Properties

Label 150.2.g.a
Level $150$
Weight $2$
Character orbit 150.g
Analytic conductor $1.198$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 150.g (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Defining polynomial: \(x^{4} - x^{3} + x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{2} + \zeta_{10}^{3} q^{3} -\zeta_{10}^{3} q^{4} + ( 1 + \zeta_{10} - \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{5} -\zeta_{10}^{2} q^{6} + ( 2 + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{7} + \zeta_{10}^{2} q^{8} -\zeta_{10} q^{9} +O(q^{10})\) \( q + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{2} + \zeta_{10}^{3} q^{3} -\zeta_{10}^{3} q^{4} + ( 1 + \zeta_{10} - \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{5} -\zeta_{10}^{2} q^{6} + ( 2 + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{7} + \zeta_{10}^{2} q^{8} -\zeta_{10} q^{9} + ( -2 + 2 \zeta_{10} + \zeta_{10}^{3} ) q^{10} + ( -3 + 2 \zeta_{10} - 2 \zeta_{10}^{2} + 3 \zeta_{10}^{3} ) q^{11} + \zeta_{10} q^{12} + ( 4 + 4 \zeta_{10}^{2} ) q^{13} + ( -2 + \zeta_{10} - \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{14} + ( 2 \zeta_{10} - \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{15} -\zeta_{10} q^{16} + ( 2 \zeta_{10} - 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{17} + q^{18} + ( -6 \zeta_{10} + 4 \zeta_{10}^{2} - 6 \zeta_{10}^{3} ) q^{19} + ( -2 \zeta_{10} + \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{20} + ( -1 + \zeta_{10} + 2 \zeta_{10}^{3} ) q^{21} + ( 1 - \zeta_{10} - 3 \zeta_{10}^{3} ) q^{22} + ( -2 - 2 \zeta_{10} + 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{23} - q^{24} -5 \zeta_{10}^{3} q^{25} + ( -4 - 4 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{26} + ( 1 - \zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{27} + ( 1 - \zeta_{10} - 2 \zeta_{10}^{3} ) q^{28} + ( 4 - 4 \zeta_{10} - 6 \zeta_{10}^{3} ) q^{29} + ( -2 + \zeta_{10} - 2 \zeta_{10}^{2} ) q^{30} + ( \zeta_{10} + 5 \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{31} + q^{32} + ( -\zeta_{10} - 2 \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{33} + ( -2 + 2 \zeta_{10} - 2 \zeta_{10}^{2} ) q^{34} + ( 4 - \zeta_{10} + \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{35} + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{36} -8 \zeta_{10} q^{37} + ( 6 - 4 \zeta_{10} + 6 \zeta_{10}^{2} ) q^{38} + ( -4 + 4 \zeta_{10}^{3} ) q^{39} + ( 2 - \zeta_{10} + 2 \zeta_{10}^{2} ) q^{40} + ( -6 + 4 \zeta_{10} - 6 \zeta_{10}^{2} ) q^{41} + ( -\zeta_{10} - \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{42} + ( -4 - 6 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{43} + ( \zeta_{10} + 2 \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{44} + ( -1 - 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{45} + ( 4 - 4 \zeta_{10} - 2 \zeta_{10}^{3} ) q^{46} + ( 6 - 6 \zeta_{10} + 2 \zeta_{10}^{3} ) q^{47} + ( 1 - \zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{48} + ( -2 + 3 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{49} + 5 \zeta_{10}^{2} q^{50} + ( -2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{51} + ( 4 - 4 \zeta_{10}^{3} ) q^{52} + ( -5 + 5 \zeta_{10} - \zeta_{10}^{3} ) q^{53} + \zeta_{10}^{3} q^{54} + ( -5 + 5 \zeta_{10} + 5 \zeta_{10}^{3} ) q^{55} + ( \zeta_{10} + \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{56} + ( 2 + 6 \zeta_{10}^{2} - 6 \zeta_{10}^{3} ) q^{57} + ( 4 \zeta_{10} + 2 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{58} + ( 1 + 2 \zeta_{10} + \zeta_{10}^{2} ) q^{59} + ( 1 + 2 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{60} + ( -4 + 6 \zeta_{10} - 6 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{61} + ( -1 - 5 \zeta_{10} - \zeta_{10}^{2} ) q^{62} + ( -1 - \zeta_{10} - \zeta_{10}^{2} ) q^{63} + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{64} + ( 12 + 4 \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{65} + ( 1 + 2 \zeta_{10} + \zeta_{10}^{2} ) q^{66} + ( 4 \zeta_{10} - 8 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{67} + ( 2 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{68} + ( -4 \zeta_{10} + 2 \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{69} + ( -3 + 3 \zeta_{10} + 4 \zeta_{10}^{3} ) q^{70} + ( -4 + 4 \zeta_{10} - 8 \zeta_{10}^{3} ) q^{71} -\zeta_{10}^{3} q^{72} + ( -6 + 10 \zeta_{10} - 10 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{73} + 8 q^{74} + 5 \zeta_{10} q^{75} + ( -2 - 6 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{76} + ( -7 + 3 \zeta_{10} - 3 \zeta_{10}^{2} + 7 \zeta_{10}^{3} ) q^{77} + ( 4 - 4 \zeta_{10} - 4 \zeta_{10}^{3} ) q^{78} + ( -1 + \zeta_{10} + 5 \zeta_{10}^{3} ) q^{79} + ( -1 - 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{80} + \zeta_{10}^{2} q^{81} + ( 2 + 6 \zeta_{10}^{2} - 6 \zeta_{10}^{3} ) q^{82} + ( -3 \zeta_{10} + 7 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{83} + ( 1 + \zeta_{10} + \zeta_{10}^{2} ) q^{84} + ( -2 + 6 \zeta_{10} - 2 \zeta_{10}^{2} ) q^{85} + ( 4 + 2 \zeta_{10} - 2 \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{86} + ( 4 + 2 \zeta_{10} + 4 \zeta_{10}^{2} ) q^{87} + ( -1 - 2 \zeta_{10} - \zeta_{10}^{2} ) q^{88} + ( -6 + 10 \zeta_{10} - 10 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{89} + ( 1 + \zeta_{10} - \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{90} + ( 8 + 4 \zeta_{10} + 8 \zeta_{10}^{2} ) q^{91} + ( 4 \zeta_{10} - 2 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{92} + ( -6 - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{93} + ( 6 \zeta_{10} - 8 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{94} + ( 2 - 16 \zeta_{10} + 2 \zeta_{10}^{2} ) q^{95} + \zeta_{10}^{3} q^{96} + ( 1 - \zeta_{10} + 4 \zeta_{10}^{3} ) q^{97} + ( 2 - 5 \zeta_{10} + 5 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{98} + ( 3 + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - q^{2} + q^{3} - q^{4} + 5q^{5} + q^{6} + 6q^{7} - q^{8} - q^{9} + O(q^{10}) \) \( 4q - q^{2} + q^{3} - q^{4} + 5q^{5} + q^{6} + 6q^{7} - q^{8} - q^{9} - 5q^{10} - 5q^{11} + q^{12} + 12q^{13} - 4q^{14} + 5q^{15} - q^{16} + 6q^{17} + 4q^{18} - 16q^{19} - 5q^{20} - q^{21} - 10q^{23} - 4q^{24} - 5q^{25} - 8q^{26} + q^{27} + q^{28} + 6q^{29} - 5q^{30} - 3q^{31} + 4q^{32} - 4q^{34} + 10q^{35} - q^{36} - 8q^{37} + 14q^{38} - 12q^{39} + 5q^{40} - 14q^{41} - q^{42} - 4q^{43} + 10q^{46} + 20q^{47} + q^{48} - 14q^{49} - 5q^{50} + 4q^{51} + 12q^{52} - 16q^{53} + q^{54} - 10q^{55} + q^{56} - 4q^{57} + 6q^{58} + 5q^{59} - 8q^{62} - 4q^{63} - q^{64} + 40q^{65} + 5q^{66} + 16q^{67} - 4q^{68} - 10q^{69} - 5q^{70} - 20q^{71} - q^{72} + 2q^{73} + 32q^{74} + 5q^{75} + 4q^{76} - 15q^{77} + 8q^{78} + 2q^{79} - q^{81} - 4q^{82} - 13q^{83} + 4q^{84} + 16q^{86} + 14q^{87} - 5q^{88} + 2q^{89} + 5q^{90} + 28q^{91} + 10q^{92} - 22q^{93} + 20q^{94} - 10q^{95} + q^{96} + 7q^{97} - 4q^{98} + 10q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
31.1
−0.309017 + 0.951057i
0.809017 + 0.587785i
0.809017 0.587785i
−0.309017 0.951057i
0.309017 + 0.951057i 0.809017 0.587785i −0.809017 + 0.587785i 0.690983 + 2.12663i 0.809017 + 0.587785i 0.381966 −0.809017 0.587785i 0.309017 0.951057i −1.80902 + 1.31433i
61.1 −0.809017 + 0.587785i −0.309017 + 0.951057i 0.309017 0.951057i 1.80902 1.31433i −0.309017 0.951057i 2.61803 0.309017 + 0.951057i −0.809017 0.587785i −0.690983 + 2.12663i
91.1 −0.809017 0.587785i −0.309017 0.951057i 0.309017 + 0.951057i 1.80902 + 1.31433i −0.309017 + 0.951057i 2.61803 0.309017 0.951057i −0.809017 + 0.587785i −0.690983 2.12663i
121.1 0.309017 0.951057i 0.809017 + 0.587785i −0.809017 0.587785i 0.690983 2.12663i 0.809017 0.587785i 0.381966 −0.809017 + 0.587785i 0.309017 + 0.951057i −1.80902 1.31433i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
25.d even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.2.g.a 4
3.b odd 2 1 450.2.h.c 4
5.b even 2 1 750.2.g.b 4
5.c odd 4 2 750.2.h.b 8
25.d even 5 1 inner 150.2.g.a 4
25.d even 5 1 3750.2.a.f 2
25.e even 10 1 750.2.g.b 4
25.e even 10 1 3750.2.a.d 2
25.f odd 20 2 750.2.h.b 8
25.f odd 20 2 3750.2.c.b 4
75.j odd 10 1 450.2.h.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
150.2.g.a 4 1.a even 1 1 trivial
150.2.g.a 4 25.d even 5 1 inner
450.2.h.c 4 3.b odd 2 1
450.2.h.c 4 75.j odd 10 1
750.2.g.b 4 5.b even 2 1
750.2.g.b 4 25.e even 10 1
750.2.h.b 8 5.c odd 4 2
750.2.h.b 8 25.f odd 20 2
3750.2.a.d 2 25.e even 10 1
3750.2.a.f 2 25.d even 5 1
3750.2.c.b 4 25.f odd 20 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} - 3 T_{7} + 1 \) acting on \(S_{2}^{\mathrm{new}}(150, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
$3$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
$5$ \( 25 - 25 T + 15 T^{2} - 5 T^{3} + T^{4} \)
$7$ \( ( 1 - 3 T + T^{2} )^{2} \)
$11$ \( 25 + 10 T^{2} + 5 T^{3} + T^{4} \)
$13$ \( 256 - 128 T + 64 T^{2} - 12 T^{3} + T^{4} \)
$17$ \( 16 - 16 T + 16 T^{2} - 6 T^{3} + T^{4} \)
$19$ \( 1936 + 616 T + 136 T^{2} + 16 T^{3} + T^{4} \)
$23$ \( 400 + 200 T + 60 T^{2} + 10 T^{3} + T^{4} \)
$29$ \( 16 - 56 T + 76 T^{2} - 6 T^{3} + T^{4} \)
$31$ \( 841 + 232 T + 34 T^{2} + 3 T^{3} + T^{4} \)
$37$ \( 4096 + 512 T + 64 T^{2} + 8 T^{3} + T^{4} \)
$41$ \( 1936 + 704 T + 136 T^{2} + 14 T^{3} + T^{4} \)
$43$ \( ( -44 + 2 T + T^{2} )^{2} \)
$47$ \( 400 - 200 T + 160 T^{2} - 20 T^{3} + T^{4} \)
$53$ \( 361 + 171 T + 106 T^{2} + 16 T^{3} + T^{4} \)
$59$ \( 25 + 10 T^{2} - 5 T^{3} + T^{4} \)
$61$ \( 400 + 200 T + 40 T^{2} + T^{4} \)
$67$ \( 256 + 64 T + 96 T^{2} - 16 T^{3} + T^{4} \)
$71$ \( 6400 + 160 T^{2} + 20 T^{3} + T^{4} \)
$73$ \( 1936 + 792 T + 124 T^{2} - 2 T^{3} + T^{4} \)
$79$ \( 361 - 133 T + 24 T^{2} - 2 T^{3} + T^{4} \)
$83$ \( 361 - 38 T + 64 T^{2} + 13 T^{3} + T^{4} \)
$89$ \( 1936 + 792 T + 124 T^{2} - 2 T^{3} + T^{4} \)
$97$ \( 361 - 38 T + 24 T^{2} - 7 T^{3} + T^{4} \)
show more
show less