Properties

Label 150.12.a.u
Level $150$
Weight $12$
Character orbit 150.a
Self dual yes
Analytic conductor $115.251$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [150,12,Mod(1,150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("150.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,96,-729,3072,0,-23328,67384] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.251477084\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 175039x - 13178910 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 3\cdot 5^{3} \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 32 q^{2} - 243 q^{3} + 1024 q^{4} - 7776 q^{6} + ( - \beta_{2} + 4 \beta_1 + 22463) q^{7} + 32768 q^{8} + 59049 q^{9} + (14 \beta_{2} + 19 \beta_1 + 292235) q^{11} - 248832 q^{12} + ( - 40 \beta_{2} - 73 \beta_1 + 105053) q^{13}+ \cdots + (826686 \beta_{2} + 1121931 \beta_1 + 17256184515) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 96 q^{2} - 729 q^{3} + 3072 q^{4} - 23328 q^{6} + 67384 q^{7} + 98304 q^{8} + 177147 q^{9} + 876700 q^{11} - 746496 q^{12} + 315192 q^{13} + 2156288 q^{14} + 3145728 q^{16} + 2874324 q^{17} + 5668704 q^{18}+ \cdots + 51768258300 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 175039x - 13178910 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 5\nu^{2} + 305\nu - 583481 ) / 53 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -20\nu^{2} + 6730\nu + 2333871 ) / 53 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 4\beta _1 + 1 ) / 150 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -61\beta_{2} + 1346\beta _1 + 17504369 ) / 150 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−78.0027
451.888
−373.886
32.0000 −243.000 1024.00 0 −7776.00 −52907.3 32768.0 59049.0 0
1.2 32.0000 −243.000 1024.00 0 −7776.00 41527.6 32768.0 59049.0 0
1.3 32.0000 −243.000 1024.00 0 −7776.00 78763.7 32768.0 59049.0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.12.a.u 3
5.b even 2 1 150.12.a.t 3
5.c odd 4 2 30.12.c.b 6
15.e even 4 2 90.12.c.c 6
20.e even 4 2 240.12.f.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.12.c.b 6 5.c odd 4 2
90.12.c.c 6 15.e even 4 2
150.12.a.t 3 5.b even 2 1
150.12.a.u 3 1.a even 1 1 trivial
240.12.f.b 6 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{3} - 67384T_{7}^{2} - 3093414748T_{7} + 173052509440048 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(150))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 32)^{3} \) Copy content Toggle raw display
$3$ \( (T + 243)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots + 173052509440048 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots - 14\!\cdots\!44 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 69\!\cdots\!88 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 29\!\cdots\!36 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 52\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 12\!\cdots\!16 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 26\!\cdots\!88 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 21\!\cdots\!44 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 12\!\cdots\!16 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 24\!\cdots\!48 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 69\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 58\!\cdots\!12 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 58\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 34\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 50\!\cdots\!48 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 78\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 61\!\cdots\!44 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 29\!\cdots\!12 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 24\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 39\!\cdots\!32 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 77\!\cdots\!56 \) Copy content Toggle raw display
show more
show less