Defining parameters
| Level: | \( N \) | \(=\) | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 12 \) |
| Character orbit: | \([\chi]\) | \(=\) | 150.c (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 13 \) | ||
| Sturm bound: | \(360\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(150, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 342 | 34 | 308 |
| Cusp forms | 318 | 34 | 284 |
| Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(150, [\chi])\) into newform subspaces
Decomposition of \(S_{12}^{\mathrm{old}}(150, [\chi])\) into lower level spaces
\( S_{12}^{\mathrm{old}}(150, [\chi]) \simeq \) \(S_{12}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)