# Properties

 Label 150.2.g.a Level 150 Weight 2 Character orbit 150.g Analytic conductor 1.198 Analytic rank 0 Dimension 4 CM No Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ = $$150 = 2 \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ = $$2$$ Character orbit: $$[\chi]$$ = 150.g (of order $$5$$ and degree $$4$$)

## Newform invariants

 Self dual: No Analytic conductor: $$1.19775603032$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\zeta_{10})$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{10}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{2} + \zeta_{10}^{3} q^{3} -\zeta_{10}^{3} q^{4} + ( 1 + \zeta_{10} - \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{5} -\zeta_{10}^{2} q^{6} + ( 2 + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{7} + \zeta_{10}^{2} q^{8} -\zeta_{10} q^{9} +O(q^{10})$$ $$q + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{2} + \zeta_{10}^{3} q^{3} -\zeta_{10}^{3} q^{4} + ( 1 + \zeta_{10} - \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{5} -\zeta_{10}^{2} q^{6} + ( 2 + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{7} + \zeta_{10}^{2} q^{8} -\zeta_{10} q^{9} + ( -2 + 2 \zeta_{10} + \zeta_{10}^{3} ) q^{10} + ( -3 + 2 \zeta_{10} - 2 \zeta_{10}^{2} + 3 \zeta_{10}^{3} ) q^{11} + \zeta_{10} q^{12} + ( 4 + 4 \zeta_{10}^{2} ) q^{13} + ( -2 + \zeta_{10} - \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{14} + ( 2 \zeta_{10} - \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{15} -\zeta_{10} q^{16} + ( 2 \zeta_{10} - 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{17} + q^{18} + ( -6 \zeta_{10} + 4 \zeta_{10}^{2} - 6 \zeta_{10}^{3} ) q^{19} + ( -2 \zeta_{10} + \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{20} + ( -1 + \zeta_{10} + 2 \zeta_{10}^{3} ) q^{21} + ( 1 - \zeta_{10} - 3 \zeta_{10}^{3} ) q^{22} + ( -2 - 2 \zeta_{10} + 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{23} - q^{24} -5 \zeta_{10}^{3} q^{25} + ( -4 - 4 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{26} + ( 1 - \zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{27} + ( 1 - \zeta_{10} - 2 \zeta_{10}^{3} ) q^{28} + ( 4 - 4 \zeta_{10} - 6 \zeta_{10}^{3} ) q^{29} + ( -2 + \zeta_{10} - 2 \zeta_{10}^{2} ) q^{30} + ( \zeta_{10} + 5 \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{31} + q^{32} + ( -\zeta_{10} - 2 \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{33} + ( -2 + 2 \zeta_{10} - 2 \zeta_{10}^{2} ) q^{34} + ( 4 - \zeta_{10} + \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{35} + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{36} -8 \zeta_{10} q^{37} + ( 6 - 4 \zeta_{10} + 6 \zeta_{10}^{2} ) q^{38} + ( -4 + 4 \zeta_{10}^{3} ) q^{39} + ( 2 - \zeta_{10} + 2 \zeta_{10}^{2} ) q^{40} + ( -6 + 4 \zeta_{10} - 6 \zeta_{10}^{2} ) q^{41} + ( -\zeta_{10} - \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{42} + ( -4 - 6 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{43} + ( \zeta_{10} + 2 \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{44} + ( -1 - 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{45} + ( 4 - 4 \zeta_{10} - 2 \zeta_{10}^{3} ) q^{46} + ( 6 - 6 \zeta_{10} + 2 \zeta_{10}^{3} ) q^{47} + ( 1 - \zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{48} + ( -2 + 3 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{49} + 5 \zeta_{10}^{2} q^{50} + ( -2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{51} + ( 4 - 4 \zeta_{10}^{3} ) q^{52} + ( -5 + 5 \zeta_{10} - \zeta_{10}^{3} ) q^{53} + \zeta_{10}^{3} q^{54} + ( -5 + 5 \zeta_{10} + 5 \zeta_{10}^{3} ) q^{55} + ( \zeta_{10} + \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{56} + ( 2 + 6 \zeta_{10}^{2} - 6 \zeta_{10}^{3} ) q^{57} + ( 4 \zeta_{10} + 2 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{58} + ( 1 + 2 \zeta_{10} + \zeta_{10}^{2} ) q^{59} + ( 1 + 2 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{60} + ( -4 + 6 \zeta_{10} - 6 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{61} + ( -1 - 5 \zeta_{10} - \zeta_{10}^{2} ) q^{62} + ( -1 - \zeta_{10} - \zeta_{10}^{2} ) q^{63} + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{64} + ( 12 + 4 \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{65} + ( 1 + 2 \zeta_{10} + \zeta_{10}^{2} ) q^{66} + ( 4 \zeta_{10} - 8 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{67} + ( 2 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{68} + ( -4 \zeta_{10} + 2 \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{69} + ( -3 + 3 \zeta_{10} + 4 \zeta_{10}^{3} ) q^{70} + ( -4 + 4 \zeta_{10} - 8 \zeta_{10}^{3} ) q^{71} -\zeta_{10}^{3} q^{72} + ( -6 + 10 \zeta_{10} - 10 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{73} + 8 q^{74} + 5 \zeta_{10} q^{75} + ( -2 - 6 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{76} + ( -7 + 3 \zeta_{10} - 3 \zeta_{10}^{2} + 7 \zeta_{10}^{3} ) q^{77} + ( 4 - 4 \zeta_{10} - 4 \zeta_{10}^{3} ) q^{78} + ( -1 + \zeta_{10} + 5 \zeta_{10}^{3} ) q^{79} + ( -1 - 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{80} + \zeta_{10}^{2} q^{81} + ( 2 + 6 \zeta_{10}^{2} - 6 \zeta_{10}^{3} ) q^{82} + ( -3 \zeta_{10} + 7 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{83} + ( 1 + \zeta_{10} + \zeta_{10}^{2} ) q^{84} + ( -2 + 6 \zeta_{10} - 2 \zeta_{10}^{2} ) q^{85} + ( 4 + 2 \zeta_{10} - 2 \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{86} + ( 4 + 2 \zeta_{10} + 4 \zeta_{10}^{2} ) q^{87} + ( -1 - 2 \zeta_{10} - \zeta_{10}^{2} ) q^{88} + ( -6 + 10 \zeta_{10} - 10 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{89} + ( 1 + \zeta_{10} - \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{90} + ( 8 + 4 \zeta_{10} + 8 \zeta_{10}^{2} ) q^{91} + ( 4 \zeta_{10} - 2 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{92} + ( -6 - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{93} + ( 6 \zeta_{10} - 8 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{94} + ( 2 - 16 \zeta_{10} + 2 \zeta_{10}^{2} ) q^{95} + \zeta_{10}^{3} q^{96} + ( 1 - \zeta_{10} + 4 \zeta_{10}^{3} ) q^{97} + ( 2 - 5 \zeta_{10} + 5 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{98} + ( 3 + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q - q^{2} + q^{3} - q^{4} + 5q^{5} + q^{6} + 6q^{7} - q^{8} - q^{9} + O(q^{10})$$ $$4q - q^{2} + q^{3} - q^{4} + 5q^{5} + q^{6} + 6q^{7} - q^{8} - q^{9} - 5q^{10} - 5q^{11} + q^{12} + 12q^{13} - 4q^{14} + 5q^{15} - q^{16} + 6q^{17} + 4q^{18} - 16q^{19} - 5q^{20} - q^{21} - 10q^{23} - 4q^{24} - 5q^{25} - 8q^{26} + q^{27} + q^{28} + 6q^{29} - 5q^{30} - 3q^{31} + 4q^{32} - 4q^{34} + 10q^{35} - q^{36} - 8q^{37} + 14q^{38} - 12q^{39} + 5q^{40} - 14q^{41} - q^{42} - 4q^{43} + 10q^{46} + 20q^{47} + q^{48} - 14q^{49} - 5q^{50} + 4q^{51} + 12q^{52} - 16q^{53} + q^{54} - 10q^{55} + q^{56} - 4q^{57} + 6q^{58} + 5q^{59} - 8q^{62} - 4q^{63} - q^{64} + 40q^{65} + 5q^{66} + 16q^{67} - 4q^{68} - 10q^{69} - 5q^{70} - 20q^{71} - q^{72} + 2q^{73} + 32q^{74} + 5q^{75} + 4q^{76} - 15q^{77} + 8q^{78} + 2q^{79} - q^{81} - 4q^{82} - 13q^{83} + 4q^{84} + 16q^{86} + 14q^{87} - 5q^{88} + 2q^{89} + 5q^{90} + 28q^{91} + 10q^{92} - 22q^{93} + 20q^{94} - 10q^{95} + q^{96} + 7q^{97} - 4q^{98} + 10q^{99} + O(q^{100})$$

## Character Values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/150\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$127$$ $$\chi(n)$$ $$1$$ $$-\zeta_{10}^{3}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
31.1
 −0.309017 + 0.951057i 0.809017 + 0.587785i 0.809017 − 0.587785i −0.309017 − 0.951057i
0.309017 + 0.951057i 0.809017 0.587785i −0.809017 + 0.587785i 0.690983 + 2.12663i 0.809017 + 0.587785i 0.381966 −0.809017 0.587785i 0.309017 0.951057i −1.80902 + 1.31433i
61.1 −0.809017 + 0.587785i −0.309017 + 0.951057i 0.309017 0.951057i 1.80902 1.31433i −0.309017 0.951057i 2.61803 0.309017 + 0.951057i −0.809017 0.587785i −0.690983 + 2.12663i
91.1 −0.809017 0.587785i −0.309017 0.951057i 0.309017 + 0.951057i 1.80902 + 1.31433i −0.309017 + 0.951057i 2.61803 0.309017 0.951057i −0.809017 + 0.587785i −0.690983 2.12663i
121.1 0.309017 0.951057i 0.809017 + 0.587785i −0.809017 0.587785i 0.690983 2.12663i 0.809017 0.587785i 0.381966 −0.809017 + 0.587785i 0.309017 + 0.951057i −1.80902 1.31433i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
25.d Even 1 yes

## Hecke kernels

This newform can be constructed as the kernel of the linear operator $$T_{7}^{2} - 3 T_{7} + 1$$ acting on $$S_{2}^{\mathrm{new}}(150, [\chi])$$.