Properties

Label 150.2.c.a
Level $150$
Weight $2$
Character orbit 150.c
Analytic conductor $1.198$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,2,Mod(49,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 150.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} + i q^{3} - q^{4} - q^{6} + 4 i q^{7} - i q^{8} - q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + i q^{2} + i q^{3} - q^{4} - q^{6} + 4 i q^{7} - i q^{8} - q^{9} - i q^{12} + 2 i q^{13} - 4 q^{14} + q^{16} - 6 i q^{17} - i q^{18} + 4 q^{19} - 4 q^{21} + q^{24} - 2 q^{26} - i q^{27} - 4 i q^{28} + 6 q^{29} + 8 q^{31} + i q^{32} + 6 q^{34} + q^{36} - 2 i q^{37} + 4 i q^{38} - 2 q^{39} - 6 q^{41} - 4 i q^{42} - 4 i q^{43} + i q^{48} - 9 q^{49} + 6 q^{51} - 2 i q^{52} - 6 i q^{53} + q^{54} + 4 q^{56} + 4 i q^{57} + 6 i q^{58} - 10 q^{61} + 8 i q^{62} - 4 i q^{63} - q^{64} + 4 i q^{67} + 6 i q^{68} + i q^{72} + 2 i q^{73} + 2 q^{74} - 4 q^{76} - 2 i q^{78} - 8 q^{79} + q^{81} - 6 i q^{82} + 12 i q^{83} + 4 q^{84} + 4 q^{86} + 6 i q^{87} - 18 q^{89} - 8 q^{91} + 8 i q^{93} - q^{96} - 2 i q^{97} - 9 i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 2 q^{6} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} - 2 q^{6} - 2 q^{9} - 8 q^{14} + 2 q^{16} + 8 q^{19} - 8 q^{21} + 2 q^{24} - 4 q^{26} + 12 q^{29} + 16 q^{31} + 12 q^{34} + 2 q^{36} - 4 q^{39} - 12 q^{41} - 18 q^{49} + 12 q^{51} + 2 q^{54} + 8 q^{56} - 20 q^{61} - 2 q^{64} + 4 q^{74} - 8 q^{76} - 16 q^{79} + 2 q^{81} + 8 q^{84} + 8 q^{86} - 36 q^{89} - 16 q^{91} - 2 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.00000i
1.00000i
1.00000i 1.00000i −1.00000 0 −1.00000 4.00000i 1.00000i −1.00000 0
49.2 1.00000i 1.00000i −1.00000 0 −1.00000 4.00000i 1.00000i −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.2.c.a 2
3.b odd 2 1 450.2.c.b 2
4.b odd 2 1 1200.2.f.e 2
5.b even 2 1 inner 150.2.c.a 2
5.c odd 4 1 30.2.a.a 1
5.c odd 4 1 150.2.a.b 1
8.b even 2 1 4800.2.f.p 2
8.d odd 2 1 4800.2.f.w 2
12.b even 2 1 3600.2.f.i 2
15.d odd 2 1 450.2.c.b 2
15.e even 4 1 90.2.a.c 1
15.e even 4 1 450.2.a.d 1
20.d odd 2 1 1200.2.f.e 2
20.e even 4 1 240.2.a.b 1
20.e even 4 1 1200.2.a.k 1
35.f even 4 1 1470.2.a.d 1
35.f even 4 1 7350.2.a.ct 1
35.k even 12 2 1470.2.i.q 2
35.l odd 12 2 1470.2.i.o 2
40.e odd 2 1 4800.2.f.w 2
40.f even 2 1 4800.2.f.p 2
40.i odd 4 1 960.2.a.e 1
40.i odd 4 1 4800.2.a.cq 1
40.k even 4 1 960.2.a.p 1
40.k even 4 1 4800.2.a.d 1
45.k odd 12 2 810.2.e.l 2
45.l even 12 2 810.2.e.b 2
55.e even 4 1 3630.2.a.w 1
60.h even 2 1 3600.2.f.i 2
60.l odd 4 1 720.2.a.j 1
60.l odd 4 1 3600.2.a.f 1
65.f even 4 1 5070.2.b.k 2
65.h odd 4 1 5070.2.a.w 1
65.k even 4 1 5070.2.b.k 2
80.i odd 4 1 3840.2.k.y 2
80.j even 4 1 3840.2.k.f 2
80.s even 4 1 3840.2.k.f 2
80.t odd 4 1 3840.2.k.y 2
85.g odd 4 1 8670.2.a.g 1
105.k odd 4 1 4410.2.a.z 1
120.q odd 4 1 2880.2.a.q 1
120.w even 4 1 2880.2.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.2.a.a 1 5.c odd 4 1
90.2.a.c 1 15.e even 4 1
150.2.a.b 1 5.c odd 4 1
150.2.c.a 2 1.a even 1 1 trivial
150.2.c.a 2 5.b even 2 1 inner
240.2.a.b 1 20.e even 4 1
450.2.a.d 1 15.e even 4 1
450.2.c.b 2 3.b odd 2 1
450.2.c.b 2 15.d odd 2 1
720.2.a.j 1 60.l odd 4 1
810.2.e.b 2 45.l even 12 2
810.2.e.l 2 45.k odd 12 2
960.2.a.e 1 40.i odd 4 1
960.2.a.p 1 40.k even 4 1
1200.2.a.k 1 20.e even 4 1
1200.2.f.e 2 4.b odd 2 1
1200.2.f.e 2 20.d odd 2 1
1470.2.a.d 1 35.f even 4 1
1470.2.i.o 2 35.l odd 12 2
1470.2.i.q 2 35.k even 12 2
2880.2.a.a 1 120.w even 4 1
2880.2.a.q 1 120.q odd 4 1
3600.2.a.f 1 60.l odd 4 1
3600.2.f.i 2 12.b even 2 1
3600.2.f.i 2 60.h even 2 1
3630.2.a.w 1 55.e even 4 1
3840.2.k.f 2 80.j even 4 1
3840.2.k.f 2 80.s even 4 1
3840.2.k.y 2 80.i odd 4 1
3840.2.k.y 2 80.t odd 4 1
4410.2.a.z 1 105.k odd 4 1
4800.2.a.d 1 40.k even 4 1
4800.2.a.cq 1 40.i odd 4 1
4800.2.f.p 2 8.b even 2 1
4800.2.f.p 2 40.f even 2 1
4800.2.f.w 2 8.d odd 2 1
4800.2.f.w 2 40.e odd 2 1
5070.2.a.w 1 65.h odd 4 1
5070.2.b.k 2 65.f even 4 1
5070.2.b.k 2 65.k even 4 1
7350.2.a.ct 1 35.f even 4 1
8670.2.a.g 1 85.g odd 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(150, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 16 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 36 \) Copy content Toggle raw display
$19$ \( (T - 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( (T - 8)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 16 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 36 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T + 10)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 16 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 4 \) Copy content Toggle raw display
$79$ \( (T + 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 144 \) Copy content Toggle raw display
$89$ \( (T + 18)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 4 \) Copy content Toggle raw display
show more
show less