Properties

Label 150.12.a.a
Level $150$
Weight $12$
Character orbit 150.a
Self dual yes
Analytic conductor $115.251$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,12,Mod(1,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.251477084\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 32 q^{2} - 243 q^{3} + 1024 q^{4} + 7776 q^{6} - 32936 q^{7} - 32768 q^{8} + 59049 q^{9} - 758748 q^{11} - 248832 q^{12} + 2482858 q^{13} + 1053952 q^{14} + 1048576 q^{16} - 8290386 q^{17} - 1889568 q^{18}+ \cdots - 44803310652 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−32.0000 −243.000 1024.00 0 7776.00 −32936.0 −32768.0 59049.0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.12.a.a 1
5.b even 2 1 6.12.a.c 1
5.c odd 4 2 150.12.c.e 2
15.d odd 2 1 18.12.a.a 1
20.d odd 2 1 48.12.a.d 1
40.e odd 2 1 192.12.a.m 1
40.f even 2 1 192.12.a.c 1
45.h odd 6 2 162.12.c.i 2
45.j even 6 2 162.12.c.b 2
60.h even 2 1 144.12.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.12.a.c 1 5.b even 2 1
18.12.a.a 1 15.d odd 2 1
48.12.a.d 1 20.d odd 2 1
144.12.a.e 1 60.h even 2 1
150.12.a.a 1 1.a even 1 1 trivial
150.12.c.e 2 5.c odd 4 2
162.12.c.b 2 45.j even 6 2
162.12.c.i 2 45.h odd 6 2
192.12.a.c 1 40.f even 2 1
192.12.a.m 1 40.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} + 32936 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(150))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 32 \) Copy content Toggle raw display
$3$ \( T + 243 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 32936 \) Copy content Toggle raw display
$11$ \( T + 758748 \) Copy content Toggle raw display
$13$ \( T - 2482858 \) Copy content Toggle raw display
$17$ \( T + 8290386 \) Copy content Toggle raw display
$19$ \( T + 10867300 \) Copy content Toggle raw display
$23$ \( T + 20539272 \) Copy content Toggle raw display
$29$ \( T - 28814550 \) Copy content Toggle raw display
$31$ \( T - 150501392 \) Copy content Toggle raw display
$37$ \( T - 319891714 \) Copy content Toggle raw display
$41$ \( T + 368008998 \) Copy content Toggle raw display
$43$ \( T + 620469572 \) Copy content Toggle raw display
$47$ \( T + 2763110256 \) Copy content Toggle raw display
$53$ \( T - 268284258 \) Copy content Toggle raw display
$59$ \( T - 1672894740 \) Copy content Toggle raw display
$61$ \( T + 7787197498 \) Copy content Toggle raw display
$67$ \( T + 18706694156 \) Copy content Toggle raw display
$71$ \( T + 8346990888 \) Copy content Toggle raw display
$73$ \( T + 19641746522 \) Copy content Toggle raw display
$79$ \( T + 5873807200 \) Copy content Toggle raw display
$83$ \( T + 8492558172 \) Copy content Toggle raw display
$89$ \( T - 75527864010 \) Copy content Toggle raw display
$97$ \( T - 82356782494 \) Copy content Toggle raw display
show more
show less