Properties

Label 150.2.g.a
Level $150$
Weight $2$
Character orbit 150.g
Analytic conductor $1.198$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [150,2,Mod(31,150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(150, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("150.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 150.g (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{10}^{3} - \zeta_{10}^{2} + \cdots - 1) q^{2} + \zeta_{10}^{3} q^{3} - \zeta_{10}^{3} q^{4} + ( - \zeta_{10}^{3} - \zeta_{10}^{2} + \cdots + 1) q^{5} - \zeta_{10}^{2} q^{6} + ( - \zeta_{10}^{3} + \zeta_{10}^{2} + 2) q^{7} + \cdots + ( - \zeta_{10}^{3} + \zeta_{10}^{2} + 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + q^{3} - q^{4} + 5 q^{5} + q^{6} + 6 q^{7} - q^{8} - q^{9} - 5 q^{10} - 5 q^{11} + q^{12} + 12 q^{13} - 4 q^{14} + 5 q^{15} - q^{16} + 6 q^{17} + 4 q^{18} - 16 q^{19} - 5 q^{20} - q^{21}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
31.1
−0.309017 + 0.951057i
0.809017 + 0.587785i
0.809017 0.587785i
−0.309017 0.951057i
0.309017 + 0.951057i 0.809017 0.587785i −0.809017 + 0.587785i 0.690983 + 2.12663i 0.809017 + 0.587785i 0.381966 −0.809017 0.587785i 0.309017 0.951057i −1.80902 + 1.31433i
61.1 −0.809017 + 0.587785i −0.309017 + 0.951057i 0.309017 0.951057i 1.80902 1.31433i −0.309017 0.951057i 2.61803 0.309017 + 0.951057i −0.809017 0.587785i −0.690983 + 2.12663i
91.1 −0.809017 0.587785i −0.309017 0.951057i 0.309017 + 0.951057i 1.80902 + 1.31433i −0.309017 + 0.951057i 2.61803 0.309017 0.951057i −0.809017 + 0.587785i −0.690983 2.12663i
121.1 0.309017 0.951057i 0.809017 + 0.587785i −0.809017 0.587785i 0.690983 2.12663i 0.809017 0.587785i 0.381966 −0.809017 + 0.587785i 0.309017 + 0.951057i −1.80902 1.31433i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
25.d even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.2.g.a 4
3.b odd 2 1 450.2.h.c 4
5.b even 2 1 750.2.g.b 4
5.c odd 4 2 750.2.h.b 8
25.d even 5 1 inner 150.2.g.a 4
25.d even 5 1 3750.2.a.f 2
25.e even 10 1 750.2.g.b 4
25.e even 10 1 3750.2.a.d 2
25.f odd 20 2 750.2.h.b 8
25.f odd 20 2 3750.2.c.b 4
75.j odd 10 1 450.2.h.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
150.2.g.a 4 1.a even 1 1 trivial
150.2.g.a 4 25.d even 5 1 inner
450.2.h.c 4 3.b odd 2 1
450.2.h.c 4 75.j odd 10 1
750.2.g.b 4 5.b even 2 1
750.2.g.b 4 25.e even 10 1
750.2.h.b 8 5.c odd 4 2
750.2.h.b 8 25.f odd 20 2
3750.2.a.d 2 25.e even 10 1
3750.2.a.f 2 25.d even 5 1
3750.2.c.b 4 25.f odd 20 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} - 3T_{7} + 1 \) acting on \(S_{2}^{\mathrm{new}}(150, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} - 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} - 3 T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$13$ \( T^{4} - 12 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$17$ \( T^{4} - 6 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$19$ \( T^{4} + 16 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
$23$ \( T^{4} + 10 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$29$ \( T^{4} - 6 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$31$ \( T^{4} + 3 T^{3} + \cdots + 841 \) Copy content Toggle raw display
$37$ \( T^{4} + 8 T^{3} + \cdots + 4096 \) Copy content Toggle raw display
$41$ \( T^{4} + 14 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
$43$ \( (T^{2} + 2 T - 44)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 20 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$53$ \( T^{4} + 16 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$59$ \( T^{4} - 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$61$ \( T^{4} + 40 T^{2} + \cdots + 400 \) Copy content Toggle raw display
$67$ \( T^{4} - 16 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$71$ \( T^{4} + 20 T^{3} + \cdots + 6400 \) Copy content Toggle raw display
$73$ \( T^{4} - 2 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
$79$ \( T^{4} - 2 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$83$ \( T^{4} + 13 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$89$ \( T^{4} - 2 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
$97$ \( T^{4} - 7 T^{3} + \cdots + 361 \) Copy content Toggle raw display
show more
show less