Properties

Label 150.12.a.r
Level $150$
Weight $12$
Character orbit 150.a
Self dual yes
Analytic conductor $115.251$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,12,Mod(1,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.251477084\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1129}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 282 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 5 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 5\sqrt{1129}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 32 q^{2} + 243 q^{3} + 1024 q^{4} + 7776 q^{6} + ( - 23 \beta - 13869) q^{7} + 32768 q^{8} + 59049 q^{9} + (121 \beta - 113013) q^{11} + 248832 q^{12} + ( - 3519 \beta - 438273) q^{13} + ( - 736 \beta - 443808) q^{14}+ \cdots + (7144929 \beta - 6673304637) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 64 q^{2} + 486 q^{3} + 2048 q^{4} + 15552 q^{6} - 27738 q^{7} + 65536 q^{8} + 118098 q^{9} - 226026 q^{11} + 497664 q^{12} - 876546 q^{13} - 887616 q^{14} + 2097152 q^{16} - 3954698 q^{17} + 3779136 q^{18}+ \cdots - 13346609274 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
17.3003
−16.3003
32.0000 243.000 1024.00 0 7776.00 −17733.1 32768.0 59049.0 0
1.2 32.0000 243.000 1024.00 0 7776.00 −10004.9 32768.0 59049.0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.12.a.r 2
5.b even 2 1 150.12.a.k 2
5.c odd 4 2 30.12.c.a 4
15.e even 4 2 90.12.c.a 4
20.e even 4 2 240.12.f.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.12.c.a 4 5.c odd 4 2
90.12.c.a 4 15.e even 4 2
150.12.a.k 2 5.b even 2 1
150.12.a.r 2 1.a even 1 1 trivial
240.12.f.a 4 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + 27738T_{7} + 177418136 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(150))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 32)^{2} \) Copy content Toggle raw display
$3$ \( (T - 243)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 27738 T + 177418136 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 12358695944 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 157437141696 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 34166164654424 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 81964096704000 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 435732000799376 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 43\!\cdots\!76 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 17\!\cdots\!44 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 38\!\cdots\!64 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 11\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 24\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 29\!\cdots\!16 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 54\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 17\!\cdots\!56 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 82\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 21\!\cdots\!16 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 17\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 33\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 10\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 51\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 21\!\cdots\!96 \) Copy content Toggle raw display
show more
show less