Properties

Label 150.2.c.a
Level $150$
Weight $2$
Character orbit 150.c
Analytic conductor $1.198$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 150.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} + i q^{3} - q^{4} - q^{6} + 4 i q^{7} -i q^{8} - q^{9} +O(q^{10})\) \( q + i q^{2} + i q^{3} - q^{4} - q^{6} + 4 i q^{7} -i q^{8} - q^{9} -i q^{12} + 2 i q^{13} -4 q^{14} + q^{16} -6 i q^{17} -i q^{18} + 4 q^{19} -4 q^{21} + q^{24} -2 q^{26} -i q^{27} -4 i q^{28} + 6 q^{29} + 8 q^{31} + i q^{32} + 6 q^{34} + q^{36} -2 i q^{37} + 4 i q^{38} -2 q^{39} -6 q^{41} -4 i q^{42} -4 i q^{43} + i q^{48} -9 q^{49} + 6 q^{51} -2 i q^{52} -6 i q^{53} + q^{54} + 4 q^{56} + 4 i q^{57} + 6 i q^{58} -10 q^{61} + 8 i q^{62} -4 i q^{63} - q^{64} + 4 i q^{67} + 6 i q^{68} + i q^{72} + 2 i q^{73} + 2 q^{74} -4 q^{76} -2 i q^{78} -8 q^{79} + q^{81} -6 i q^{82} + 12 i q^{83} + 4 q^{84} + 4 q^{86} + 6 i q^{87} -18 q^{89} -8 q^{91} + 8 i q^{93} - q^{96} -2 i q^{97} -9 i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} - 2q^{6} - 2q^{9} + O(q^{10}) \) \( 2q - 2q^{4} - 2q^{6} - 2q^{9} - 8q^{14} + 2q^{16} + 8q^{19} - 8q^{21} + 2q^{24} - 4q^{26} + 12q^{29} + 16q^{31} + 12q^{34} + 2q^{36} - 4q^{39} - 12q^{41} - 18q^{49} + 12q^{51} + 2q^{54} + 8q^{56} - 20q^{61} - 2q^{64} + 4q^{74} - 8q^{76} - 16q^{79} + 2q^{81} + 8q^{84} + 8q^{86} - 36q^{89} - 16q^{91} - 2q^{96} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.00000i
1.00000i
1.00000i 1.00000i −1.00000 0 −1.00000 4.00000i 1.00000i −1.00000 0
49.2 1.00000i 1.00000i −1.00000 0 −1.00000 4.00000i 1.00000i −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.2.c.a 2
3.b odd 2 1 450.2.c.b 2
4.b odd 2 1 1200.2.f.e 2
5.b even 2 1 inner 150.2.c.a 2
5.c odd 4 1 30.2.a.a 1
5.c odd 4 1 150.2.a.b 1
8.b even 2 1 4800.2.f.p 2
8.d odd 2 1 4800.2.f.w 2
12.b even 2 1 3600.2.f.i 2
15.d odd 2 1 450.2.c.b 2
15.e even 4 1 90.2.a.c 1
15.e even 4 1 450.2.a.d 1
20.d odd 2 1 1200.2.f.e 2
20.e even 4 1 240.2.a.b 1
20.e even 4 1 1200.2.a.k 1
35.f even 4 1 1470.2.a.d 1
35.f even 4 1 7350.2.a.ct 1
35.k even 12 2 1470.2.i.q 2
35.l odd 12 2 1470.2.i.o 2
40.e odd 2 1 4800.2.f.w 2
40.f even 2 1 4800.2.f.p 2
40.i odd 4 1 960.2.a.e 1
40.i odd 4 1 4800.2.a.cq 1
40.k even 4 1 960.2.a.p 1
40.k even 4 1 4800.2.a.d 1
45.k odd 12 2 810.2.e.l 2
45.l even 12 2 810.2.e.b 2
55.e even 4 1 3630.2.a.w 1
60.h even 2 1 3600.2.f.i 2
60.l odd 4 1 720.2.a.j 1
60.l odd 4 1 3600.2.a.f 1
65.f even 4 1 5070.2.b.k 2
65.h odd 4 1 5070.2.a.w 1
65.k even 4 1 5070.2.b.k 2
80.i odd 4 1 3840.2.k.y 2
80.j even 4 1 3840.2.k.f 2
80.s even 4 1 3840.2.k.f 2
80.t odd 4 1 3840.2.k.y 2
85.g odd 4 1 8670.2.a.g 1
105.k odd 4 1 4410.2.a.z 1
120.q odd 4 1 2880.2.a.q 1
120.w even 4 1 2880.2.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.2.a.a 1 5.c odd 4 1
90.2.a.c 1 15.e even 4 1
150.2.a.b 1 5.c odd 4 1
150.2.c.a 2 1.a even 1 1 trivial
150.2.c.a 2 5.b even 2 1 inner
240.2.a.b 1 20.e even 4 1
450.2.a.d 1 15.e even 4 1
450.2.c.b 2 3.b odd 2 1
450.2.c.b 2 15.d odd 2 1
720.2.a.j 1 60.l odd 4 1
810.2.e.b 2 45.l even 12 2
810.2.e.l 2 45.k odd 12 2
960.2.a.e 1 40.i odd 4 1
960.2.a.p 1 40.k even 4 1
1200.2.a.k 1 20.e even 4 1
1200.2.f.e 2 4.b odd 2 1
1200.2.f.e 2 20.d odd 2 1
1470.2.a.d 1 35.f even 4 1
1470.2.i.o 2 35.l odd 12 2
1470.2.i.q 2 35.k even 12 2
2880.2.a.a 1 120.w even 4 1
2880.2.a.q 1 120.q odd 4 1
3600.2.a.f 1 60.l odd 4 1
3600.2.f.i 2 12.b even 2 1
3600.2.f.i 2 60.h even 2 1
3630.2.a.w 1 55.e even 4 1
3840.2.k.f 2 80.j even 4 1
3840.2.k.f 2 80.s even 4 1
3840.2.k.y 2 80.i odd 4 1
3840.2.k.y 2 80.t odd 4 1
4410.2.a.z 1 105.k odd 4 1
4800.2.a.d 1 40.k even 4 1
4800.2.a.cq 1 40.i odd 4 1
4800.2.f.p 2 8.b even 2 1
4800.2.f.p 2 40.f even 2 1
4800.2.f.w 2 8.d odd 2 1
4800.2.f.w 2 40.e odd 2 1
5070.2.a.w 1 65.h odd 4 1
5070.2.b.k 2 65.f even 4 1
5070.2.b.k 2 65.k even 4 1
7350.2.a.ct 1 35.f even 4 1
8670.2.a.g 1 85.g odd 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(150, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{2} \)
$3$ \( 1 + T^{2} \)
$5$ \( T^{2} \)
$7$ \( 16 + T^{2} \)
$11$ \( T^{2} \)
$13$ \( 4 + T^{2} \)
$17$ \( 36 + T^{2} \)
$19$ \( ( -4 + T )^{2} \)
$23$ \( T^{2} \)
$29$ \( ( -6 + T )^{2} \)
$31$ \( ( -8 + T )^{2} \)
$37$ \( 4 + T^{2} \)
$41$ \( ( 6 + T )^{2} \)
$43$ \( 16 + T^{2} \)
$47$ \( T^{2} \)
$53$ \( 36 + T^{2} \)
$59$ \( T^{2} \)
$61$ \( ( 10 + T )^{2} \)
$67$ \( 16 + T^{2} \)
$71$ \( T^{2} \)
$73$ \( 4 + T^{2} \)
$79$ \( ( 8 + T )^{2} \)
$83$ \( 144 + T^{2} \)
$89$ \( ( 18 + T )^{2} \)
$97$ \( 4 + T^{2} \)
show more
show less