Properties

Label 150.12.c.j
Level $150$
Weight $12$
Character orbit 150.c
Analytic conductor $115.251$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,12,Mod(49,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.49");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 150.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(115.251477084\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 47145x^{2} + 555686329 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 32 \beta_1 q^{2} + 243 \beta_1 q^{3} - 1024 q^{4} - 7776 q^{6} + (\beta_{3} - 10697 \beta_1) q^{7} - 32768 \beta_1 q^{8} - 59049 q^{9} + (11 \beta_{2} - 98550) q^{11} - 248832 \beta_1 q^{12} + (56 \beta_{3} - 442039 \beta_1) q^{13}+ \cdots + ( - 649539 \beta_{2} + 5819278950) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4096 q^{4} - 31104 q^{6} - 236196 q^{9} - 394200 q^{11} + 1369216 q^{14} + 4194304 q^{16} + 11486884 q^{19} + 10397484 q^{21} + 31850496 q^{24} + 56580992 q^{26} - 39930024 q^{29} + 215820932 q^{31}+ \cdots + 23277115800 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 47145x^{2} + 555686329 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 23572\nu ) / 23573 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -120\nu^{3} + 8486160\nu ) / 23573 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 240\nu^{2} - 5657400 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 120\beta_1 ) / 240 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 5657400 ) / 240 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 5893\beta_{2} + 2121540\beta_1 ) / 60 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
153.534 0.500000i
−153.534 0.500000i
−153.534 + 0.500000i
153.534 + 0.500000i
32.0000i 243.000i −1024.00 0 −7776.00 26151.2i 32768.0i −59049.0 0
49.2 32.0000i 243.000i −1024.00 0 −7776.00 47545.2i 32768.0i −59049.0 0
49.3 32.0000i 243.000i −1024.00 0 −7776.00 47545.2i 32768.0i −59049.0 0
49.4 32.0000i 243.000i −1024.00 0 −7776.00 26151.2i 32768.0i −59049.0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.12.c.j 4
5.b even 2 1 inner 150.12.c.j 4
5.c odd 4 1 150.12.a.m 2
5.c odd 4 1 150.12.a.p yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
150.12.a.m 2 5.c odd 4 1
150.12.a.p yes 2 5.c odd 4 1
150.12.c.j 4 1.a even 1 1 trivial
150.12.c.j 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} + 2944432418T_{7}^{2} + 1545955506152597281 \) acting on \(S_{12}^{\mathrm{new}}(150, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1024)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + 59049)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 15\!\cdots\!81 \) Copy content Toggle raw display
$11$ \( (T^{2} + 197100 T - 154580535900)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 16\!\cdots\!41 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 19\!\cdots\!96 \) Copy content Toggle raw display
$19$ \( (T^{2} + \cdots - 94436117498159)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 35\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T^{2} + \cdots - 72\!\cdots\!64)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + \cdots - 51\!\cdots\!11)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 37\!\cdots\!16 \) Copy content Toggle raw display
$41$ \( (T^{2} + \cdots + 16\!\cdots\!36)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 26\!\cdots\!81 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 21\!\cdots\!96 \) Copy content Toggle raw display
$59$ \( (T^{2} + \cdots - 38\!\cdots\!00)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots - 10\!\cdots\!75)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 56\!\cdots\!81 \) Copy content Toggle raw display
$71$ \( (T^{2} + \cdots - 51\!\cdots\!00)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 11\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots + 42\!\cdots\!64)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 22\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( (T^{2} + \cdots - 84\!\cdots\!76)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 43\!\cdots\!41 \) Copy content Toggle raw display
show more
show less