Properties

Label 150.2.c
Level 150
Weight 2
Character orbit c
Rep. character \(\chi_{150}(49,\cdot)\)
Character field \(\Q\)
Dimension 2
Newform subspaces 1
Sturm bound 60
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(60\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(150, [\chi])\).

Total New Old
Modular forms 42 2 40
Cusp forms 18 2 16
Eisenstein series 24 0 24

Trace form

\( 2q - 2q^{4} - 2q^{6} - 2q^{9} + O(q^{10}) \) \( 2q - 2q^{4} - 2q^{6} - 2q^{9} - 8q^{14} + 2q^{16} + 8q^{19} - 8q^{21} + 2q^{24} - 4q^{26} + 12q^{29} + 16q^{31} + 12q^{34} + 2q^{36} - 4q^{39} - 12q^{41} - 18q^{49} + 12q^{51} + 2q^{54} + 8q^{56} - 20q^{61} - 2q^{64} + 4q^{74} - 8q^{76} - 16q^{79} + 2q^{81} + 8q^{84} + 8q^{86} - 36q^{89} - 16q^{91} - 2q^{96} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(150, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
150.2.c.a \(2\) \(1.198\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) \(q+iq^{2}+iq^{3}-q^{4}-q^{6}+4iq^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(150, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(150, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{2} \)
$3$ \( 1 + T^{2} \)
$5$ 1
$7$ \( 1 + 2 T^{2} + 49 T^{4} \)
$11$ \( ( 1 + 11 T^{2} )^{2} \)
$13$ \( 1 - 22 T^{2} + 169 T^{4} \)
$17$ \( 1 + 2 T^{2} + 289 T^{4} \)
$19$ \( ( 1 - 4 T + 19 T^{2} )^{2} \)
$23$ \( ( 1 - 23 T^{2} )^{2} \)
$29$ \( ( 1 - 6 T + 29 T^{2} )^{2} \)
$31$ \( ( 1 - 8 T + 31 T^{2} )^{2} \)
$37$ \( ( 1 - 12 T + 37 T^{2} )( 1 + 12 T + 37 T^{2} ) \)
$41$ \( ( 1 + 6 T + 41 T^{2} )^{2} \)
$43$ \( 1 - 70 T^{2} + 1849 T^{4} \)
$47$ \( ( 1 - 47 T^{2} )^{2} \)
$53$ \( 1 - 70 T^{2} + 2809 T^{4} \)
$59$ \( ( 1 + 59 T^{2} )^{2} \)
$61$ \( ( 1 + 10 T + 61 T^{2} )^{2} \)
$67$ \( 1 - 118 T^{2} + 4489 T^{4} \)
$71$ \( ( 1 + 71 T^{2} )^{2} \)
$73$ \( 1 - 142 T^{2} + 5329 T^{4} \)
$79$ \( ( 1 + 8 T + 79 T^{2} )^{2} \)
$83$ \( 1 - 22 T^{2} + 6889 T^{4} \)
$89$ \( ( 1 + 18 T + 89 T^{2} )^{2} \)
$97$ \( 1 - 190 T^{2} + 9409 T^{4} \)
show more
show less