Properties

Label 150.2.e.a
Level 150
Weight 2
Character orbit 150.e
Analytic conductor 1.198
Analytic rank 0
Dimension 4
CM No
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.e (of order \(4\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{8} q^{2} + ( 1 + \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{3} + \zeta_{8}^{2} q^{4} + ( -1 + \zeta_{8} + \zeta_{8}^{3} ) q^{6} + ( 1 - \zeta_{8}^{2} ) q^{7} + \zeta_{8}^{3} q^{8} + ( -2 \zeta_{8} + \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{9} +O(q^{10})\) \( q + \zeta_{8} q^{2} + ( 1 + \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{3} + \zeta_{8}^{2} q^{4} + ( -1 + \zeta_{8} + \zeta_{8}^{3} ) q^{6} + ( 1 - \zeta_{8}^{2} ) q^{7} + \zeta_{8}^{3} q^{8} + ( -2 \zeta_{8} + \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{9} + ( -\zeta_{8} - \zeta_{8}^{3} ) q^{11} + ( -1 - \zeta_{8} + \zeta_{8}^{2} ) q^{12} + ( \zeta_{8} - \zeta_{8}^{3} ) q^{14} - q^{16} + 2 \zeta_{8} q^{17} + ( -2 - 2 \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{18} -4 \zeta_{8}^{2} q^{19} + ( 2 + \zeta_{8} + \zeta_{8}^{3} ) q^{21} + ( 1 - \zeta_{8}^{2} ) q^{22} -4 \zeta_{8}^{3} q^{23} + ( -\zeta_{8} - \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{24} + ( 1 - 5 \zeta_{8} - \zeta_{8}^{2} ) q^{27} + ( 1 + \zeta_{8}^{2} ) q^{28} + ( 5 \zeta_{8} - 5 \zeta_{8}^{3} ) q^{29} -2 q^{31} -\zeta_{8} q^{32} + ( 1 + \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{33} + 2 \zeta_{8}^{2} q^{34} + ( -1 - 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{36} + ( -6 + 6 \zeta_{8}^{2} ) q^{37} -4 \zeta_{8}^{3} q^{38} + ( -4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{41} + ( -1 + 2 \zeta_{8} + \zeta_{8}^{2} ) q^{42} + ( -6 - 6 \zeta_{8}^{2} ) q^{43} + ( \zeta_{8} - \zeta_{8}^{3} ) q^{44} + 4 q^{46} + ( -1 - \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{48} + 5 \zeta_{8}^{2} q^{49} + ( -2 + 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{51} + 4 \zeta_{8}^{3} q^{53} + ( \zeta_{8} - 5 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{54} + ( \zeta_{8} + \zeta_{8}^{3} ) q^{56} + ( 4 + 4 \zeta_{8} - 4 \zeta_{8}^{2} ) q^{57} + ( 5 + 5 \zeta_{8}^{2} ) q^{58} + ( -7 \zeta_{8} + 7 \zeta_{8}^{3} ) q^{59} -6 q^{61} -2 \zeta_{8} q^{62} + ( 1 + \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{63} -\zeta_{8}^{2} q^{64} + ( 2 + \zeta_{8} + \zeta_{8}^{3} ) q^{66} + ( 4 - 4 \zeta_{8}^{2} ) q^{67} + 2 \zeta_{8}^{3} q^{68} + ( 4 \zeta_{8} + 4 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{69} + ( 10 \zeta_{8} + 10 \zeta_{8}^{3} ) q^{71} + ( 2 - \zeta_{8} - 2 \zeta_{8}^{2} ) q^{72} + ( 5 + 5 \zeta_{8}^{2} ) q^{73} + ( -6 \zeta_{8} + 6 \zeta_{8}^{3} ) q^{74} + 4 q^{76} -2 \zeta_{8} q^{77} -6 \zeta_{8}^{2} q^{79} + ( 7 - 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{81} + ( 4 - 4 \zeta_{8}^{2} ) q^{82} + 12 \zeta_{8}^{3} q^{83} + ( -\zeta_{8} + 2 \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{84} + ( -6 \zeta_{8} - 6 \zeta_{8}^{3} ) q^{86} + ( -5 + 10 \zeta_{8} + 5 \zeta_{8}^{2} ) q^{87} + ( 1 + \zeta_{8}^{2} ) q^{88} + ( -2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{89} + 4 \zeta_{8} q^{92} + ( -2 - 2 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{93} + ( 1 - \zeta_{8} - \zeta_{8}^{3} ) q^{96} + ( -3 + 3 \zeta_{8}^{2} ) q^{97} + 5 \zeta_{8}^{3} q^{98} + ( \zeta_{8} + 4 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 4q^{3} - 4q^{6} + 4q^{7} + O(q^{10}) \) \( 4q + 4q^{3} - 4q^{6} + 4q^{7} - 4q^{12} - 4q^{16} - 8q^{18} + 8q^{21} + 4q^{22} + 4q^{27} + 4q^{28} - 8q^{31} + 4q^{33} - 4q^{36} - 24q^{37} - 4q^{42} - 24q^{43} + 16q^{46} - 4q^{48} - 8q^{51} + 16q^{57} + 20q^{58} - 24q^{61} + 4q^{63} + 8q^{66} + 16q^{67} + 8q^{72} + 20q^{73} + 16q^{76} + 28q^{81} + 16q^{82} - 20q^{87} + 4q^{88} - 8q^{93} + 4q^{96} - 12q^{97} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(-\zeta_{8}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
107.1
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 + 0.707107i 1.70711 0.292893i 1.00000i 0 −1.00000 + 1.41421i 1.00000 + 1.00000i 0.707107 + 0.707107i 2.82843 1.00000i 0
107.2 0.707107 0.707107i 0.292893 1.70711i 1.00000i 0 −1.00000 1.41421i 1.00000 + 1.00000i −0.707107 0.707107i −2.82843 1.00000i 0
143.1 −0.707107 0.707107i 1.70711 + 0.292893i 1.00000i 0 −1.00000 1.41421i 1.00000 1.00000i 0.707107 0.707107i 2.82843 + 1.00000i 0
143.2 0.707107 + 0.707107i 0.292893 + 1.70711i 1.00000i 0 −1.00000 + 1.41421i 1.00000 1.00000i −0.707107 + 0.707107i −2.82843 + 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
3.b Odd 1 yes
5.c Odd 1 yes
15.e Even 1 yes

Hecke kernels

This newform can be constructed as the kernel of the linear operator \( T_{7}^{2} - 2 T_{7} + 2 \) acting on \(S_{2}^{\mathrm{new}}(150, [\chi])\).