Properties

Label 150.12.c
Level $150$
Weight $12$
Character orbit 150.c
Rep. character $\chi_{150}(49,\cdot)$
Character field $\Q$
Dimension $34$
Newform subspaces $13$
Sturm bound $360$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 150.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 13 \)
Sturm bound: \(360\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(150, [\chi])\).

Total New Old
Modular forms 342 34 308
Cusp forms 318 34 284
Eisenstein series 24 0 24

Trace form

\( 34 q - 34816 q^{4} + 15552 q^{6} - 2007666 q^{9} - 643104 q^{11} + 5074688 q^{14} + 35651584 q^{16} - 47820344 q^{19} + 1389960 q^{21} - 15925248 q^{24} - 33595520 q^{26} - 21334116 q^{29} + 867859424 q^{31}+ \cdots + 37974648096 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(150, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
150.12.c.a 150.c 5.b $2$ $115.251$ \(\Q(\sqrt{-1}) \) None 30.12.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+32 i q^{2}+243 i q^{3}-1024 q^{4}+\cdots\)
150.12.c.b 150.c 5.b $2$ $115.251$ \(\Q(\sqrt{-1}) \) None 6.12.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+32 i q^{2}+243 i q^{3}-1024 q^{4}+\cdots\)
150.12.c.c 150.c 5.b $2$ $115.251$ \(\Q(\sqrt{-1}) \) None 30.12.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-32 i q^{2}-243 i q^{3}-1024 q^{4}+\cdots\)
150.12.c.d 150.c 5.b $2$ $115.251$ \(\Q(\sqrt{-1}) \) None 30.12.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-32 i q^{2}-243 i q^{3}-1024 q^{4}+\cdots\)
150.12.c.e 150.c 5.b $2$ $115.251$ \(\Q(\sqrt{-1}) \) None 6.12.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+32 i q^{2}-243 i q^{3}-1024 q^{4}+\cdots\)
150.12.c.f 150.c 5.b $2$ $115.251$ \(\Q(\sqrt{-1}) \) None 6.12.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-32 i q^{2}+243 i q^{3}-1024 q^{4}+\cdots\)
150.12.c.g 150.c 5.b $2$ $115.251$ \(\Q(\sqrt{-1}) \) None 30.12.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+32 i q^{2}-243 i q^{3}-1024 q^{4}+\cdots\)
150.12.c.h 150.c 5.b $2$ $115.251$ \(\Q(\sqrt{-1}) \) None 30.12.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+32 i q^{2}-243 i q^{3}-1024 q^{4}+\cdots\)
150.12.c.i 150.c 5.b $2$ $115.251$ \(\Q(\sqrt{-1}) \) None 30.12.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+32 i q^{2}-243 i q^{3}-1024 q^{4}+\cdots\)
150.12.c.j 150.c 5.b $4$ $115.251$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 150.12.a.m \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2^{5}\beta _{1}q^{2}+3^{5}\beta _{1}q^{3}-2^{10}q^{4}-6^{5}q^{6}+\cdots\)
150.12.c.k 150.c 5.b $4$ $115.251$ \(\mathbb{Q}[x]/(x^{4} + \cdots)\) None 150.12.a.n \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2^{5}\beta _{1}q^{2}+3^{5}\beta _{1}q^{3}-2^{10}q^{4}-6^{5}q^{6}+\cdots\)
150.12.c.l 150.c 5.b $4$ $115.251$ \(\Q(i, \sqrt{499})\) None 150.12.a.l \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2^{5}\beta _{1}q^{2}-3^{5}\beta _{1}q^{3}-2^{10}q^{4}+6^{5}q^{6}+\cdots\)
150.12.c.m 150.c 5.b $4$ $115.251$ \(\mathbb{Q}[x]/(x^{4} + \cdots)\) None 150.12.a.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2^{5}\beta _{1}q^{2}-3^{5}\beta _{1}q^{3}-2^{10}q^{4}+6^{5}q^{6}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(150, [\chi])\) into lower level spaces

\( S_{12}^{\mathrm{old}}(150, [\chi]) \simeq \) \(S_{12}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)