Defining parameters
Level: | \( N \) | \(=\) | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 150.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(60\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(150, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 42 | 2 | 40 |
Cusp forms | 18 | 2 | 16 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(150, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
150.2.c.a | $2$ | $1.198$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+iq^{2}+iq^{3}-q^{4}-q^{6}+4iq^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(150, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(150, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)