0.828175 0.560470i \(-0.189380\pi\)
−0.999443 + 0.0333590i \(0.989380\pi\)
\(270\) 0.690983 + 2.12663i 0.0420519 + 0.129422i
\(271\) −5.57295 + 17.1518i −0.338533 + 1.04190i 0.626423 + 0.779483i \(0.284518\pi\)
−0.964956 + 0.262413i \(0.915482\pi\)
\(272\) 0.381966 1.17557i 0.0231601 0.0712794i
\(273\) −13.7082 + 9.95959i −0.829658 + 0.602782i
\(274\) −12.1803 −0.735841
\(275\) 5.59017 + 17.2048i 0.337100 + 1.03749i
\(276\) −4.47214 −0.269191
\(277\) −13.7082 + 9.95959i −0.823646 + 0.598414i −0.917755 0.397148i \(-0.870000\pi\)
0.0941084 + 0.995562i \(0.470000\pi\)
\(278\) 3.23607 9.95959i 0.194086 0.597337i
\(279\) 2.04508 6.29412i 0.122436 0.376819i
\(280\) 4.73607 + 3.44095i 0.283034 + 0.205636i
\(281\) 1.81966 + 5.60034i 0.108552 + 0.334088i 0.990548 0.137169i \(-0.0438004\pi\)
−0.881996 + 0.471257i \(0.843800\pi\)
\(282\) −1.70820 −0.101722
\(283\) 1.41641 + 4.35926i 0.0841967 + 0.259131i 0.984288 0.176571i \(-0.0565004\pi\)
−0.900091 + 0.435701i \(0.856500\pi\)
\(284\) −4.47214 3.24920i −0.265372 0.192804i
\(285\) 10.3262 7.50245i 0.611674 0.444407i
\(286\) 18.9443 13.7638i 1.12020 0.813872i
\(287\) −12.0902 8.78402i −0.713660 0.518504i
\(288\) −0.809017 0.587785i −0.0476718 0.0346356i
\(289\) 12.5172 9.09429i 0.736307 0.534958i
\(290\) 15.3262 + 11.1352i 0.899988 + 0.653879i
\(291\) −2.73607 1.98787i −0.160391 0.116531i
\(292\) 1.09017 + 3.35520i 0.0637974 + 0.196348i
\(293\) −22.0902 −1.29052 −0.645261 0.763962i \(-0.723251\pi\)
−0.645261 + 0.763962i \(0.723251\pi\)
\(294\) 0.0450850 + 0.138757i 0.00262941 + 0.00809249i
\(295\) 8.09017 0.471028
\(296\) 2.47214 7.60845i 0.143690 0.442232i
\(297\) −1.11803 + 3.44095i −0.0648749 + 0.199664i
\(298\) −17.8713 + 12.9843i −1.03526 + 0.752159i
\(299\) −28.9443 −1.67389
\(300\) 4.04508 2.93893i 0.233543 0.169679i
\(301\) −20.1803 −1.16318
\(302\) −14.8262 + 10.7719i −0.853154 + 0.619853i
\(303\) −1.35410 + 4.16750i −0.0777911 + 0.239416i
\(304\) −1.76393 + 5.42882i −0.101168 + 0.311364i
\(305\) −1.90983 + 5.87785i −0.109357 + 0.336565i
\(306\) 0.381966 + 1.17557i 0.0218355 + 0.0672029i
\(307\) 10.0000 0.570730 0.285365 0.958419i \(-0.407885\pi\)
0.285365 + 0.958419i \(0.407885\pi\)
\(308\) 2.92705 + 9.00854i 0.166784 + 0.513309i
\(309\) 11.5902 + 8.42075i 0.659342 + 0.479040i
\(310\) −14.7984 −0.840491
\(311\) 0.854102 0.620541i 0.0484317 0.0351877i −0.563306 0.826248i \(-0.690471\pi\)
0.611738 + 0.791061i \(0.290471\pi\)
\(312\) −5.23607 3.80423i −0.296434 0.215372i
\(313\) 13.1631 + 9.56357i 0.744023 + 0.540565i 0.893969 0.448130i \(-0.147910\pi\)
−0.149945 + 0.988694i \(0.547910\pi\)
\(314\) −7.00000 + 5.08580i −0.395033 + 0.287008i
\(315\) −5.85410 −0.329841
\(316\) 4.54508 + 3.30220i 0.255681 + 0.185763i
\(317\) −6.35410 19.5559i −0.356882 1.09837i −0.954910 0.296895i \(-0.904049\pi\)
0.598028 0.801475i \(-0.295951\pi\)
\(318\) 2.09017 0.117211
\(319\) 9.47214 + 29.1522i 0.530338 + 1.63221i
\(320\) −0.690983 + 2.12663i −0.0386271 + 0.118882i
\(321\) 3.59017 11.0494i 0.200384 0.616718i
\(322\) 3.61803 11.1352i 0.201625 0.620538i
\(323\) 5.70820 4.14725i 0.317613 0.230759i
\(324\) 1.00000 0.0555556
\(325\) 26.1803 19.0211i 1.45222 1.05510i
\(326\) −0.472136 −0.0261492
\(327\) 13.9443 10.1311i 0.771120 0.560251i
\(328\) 1.76393 5.42882i 0.0973969 0.299757i
\(329\) 1.38197 4.25325i 0.0761903 0.234489i
\(330\) 8.09017 0.445349
\(331\) −5.56231 17.1190i −0.305732 0.940946i −0.979403 0.201915i \(-0.935284\pi\)
0.673671 0.739031i \(-0.264716\pi\)
\(332\) 2.14590 0.117771
\(333\) 2.47214 + 7.60845i 0.135472 + 0.416941i
\(334\) −9.47214 6.88191i −0.518292 0.376561i
\(335\) −2.76393 2.00811i −0.151010 0.109715i
\(336\) 2.11803 1.53884i 0.115548 0.0839507i
\(337\) −0.736068 0.534785i −0.0400962 0.0291316i 0.567557 0.823334i \(-0.307889\pi\)
−0.607653 + 0.794203i \(0.707889\pi\)
\(338\) −23.3713 16.9803i −1.27123 0.923604i
\(339\) −15.5623 + 11.3067i −0.845228 + 0.614094i
\(340\) 2.23607 1.62460i 0.121268 0.0881062i
\(341\) −19.3713 14.0741i −1.04902 0.762155i
\(342\) −1.76393 5.42882i −0.0953825 0.293557i
\(343\) −18.7082 −1.01015
\(344\) −2.38197 7.33094i −0.128427 0.395258i
\(345\) −8.09017 5.87785i −0.435560 0.316453i
\(346\) 1.57295 4.84104i 0.0845623 0.260256i
\(347\) 6.35410 19.5559i 0.341106 1.04982i −0.622529 0.782596i \(-0.713895\pi\)
0.963636 0.267220i \(-0.0861051\pi\)
\(348\) 6.85410 4.97980i 0.367418 0.266945i
\(349\) −27.8885 −1.49284 −0.746420 0.665475i \(-0.768229\pi\)
−0.746420 + 0.665475i \(0.768229\pi\)
\(350\) 4.04508 + 12.4495i 0.216219 + 0.665453i
\(351\) 6.47214 0.345457
\(352\) −2.92705 + 2.12663i −0.156012 + 0.113350i
\(353\) −4.09017 + 12.5882i −0.217698 + 0.670005i 0.781253 + 0.624214i \(0.214581\pi\)
−0.998951 + 0.0457907i \(0.985419\pi\)
\(354\) 1.11803 3.44095i 0.0594228 0.182885i
\(355\) −3.81966 11.7557i −0.202727 0.623928i
\(356\) 1.09017 + 3.35520i 0.0577789 + 0.177825i
\(357\) −3.23607 −0.171271
\(358\) 3.04508 + 9.37181i 0.160938 + 0.495315i
\(359\) −17.9443 13.0373i −0.947062 0.688081i 0.00304782 0.999995i \(-0.499030\pi\)
−0.950110 + 0.311914i \(0.899030\pi\)
\(360\) −0.690983 2.12663i −0.0364180 0.112083i
\(361\) −10.9894 + 7.98424i −0.578387 + 0.420223i
\(362\) 5.38197 + 3.91023i 0.282870 + 0.205517i
\(363\) 1.69098 + 1.22857i 0.0887536 + 0.0644833i
\(364\) 13.7082 9.95959i 0.718505 0.522025i
\(365\) −2.43769 + 7.50245i −0.127595 + 0.392696i
\(366\) 2.23607 + 1.62460i 0.116881 + 0.0849191i
\(367\) −9.46149 29.1195i −0.493886 1.52002i −0.818686 0.574242i \(-0.805297\pi\)
0.324800 0.945783i \(-0.394703\pi\)
\(368\) 4.47214 0.233126
\(369\) 1.76393 + 5.42882i 0.0918266 + 0.282613i
\(370\) 14.4721 10.5146i 0.752371 0.546629i
\(371\) −1.69098 + 5.20431i −0.0877915 + 0.270194i
\(372\) −2.04508 + 6.29412i −0.106033 + 0.326335i
\(373\) 9.32624 6.77591i 0.482894 0.350843i −0.319551 0.947569i \(-0.603532\pi\)
0.802445 + 0.596726i \(0.203532\pi\)
\(374\) 4.47214 0.231249
\(375\) 11.1803 0.577350
\(376\) 1.70820 0.0880939
\(377\) 44.3607 32.2299i 2.28469 1.65993i
\(378\) −0.809017 + 2.48990i −0.0416113 + 0.128067i
\(379\) −6.23607 + 19.1926i −0.320325 + 0.985860i 0.653181 + 0.757201i \(0.273434\pi\)
−0.973507 + 0.228658i \(0.926566\pi\)
\(380\) −10.3262 + 7.50245i −0.529725 + 0.384868i
\(381\) −4.20820 12.9515i −0.215593 0.663526i
\(382\) 4.29180 0.219587
\(383\) −6.18034 19.0211i −0.315801 0.971934i −0.975424 0.220338i \(-0.929284\pi\)
0.659623 0.751597i \(-0.270716\pi\)
\(384\) 0.809017 + 0.587785i 0.0412850 + 0.0299953i
\(385\) −6.54508 + 20.1437i −0.333568 + 1.02662i
\(386\) −14.4443 + 10.4944i −0.735194 + 0.534150i
\(387\) 6.23607 + 4.53077i 0.316997 + 0.230312i
\(388\) 2.73607 + 1.98787i 0.138903 + 0.100919i
\(389\) 10.0172 7.27794i 0.507893 0.369006i −0.304131 0.952630i \(-0.598366\pi\)
0.812024 + 0.583624i \(0.198366\pi\)
\(390\) −4.47214 13.7638i −0.226455 0.696958i
\(391\) −4.47214 3.24920i −0.226166 0.164319i
\(392\) −0.0450850 0.138757i −0.00227713 0.00700830i
\(393\) 17.8885 0.902358
\(394\) −5.28115 16.2537i −0.266061 0.818850i
\(395\) 3.88197 + 11.9475i 0.195323 + 0.601142i
\(396\) 1.11803 3.44095i 0.0561833 0.172914i
\(397\) −9.50658 + 29.2582i −0.477121 + 1.46843i 0.365954 + 0.930633i \(0.380743\pi\)
−0.843075 + 0.537796i \(0.819257\pi\)
\(398\) −15.7812 + 11.4657i −0.791038 + 0.574723i
\(399\) 14.9443 0.748149
\(400\) −4.04508 + 2.93893i −0.202254 + 0.146946i
\(401\) 25.7082 1.28381 0.641903 0.766786i \(-0.278145\pi\)
0.641903 + 0.766786i \(0.278145\pi\)
\(402\) −1.23607 + 0.898056i −0.0616495 + 0.0447910i
\(403\) −13.2361 + 40.7364i −0.659336 + 2.02923i
\(404\) 1.35410 4.16750i 0.0673691 0.207341i
\(405\) 1.80902 + 1.31433i 0.0898908 + 0.0653095i
\(406\) 6.85410 + 21.0948i 0.340163 + 1.04692i
\(407\) 28.9443 1.43471
\(408\) −0.381966 1.17557i −0.0189101 0.0581994i
\(409\) −4.69098 3.40820i −0.231954 0.168525i 0.465737 0.884923i \(-0.345789\pi\)
−0.697691 + 0.716399i \(0.745789\pi\)
\(410\) 10.3262 7.50245i 0.509977 0.370520i
\(411\) −9.85410 + 7.15942i −0.486067 + 0.353148i
\(412\) −11.5902 8.42075i −0.571007 0.414861i
\(413\) 7.66312 + 5.56758i 0.377077 + 0.273963i
\(414\) −3.61803 + 2.62866i −0.177817 + 0.129191i
\(415\) 3.88197 + 2.82041i 0.190558 + 0.138449i
\(416\) 5.23607 + 3.80423i 0.256719 + 0.186518i
\(417\) −3.23607 9.95959i −0.158471 0.487723i
\(418\) −20.6525 −1.01015
\(419\) −0.954915 2.93893i −0.0466507 0.143576i 0.925018 0.379923i \(-0.124050\pi\)
−0.971669 + 0.236347i \(0.924050\pi\)
\(420\) 5.85410 0.285651
\(421\) −7.03444 + 21.6498i −0.342838 + 1.05515i 0.619893 + 0.784686i \(0.287176\pi\)
−0.962731 + 0.270460i \(0.912824\pi\)
\(422\) −1.05573 + 3.24920i −0.0513920 + 0.158168i
\(423\) −1.38197 + 1.00406i −0.0671935 + 0.0488189i
\(424\) −2.09017 −0.101508
\(425\) 6.18034 0.299791
\(426\) −5.52786 −0.267826
\(427\) −5.85410 + 4.25325i −0.283300 + 0.205829i
\(428\) −3.59017 + 11.0494i −0.173537 + 0.534093i
\(429\) 7.23607 22.2703i 0.349361 1.07522i
\(430\) 5.32624 16.3925i 0.256854 0.790515i
\(431\) 5.20163 + 16.0090i 0.250554 + 0.771124i 0.994673 + 0.103078i \(0.0328692\pi\)
−0.744120 + 0.668046i \(0.767131\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 4.79180 + 14.7476i 0.230279 + 0.708726i 0.997713 + 0.0675976i \(0.0215334\pi\)
−0.767434 + 0.641128i \(0.778467\pi\)
\(434\) −14.0172 10.1841i −0.672848 0.488853i
\(435\) 18.9443 0.908308
\(436\) −13.9443 + 10.1311i −0.667810 + 0.485192i
\(437\) 20.6525 + 15.0049i 0.987942 + 0.717782i
\(438\) 2.85410 + 2.07363i 0.136374 + 0.0990817i
\(439\) 19.0172 13.8168i 0.907642 0.659441i −0.0327751 0.999463i \(-0.510434\pi\)
0.940418 + 0.340022i \(0.110434\pi\)
\(440\) −8.09017 −0.385684
\(441\) 0.118034 + 0.0857567i 0.00562067 + 0.00408365i
\(442\) −2.47214 7.60845i −0.117588 0.361897i
\(443\) 16.6180 0.789547 0.394773 0.918779i \(-0.370823\pi\)
0.394773 + 0.918779i \(0.370823\pi\)
\(444\) −2.47214 7.60845i −0.117322 0.361081i
\(445\) −2.43769 + 7.50245i −0.115558 + 0.355650i
\(446\) −2.50000 + 7.69421i −0.118378 + 0.364331i
\(447\) −6.82624 + 21.0090i −0.322870 + 0.993692i
\(448\) −2.11803 + 1.53884i −0.100068 + 0.0727034i
\(449\) −27.7082 −1.30763 −0.653815 0.756654i \(-0.726833\pi\)
−0.653815 + 0.756654i \(0.726833\pi\)
\(450\) 1.54508 4.75528i 0.0728360 0.224166i
\(451\) 20.6525 0.972487
\(452\) 15.5623 11.3067i 0.731989 0.531821i
\(453\) −5.66312 + 17.4293i −0.266077 + 0.818899i
\(454\) −6.88197 + 21.1805i −0.322987 + 0.994051i
\(455\) 37.8885 1.77624
\(456\) 1.76393 + 5.42882i 0.0826037 + 0.254228i
\(457\) −4.09017 −0.191330 −0.0956650 0.995414i \(-0.530498\pi\)
−0.0956650 + 0.995414i \(0.530498\pi\)
\(458\) −1.70820 5.25731i −0.0798191 0.245658i
\(459\) 1.00000 + 0.726543i 0.0466760 + 0.0339121i
\(460\) 8.09017 + 5.87785i 0.377206 + 0.274056i
\(461\) −6.11803 + 4.44501i −0.284945 + 0.207025i −0.721072 0.692861i \(-0.756350\pi\)
0.436126 + 0.899885i \(0.356350\pi\)
\(462\) 7.66312 + 5.56758i 0.356521 + 0.259027i
\(463\) 18.4721 + 13.4208i 0.858473 + 0.623717i 0.927469 0.373900i \(-0.121980\pi\)
−0.0689961 + 0.997617i \(0.521980\pi\)
\(464\) −6.85410 + 4.97980i −0.318194 + 0.231181i
\(465\) −11.9721 + 8.69827i −0.555195 + 0.403372i
\(466\) −15.0902 10.9637i −0.699039 0.507881i
\(467\) 3.29837 + 10.1514i 0.152631 + 0.469749i 0.997913 0.0645710i \(-0.0205679\pi\)
−0.845283 + 0.534320i \(0.820568\pi\)
\(468\) −6.47214 −0.299175
\(469\) −1.23607 3.80423i −0.0570763 0.175663i
\(470\) 3.09017 + 2.24514i 0.142539 + 0.103561i
\(471\) −2.67376 + 8.22899i −0.123200 + 0.379172i
\(472\) −1.11803 + 3.44095i −0.0514617 + 0.158383i
\(473\) 22.5623 16.3925i 1.03742 0.753727i
\(474\) 5.61803 0.258045
\(475\) −28.5410 −1.30955
\(476\) 3.23607 0.148325
\(477\) 1.69098 1.22857i 0.0774248 0.0562524i
\(478\) 3.79837 11.6902i 0.173734 0.534697i
\(479\) −9.00000 + 27.6992i −0.411220 + 1.26561i 0.504368 + 0.863489i \(0.331726\pi\)
−0.915588 + 0.402117i \(0.868274\pi\)
\(480\) 0.690983 + 2.12663i 0.0315389 + 0.0970668i
\(481\) −16.0000 49.2429i −0.729537 2.24528i
\(482\) 9.56231 0.435551
\(483\) −3.61803 11.1352i −0.164626 0.506667i
\(484\) −1.69098 1.22857i −0.0768629 0.0558441i
\(485\) 2.33688 + 7.19218i 0.106112 + 0.326580i
\(486\) 0.809017 0.587785i 0.0366978 0.0266625i
\(487\) −14.3992 10.4616i −0.652489 0.474061i 0.211629 0.977350i \(-0.432123\pi\)
−0.864118 + 0.503289i \(0.832123\pi\)
\(488\) −2.23607 1.62460i −0.101222 0.0735421i
\(489\) −0.381966 + 0.277515i −0.0172731 + 0.0125496i
\(490\) 0.100813 0.310271i 0.00455427 0.0140166i
\(491\) 20.4443 + 14.8536i 0.922637 + 0.670335i 0.944179 0.329433i \(-0.106858\pi\)
−0.0215419 + 0.999768i \(0.506858\pi\)
\(492\) −1.76393 5.42882i −0.0795242 0.244750i
\(493\) 10.4721 0.471641
\(494\) 11.4164 + 35.1361i 0.513648 + 1.58085i
\(495\) 6.54508 4.75528i 0.294180 0.213734i
\(496\) 2.04508 6.29412i 0.0918270 0.282615i
\(497\) 4.47214 13.7638i 0.200603 0.617392i
\(498\) 1.73607 1.26133i 0.0777951 0.0565214i
\(499\) 35.5967 1.59353 0.796765 0.604290i \(-0.206543\pi\)
0.796765 + 0.604290i \(0.206543\pi\)
\(500\) −11.1803 −0.500000
\(501\) −11.7082 −0.523084
\(502\) −10.9721 + 7.97172i −0.489710 + 0.355795i
\(503\) 7.38197 22.7194i 0.329146 1.01301i −0.640389 0.768051i \(-0.721227\pi\)
0.969534 0.244955i \(-0.0787732\pi\)
\(504\) 0.809017 2.48990i 0.0360365 0.110909i
\(505\) 7.92705 5.75934i 0.352749 0.256287i
\(506\) 5.00000 + 15.3884i 0.222277 + 0.684099i
\(507\) −28.8885 −1.28299
\(508\) 4.20820 + 12.9515i 0.186709 + 0.574631i
\(509\) 14.1631 + 10.2901i 0.627769 + 0.456101i 0.855627 0.517593i \(-0.173172\pi\)
−0.227857 + 0.973694i \(0.573172\pi\)
\(510\) 0.854102 2.62866i 0.0378203 0.116399i
\(511\) −7.47214 + 5.42882i −0.330548 + 0.240157i
\(512\) −0.809017 0.587785i −0.0357538 0.0259767i
\(513\) −4.61803 3.35520i −0.203891 0.148136i
\(514\) 17.7984 12.9313i 0.785053 0.570374i
\(515\) −9.89919 30.4666i −0.436210 1.34252i
\(516\) −6.23607 4.53077i −0.274528 0.199456i
\(517\) 1.90983 + 5.87785i 0.0839942 + 0.258508i
\(518\) 20.9443 0.920238
\(519\) −1.57295 4.84104i −0.0690448 0.212498i
\(520\) 4.47214 + 13.7638i 0.196116 + 0.603583i
\(521\) 4.38197 13.4863i 0.191977 0.590846i −0.808021 0.589153i \(-0.799461\pi\)
0.999999 0.00169226i \(-0.000538663\pi\)
\(522\) 2.61803 8.05748i 0.114588 0.352666i
\(523\) −8.94427 + 6.49839i −0.391106 + 0.284155i −0.765908 0.642950i \(-0.777710\pi\)
0.374803 + 0.927105i \(0.377710\pi\)
\(524\) −17.8885 −0.781465
\(525\) 10.5902 + 7.69421i 0.462193 + 0.335803i
\(526\) −11.7082 −0.510502
\(527\) −6.61803 + 4.80828i −0.288286 + 0.209452i
\(528\) −1.11803 + 3.44095i −0.0486562 + 0.149748i
\(529\) −0.927051 + 2.85317i −0.0403066 + 0.124051i
\(530\) −3.78115 2.74717i −0.164243 0.119329i
\(531\) −1.11803 3.44095i −0.0485185 0.149325i
\(532\) −14.9443 −0.647916
\(533\) −11.4164 35.1361i −0.494500 1.52191i
\(534\) 2.85410 + 2.07363i 0.123509 + 0.0897346i
\(535\) −21.0172 + 15.2699i −0.908654 + 0.660176i
\(536\) 1.23607 0.898056i 0.0533900 0.0387901i
\(537\) 7.97214 + 5.79210i 0.344023 + 0.249947i
\(538\) 7.35410 + 5.34307i 0.317058 + 0.230356i
\(539\) 0.427051 0.310271i 0.0183944 0.0133643i
\(540\) −1.80902 1.31433i −0.0778477 0.0565597i
\(541\) 21.1803 + 15.3884i 0.910614 + 0.661600i 0.941170 0.337933i \(-0.109728\pi\)
−0.0305561 + 0.999533i \(0.509728\pi\)
\(542\) −5.57295 17.1518i −0.239379 0.736732i
\(543\) 6.65248 0.285485
\(544\) 0.381966 + 1.17557i 0.0163767 + 0.0504022i
\(545\) −38.5410 −1.65092
\(546\) 5.23607 16.1150i 0.224083 0.689657i
\(547\) 3.00000 9.23305i 0.128271 0.394777i −0.866212 0.499677i \(-0.833452\pi\)
0.994483 + 0.104900i \(0.0334522\pi\)
\(548\) 9.85410 7.15942i 0.420946 0.305835i
\(549\) 2.76393 0.117962
\(550\) −14.6353 10.6331i −0.624049 0.453398i
\(551\) −48.3607 −2.06023
\(552\) 3.61803 2.62866i 0.153994 0.111883i
\(553\) −4.54508 + 13.9883i −0.193277 + 0.594844i
\(554\) 5.23607 16.1150i 0.222459 0.684659i
\(555\) 5.52786 17.0130i 0.234645 0.722162i
\(556\) 3.23607 + 9.95959i 0.137240 + 0.422381i
\(557\) −18.3262 −0.776508 −0.388254 0.921552i \(-0.626922\pi\)
−0.388254 + 0.921552i \(0.626922\pi\)
\(558\) 2.04508 + 6.29412i 0.0865754 + 0.266452i
\(559\) −40.3607 29.3238i −1.70707 1.24026i
\(560\) −5.85410 −0.247381
\(561\) 3.61803 2.62866i 0.152754 0.110982i
\(562\) −4.76393 3.46120i −0.200954 0.146002i
\(563\) −17.2082 12.5025i −0.725239 0.526917i 0.162815 0.986657i \(-0.447943\pi\)
−0.888054 + 0.459739i \(0.847943\pi\)
\(564\) 1.38197 1.00406i 0.0581913 0.0422784i
\(565\) 43.0132 1.80958
\(566\) −3.70820 2.69417i −0.155867 0.113244i
\(567\) 0.809017 + 2.48990i 0.0339755 + 0.104566i
\(568\) 5.52786 0.231944
\(569\) −8.58359 26.4176i −0.359843 1.10748i −0.953148 0.302505i \(-0.902177\pi\)
0.593305 0.804978i \(-0.297823\pi\)
\(570\) −3.94427 + 12.1392i −0.165207 + 0.508456i
\(571\) 2.43769 7.50245i 0.102014 0.313968i −0.887004 0.461762i \(-0.847217\pi\)
0.989018 + 0.147794i \(0.0472174\pi\)
\(572\) −7.23607 + 22.2703i −0.302555 + 0.931169i
\(573\) 3.47214 2.52265i 0.145051 0.105385i
\(574\) 14.9443 0.623762
\(575\) 6.90983 + 21.2663i 0.288160 + 0.886865i
\(576\) 1.00000 0.0416667
\(577\) −7.26393 + 5.27756i −0.302401 + 0.219708i −0.728629 0.684908i \(-0.759842\pi\)
0.426228 + 0.904616i \(0.359842\pi\)
\(578\) −4.78115 + 14.7149i −0.198870 + 0.612058i
\(579\) −5.51722 + 16.9803i −0.229288 + 0.705676i
\(580\) −18.9443 −0.786618
\(581\) 1.73607 + 5.34307i 0.0720242 + 0.221668i
\(582\) 3.38197 0.140187
\(583\) −2.33688 7.19218i −0.0967837 0.297870i
\(584\) −2.85410 2.07363i −0.118104 0.0858073i
\(585\) −11.7082 8.50651i −0.484075 0.351701i
\(586\) 17.8713 12.9843i 0.738258 0.536376i
\(587\) 0.781153 + 0.567541i 0.0322416 + 0.0234249i 0.603789 0.797144i \(-0.293657\pi\)
−0.571548 + 0.820569i \(0.693657\pi\)
\(588\) −0.118034 0.0857567i −0.00486764 0.00353655i
\(589\) 30.5623 22.2048i 1.25930 0.914933i
\(590\) −6.54508 + 4.75528i −0.269457 + 0.195772i
\(591\) −13.8262 10.0453i −0.568735 0.413210i
\(592\) 2.47214 + 7.60845i 0.101604 + 0.312705i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) −1.11803 3.44095i −0.0458735 0.141184i
\(595\) 5.85410 + 4.25325i 0.239995 + 0.174366i
\(596\) 6.82624 21.0090i 0.279614 0.860562i
\(597\) −6.02786 + 18.5519i −0.246704 + 0.759277i
\(598\) 23.4164 17.0130i 0.957568 0.695714i
\(599\) 0.472136 0.0192910 0.00964548 0.999953i \(-0.496930\pi\)
0.00964548 + 0.999953i \(0.496930\pi\)
\(600\) −1.54508 + 4.75528i −0.0630778 + 0.194134i
\(601\) −7.72949 −0.315292 −0.157646 0.987496i \(-0.550391\pi\)
−0.157646 + 0.987496i \(0.550391\pi\)
\(602\) 16.3262 11.8617i 0.665408 0.483447i
\(603\) −0.472136 + 1.45309i −0.0192269 + 0.0591742i
\(604\) 5.66312 17.4293i 0.230429 0.709188i
\(605\) −1.44427 4.44501i −0.0587180 0.180715i
\(606\) −1.35410 4.16750i −0.0550066 0.169293i
\(607\) 6.56231 0.266356 0.133178 0.991092i \(-0.457482\pi\)
0.133178 + 0.991092i \(0.457482\pi\)
\(608\) −1.76393 5.42882i −0.0715369 0.220168i
\(609\) 17.9443 + 13.0373i 0.727139 + 0.528297i
\(610\) −1.90983 5.87785i −0.0773268 0.237987i
\(611\) 8.94427 6.49839i 0.361847 0.262897i
\(612\) −1.00000 0.726543i −0.0404226 0.0293687i
\(613\) −39.0344 28.3602i −1.57659 1.14546i −0.920481 0.390788i \(-0.872203\pi\)
−0.656105 0.754669i \(-0.727797\pi\)
\(614\) −8.09017 + 5.87785i −0.326493 + 0.237211i
\(615\) 3.94427 12.1392i 0.159048 0.489501i
\(616\) −7.66312 5.56758i −0.308756 0.224324i
\(617\) 0.652476 + 2.00811i 0.0262677 + 0.0808436i 0.963331 0.268316i \(-0.0864671\pi\)
−0.937063 + 0.349160i \(0.886467\pi\)
\(618\) −14.3262 −0.576286
\(619\) −2.90983 8.95554i −0.116956 0.359953i 0.875394 0.483410i \(-0.160602\pi\)
−0.992350 + 0.123457i \(0.960602\pi\)
\(620\) 11.9721 8.69827i 0.480813 0.349331i
\(621\) −1.38197 + 4.25325i −0.0554564 + 0.170677i
\(622\) −0.326238 + 1.00406i −0.0130809 + 0.0402590i
\(623\) −7.47214 + 5.42882i −0.299365 + 0.217501i
\(624\) 6.47214 0.259093
\(625\) −20.2254 14.6946i −0.809017 0.587785i
\(626\) −16.2705 −0.650300
\(627\) −16.7082 + 12.1392i −0.667261 + 0.484794i
\(628\) 2.67376 8.22899i 0.106695 0.328373i
\(629\) 3.05573 9.40456i 0.121840 0.374985i
\(630\) 4.73607 3.44095i 0.188689 0.137091i
\(631\) 14.3607 + 44.1976i 0.571690 + 1.75948i 0.647184 + 0.762334i \(0.275946\pi\)
−0.0754947 + 0.997146i \(0.524054\pi\)
\(632\) −5.61803 −0.223473
\(633\) 1.05573 + 3.24920i 0.0419614 + 0.129144i
\(634\) 16.6353 + 12.0862i 0.660670 + 0.480005i
\(635\) −9.40983 + 28.9605i −0.373418 + 1.14926i
\(636\) −1.69098 + 1.22857i −0.0670518 + 0.0487160i
\(637\) −0.763932 0.555029i −0.0302681 0.0219911i
\(638\) −24.7984 18.0171i −0.981777 0.713303i
\(639\) −4.47214 + 3.24920i −0.176915 + 0.128536i
\(640\) −0.690983 2.12663i −0.0273135 0.0840623i
\(641\) 11.1803 + 8.12299i 0.441597 + 0.320839i 0.786269 0.617884i \(-0.212010\pi\)
−0.344672 + 0.938723i \(0.612010\pi\)
\(642\) 3.59017 + 11.0494i 0.141693 + 0.436085i
\(643\) 21.8885 0.863200 0.431600 0.902065i \(-0.357949\pi\)
0.431600 + 0.902065i \(0.357949\pi\)
\(644\) 3.61803 + 11.1352i 0.142571 + 0.438787i
\(645\) −5.32624 16.3925i −0.209720 0.645453i
\(646\) −2.18034 + 6.71040i −0.0857843 + 0.264017i
\(647\) −7.09017 + 21.8213i −0.278743 + 0.857884i 0.709461 + 0.704744i \(0.248938\pi\)
−0.988205 + 0.153139i \(0.951062\pi\)
\(648\) −0.809017 + 0.587785i −0.0317812 + 0.0230904i
\(649\) −13.0902 −0.513834
\(650\) −10.0000 + 30.7768i −0.392232 + 1.20717i
\(651\) −17.3262 −0.679069
\(652\) 0.381966 0.277515i 0.0149589 0.0108683i
\(653\) −1.19098 + 3.66547i −0.0466068 + 0.143441i −0.971652 0.236417i \(-0.924027\pi\)
0.925045 + 0.379858i \(0.124027\pi\)
\(654\) −5.32624 + 16.3925i −0.208272 + 0.640996i
\(655\) −32.3607 23.5114i −1.26444 0.918667i
\(656\) 1.76393 + 5.42882i 0.0688700 + 0.211960i
\(657\) 3.52786 0.137635
\(658\) 1.38197 + 4.25325i 0.0538746 + 0.165809i
\(659\) 16.6803 + 12.1190i 0.649774 + 0.472088i 0.863194 0.504872i \(-0.168460\pi\)
−0.213420 + 0.976960i \(0.568460\pi\)
\(660\) −6.54508 + 4.75528i −0.254767 + 0.185099i
\(661\) 24.6525 17.9111i 0.958870 0.696660i 0.00598211 0.999982i \(-0.498096\pi\)
0.952888 + 0.303322i \(0.0980958\pi\)
\(662\) 14.5623 + 10.5801i 0.565980 + 0.411209i
\(663\) −6.47214 4.70228i −0.251357 0.182622i
\(664\) −1.73607 + 1.26133i −0.0673725 + 0.0489490i
\(665\) −27.0344 19.6417i −1.04835 0.761671i
\(666\) −6.47214 4.70228i −0.250790 0.182210i
\(667\) 11.7082 + 36.0341i 0.453343 + 1.39525i
\(668\) 11.7082 0.453004
\(669\) 2.50000 + 7.69421i 0.0966556 + 0.297475i
\(670\) 3.41641 0.131987
\(671\) 3.09017 9.51057i 0.119295 0.367151i
\(672\) −0.809017 + 2.48990i −0.0312085 + 0.0960499i
\(673\) 25.4443 18.4863i 0.980805 0.712596i 0.0229163 0.999737i \(-0.492705\pi\)
0.957888 + 0.287141i \(0.0927049\pi\)
\(674\) 0.909830 0.0350453
\(675\) −1.54508 4.75528i −0.0594703 0.183031i
\(676\) 28.8885 1.11110
\(677\) −23.5344 + 17.0988i −0.904502 + 0.657159i −0.939618 0.342224i \(-0.888820\pi\)
0.0351163 + 0.999383i \(0.488820\pi\)
\(678\) 5.94427 18.2946i 0.228288 0.702599i
\(679\) −2.73607 + 8.42075i −0.105001 + 0.323159i
\(680\) −0.854102 + 2.62866i −0.0327533 + 0.100804i
\(681\) 6.88197 + 21.1805i 0.263718 + 0.811639i
\(682\) 23.9443 0.916874
\(683\) 10.3541 + 31.8666i 0.396189 + 1.21934i 0.928032 + 0.372501i \(0.121500\pi\)
−0.531843 + 0.846843i \(0.678500\pi\)
\(684\) 4.61803 + 3.35520i 0.176575 + 0.128289i
\(685\) 27.2361 1.04064
\(686\) 15.1353 10.9964i 0.577867 0.419845i
\(687\) −4.47214 3.24920i −0.170623 0.123965i
\(688\) 6.23607 + 4.53077i 0.237748 + 0.172734i
\(689\) −10.9443 + 7.95148i −0.416944 + 0.302927i
\(690\) 10.0000 0.380693
\(691\) −9.09017 6.60440i −0.345806 0.251243i 0.401301 0.915946i \(-0.368558\pi\)
−0.747108 + 0.664703i \(0.768558\pi\)
\(692\) 1.57295 + 4.84104i 0.0597945 + 0.184029i
\(693\) 9.47214 0.359817
\(694\) 6.35410 + 19.5559i 0.241198 + 0.742332i
\(695\) −7.23607 + 22.2703i −0.274480 + 0.844762i
\(696\) −2.61803 + 8.05748i −0.0992363 + 0.305418i
\(697\) 2.18034 6.71040i 0.0825863 0.254174i
\(698\) 22.5623 16.3925i 0.853996 0.620464i
\(699\) −18.6525 −0.705501
\(700\) −10.5902 7.69421i −0.400271 0.290814i
\(701\) 40.8328 1.54223 0.771117 0.636693i \(-0.219698\pi\)
0.771117 + 0.636693i \(0.219698\pi\)
\(702\) −5.23607 + 3.80423i −0.197623 + 0.143581i
\(703\) −14.1115 + 43.4306i −0.532224 + 1.63802i
\(704\) 1.11803 3.44095i 0.0421375 0.129686i
\(705\) 3.81966 0.143857
\(706\) −4.09017 12.5882i −0.153936 0.473765i
\(707\) 11.4721 0.431454
\(708\) 1.11803 + 3.44095i 0.0420183 + 0.129319i
\(709\) 35.3607 + 25.6910i 1.32800 + 0.964847i 0.999795 + 0.0202400i \(0.00644302\pi\)
0.328203 + 0.944607i \(0.393557\pi\)
\(710\) 10.0000 + 7.26543i 0.375293 + 0.272667i
\(711\) 4.54508 3.30220i 0.170454 0.123842i
\(712\) −2.85410 2.07363i −0.106962 0.0777124i
\(713\) −23.9443 17.3965i −0.896720 0.651505i
\(714\) 2.61803 1.90211i 0.0979775 0.0711848i
\(715\) −42.3607 + 30.7768i −1.58420 + 1.15099i
\(716\) −7.97214 5.79210i −0.297933 0.216461i
\(717\) −3.79837 11.6902i −0.141853 0.436578i
\(718\) 22.1803 0.827763
\(719\) −5.12461 15.7719i −0.191116 0.588194i −1.00000 0.000225882i \(-0.999928\pi\)
0.808884 0.587968i \(-0.200072\pi\)
\(720\) 1.80902 + 1.31433i 0.0674181 + 0.0489821i
\(721\) 11.5902 35.6709i 0.431640 1.32845i
\(722\) 4.19756 12.9188i 0.156217 0.480787i
\(723\) 7.73607 5.62058i 0.287707 0.209032i
\(724\) −6.65248 −0.247237
\(725\) −34.2705 24.8990i −1.27277 0.924725i
\(726\) −2.09017 −0.0775735
\(727\) 6.94427 5.04531i 0.257549 0.187120i −0.451517 0.892263i \(-0.649117\pi\)
0.709066 + 0.705142i \(0.249117\pi\)
\(728\) −5.23607 + 16.1150i −0.194062 + 0.597260i
\(729\) 0.309017 0.951057i 0.0114451 0.0352243i
\(730\) −2.43769 7.50245i −0.0902231 0.277678i
\(731\) −2.94427 9.06154i −0.108898 0.335153i
\(732\) −2.76393 −0.102158
\(733\) −11.0902 34.1320i −0.409625 1.26070i −0.916971 0.398953i \(-0.869374\pi\)
0.507346 0.861742i \(-0.330626\pi\)
\(734\) 24.7705 + 17.9968i 0.914296 + 0.664275i
\(735\) −0.100813 0.310271i −0.00371855 0.0114445i
\(736\) −3.61803 + 2.62866i −0.133363 + 0.0968935i
\(737\) 4.47214 + 3.24920i 0.164733 + 0.119686i
\(738\) −4.61803 3.35520i −0.169992 0.123507i
\(739\) 38.9787 28.3197i 1.43386 1.04176i 0.444573 0.895743i \(-0.353356\pi\)
0.989283 0.146014i \(-0.0466444\pi\)
\(740\) −5.52786 + 17.0130i −0.203208 + 0.625411i
\(741\) 29.8885 + 21.7153i 1.09798 + 0.797731i
\(742\) −1.69098 5.20431i −0.0620779 0.191056i
\(743\) −39.0132 −1.43125 −0.715627 0.698483i \(-0.753859\pi\)
−0.715627 + 0.698483i \(0.753859\pi\)
\(744\) −2.04508 6.29412i −0.0749765 0.230754i
\(745\) 39.9615 29.0337i 1.46408 1.06371i
\(746\) −3.56231 + 10.9637i −0.130425 + 0.401408i
\(747\) 0.663119 2.04087i 0.0242623 0.0746715i
\(748\) −3.61803 + 2.62866i −0.132288 + 0.0961132i
\(749\) −30.4164 −1.11139
\(750\) −9.04508 + 6.57164i −0.330280 + 0.239962i
\(751\) 24.7984 0.904906 0.452453 0.891788i \(-0.350549\pi\)
0.452453 + 0.891788i \(0.350549\pi\)
\(752\) −1.38197 + 1.00406i −0.0503951 + 0.0366142i
\(753\) −4.19098 + 12.8985i −0.152728 + 0.470048i
\(754\) −16.9443 + 52.1491i −0.617074 + 1.89916i
\(755\) 33.1525 24.0867i 1.20654 0.876604i
\(756\) −0.809017 2.48990i −0.0294237 0.0905567i
\(757\) −17.1246 −0.622405 −0.311202 0.950344i \(-0.600732\pi\)
−0.311202 + 0.950344i \(0.600732\pi\)
\(758\) −6.23607 19.1926i −0.226504 0.697108i
\(759\) 13.0902 + 9.51057i 0.475143 + 0.345212i
\(760\) 3.94427 12.1392i 0.143074 0.440336i
\(761\) −1.14590 + 0.832544i −0.0415388 + 0.0301797i −0.608361 0.793661i \(-0.708173\pi\)
0.566822 + 0.823840i \(0.308173\pi\)
\(762\) 11.0172 + 8.00448i 0.399112 + 0.289972i
\(763\) −36.5066 26.5236i −1.32163 0.960218i
\(764\) −3.47214 + 2.52265i −0.125617 + 0.0912664i
\(765\) −0.854102 2.62866i −0.0308801 0.0950392i
\(766\) 16.1803 + 11.7557i 0.584619 + 0.424751i
\(767\) 7.23607 + 22.2703i 0.261279 + 0.804135i
\(768\) −1.00000 −0.0360844
\(769\) 7.62868 + 23.4787i 0.275097 + 0.846662i 0.989194 + 0.146615i \(0.0468377\pi\)
−0.714097 + 0.700047i \(0.753162\pi\)
\(770\) −6.54508 20.1437i −0.235868 0.725929i
\(771\) 6.79837 20.9232i 0.244837 0.753532i
\(772\) 5.51722 16.9803i 0.198569 0.611133i
\(773\) 0.927051 0.673542i 0.0333437 0.0242256i −0.570989 0.820958i \(-0.693440\pi\)
0.604332 + 0.796732i \(0.293440\pi\)
\(774\) −7.70820 −0.277066
\(775\) 33.0902 1.18863
\(776\) −3.38197 −0.121406
\(777\) 16.9443 12.3107i 0.607872 0.441645i
\(778\) −3.82624 + 11.7759i −0.137177 + 0.422188i
\(779\)