Properties

Label 150.12.l
Level $150$
Weight $12$
Character orbit 150.l
Rep. character $\chi_{150}(17,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $880$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 150.l (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 75 \)
Character field: \(\Q(\zeta_{20})\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(150, [\chi])\).

Total New Old
Modular forms 2672 880 1792
Cusp forms 2608 880 1728
Eisenstein series 64 0 64

Trace form

\( 880 q + 1012 q^{3} + 31508 q^{7} + 163456 q^{10} - 1036288 q^{12} - 3387840 q^{13} - 2029928 q^{15} + 230686720 q^{16} + 10875136 q^{18} + 109603960 q^{19} - 110861952 q^{22} + 410102696 q^{25} + 57593668 q^{27}+ \cdots - 284871120544 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(150, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{12}^{\mathrm{old}}(150, [\chi])\) into lower level spaces

\( S_{12}^{\mathrm{old}}(150, [\chi]) \simeq \) \(S_{12}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)