Properties

Label 150.2.a.c
Level 150
Weight 2
Character orbit 150.a
Self dual Yes
Analytic conductor 1.198
Analytic rank 0
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} + q^{6} - 2q^{7} + q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} + q^{3} + q^{4} + q^{6} - 2q^{7} + q^{8} + q^{9} + 2q^{11} + q^{12} - 6q^{13} - 2q^{14} + q^{16} - 2q^{17} + q^{18} - 2q^{21} + 2q^{22} + 4q^{23} + q^{24} - 6q^{26} + q^{27} - 2q^{28} - 8q^{31} + q^{32} + 2q^{33} - 2q^{34} + q^{36} - 2q^{37} - 6q^{39} + 2q^{41} - 2q^{42} + 4q^{43} + 2q^{44} + 4q^{46} + 8q^{47} + q^{48} - 3q^{49} - 2q^{51} - 6q^{52} - 6q^{53} + q^{54} - 2q^{56} + 10q^{59} + 2q^{61} - 8q^{62} - 2q^{63} + q^{64} + 2q^{66} + 8q^{67} - 2q^{68} + 4q^{69} + 12q^{71} + q^{72} + 4q^{73} - 2q^{74} - 4q^{77} - 6q^{78} + q^{81} + 2q^{82} + 4q^{83} - 2q^{84} + 4q^{86} + 2q^{88} - 10q^{89} + 12q^{91} + 4q^{92} - 8q^{93} + 8q^{94} + q^{96} + 8q^{97} - 3q^{98} + 2q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 1.00000 0 1.00000 −2.00000 1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \( T_{7} + 2 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(150))\).