Properties

 Label 150.11.d.a Level $150$ Weight $11$ Character orbit 150.d Analytic conductor $95.304$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$150 = 2 \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$11$$ Character orbit: $$[\chi]$$ $$=$$ 150.d (of order $$2$$, degree $$1$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$95.3035879011$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\sqrt{-2}, \sqrt{85})$$ Defining polynomial: $$x^{4} - 2 x^{3} - 37 x^{2} + 38 x + 531$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2^{11}\cdot 3^{4}$$ Twist minimal: no (minimal twist has level 6) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{1} q^{2} + ( -21 - 3 \beta_{1} + \beta_{2} ) q^{3} -512 q^{4} + ( 1344 - 21 \beta_{1} + 4 \beta_{3} ) q^{6} + ( 11278 - 18 \beta_{1} + 48 \beta_{2} + 3 \beta_{3} ) q^{7} -512 \beta_{1} q^{8} + ( 39753 - 1404 \beta_{1} - 42 \beta_{2} - 21 \beta_{3} ) q^{9} +O(q^{10})$$ $$q + \beta_{1} q^{2} + ( -21 - 3 \beta_{1} + \beta_{2} ) q^{3} -512 q^{4} + ( 1344 - 21 \beta_{1} + 4 \beta_{3} ) q^{6} + ( 11278 - 18 \beta_{1} + 48 \beta_{2} + 3 \beta_{3} ) q^{7} -512 \beta_{1} q^{8} + ( 39753 - 1404 \beta_{1} - 42 \beta_{2} - 21 \beta_{3} ) q^{9} + ( 3696 \beta_{1} + 210 \beta_{2} - 105 \beta_{3} ) q^{11} + ( 10752 + 1536 \beta_{1} - 512 \beta_{2} ) q^{12} + ( -68810 - 360 \beta_{1} + 960 \beta_{2} + 60 \beta_{3} ) q^{13} + ( 11422 \beta_{1} - 384 \beta_{2} + 192 \beta_{3} ) q^{14} + 262144 q^{16} + ( -74304 \beta_{1} + 1416 \beta_{2} - 708 \beta_{3} ) q^{17} + ( 726912 + 38745 \beta_{1} + 2688 \beta_{2} - 168 \beta_{3} ) q^{18} + ( -392182 - 1746 \beta_{1} + 4656 \beta_{2} + 291 \beta_{3} ) q^{19} + ( 2407002 - 75144 \beta_{1} + 11278 \beta_{2} - 567 \beta_{3} ) q^{21} + ( -1932672 - 5040 \beta_{1} + 13440 \beta_{2} + 840 \beta_{3} ) q^{22} + ( -90336 \beta_{1} - 4956 \beta_{2} + 2478 \beta_{3} ) q^{23} + ( -688128 + 10752 \beta_{1} - 2048 \beta_{3} ) q^{24} + ( -65930 \beta_{1} - 7680 \beta_{2} + 3840 \beta_{3} ) q^{26} + ( -8654877 - 247779 \beta_{1} + 33579 \beta_{2} - 4797 \beta_{3} ) q^{27} + ( -5774336 + 9216 \beta_{1} - 24576 \beta_{2} - 1536 \beta_{3} ) q^{28} + ( -757128 \beta_{1} - 17682 \beta_{2} + 8841 \beta_{3} ) q^{29} + ( -5446462 + 54810 \beta_{1} - 146160 \beta_{2} - 9135 \beta_{3} ) q^{31} + 262144 \beta_{1} q^{32} + ( -6493536 - 1510236 \beta_{1} - 39690 \beta_{2} + 15099 \beta_{3} ) q^{33} + ( 37771776 - 33984 \beta_{1} + 90624 \beta_{2} + 5664 \beta_{3} ) q^{34} + ( -20353536 + 718848 \beta_{1} + 21504 \beta_{2} + 10752 \beta_{3} ) q^{36} + ( 17753542 + 102312 \beta_{1} - 272832 \beta_{2} - 17052 \beta_{3} ) q^{37} + ( -378214 \beta_{1} - 37248 \beta_{2} + 18624 \beta_{3} ) q^{38} + ( 54321810 - 619770 \beta_{1} - 68810 \beta_{2} - 11340 \beta_{3} ) q^{39} + ( 4121328 \beta_{1} - 80484 \beta_{2} + 40242 \beta_{3} ) q^{41} + ( 36308352 + 2379786 \beta_{1} + 72576 \beta_{2} + 45112 \beta_{3} ) q^{42} + ( 117672166 - 122094 \beta_{1} + 325584 \beta_{2} + 20349 \beta_{3} ) q^{43} + ( -1892352 \beta_{1} - 107520 \beta_{2} + 53760 \beta_{3} ) q^{44} + ( 47203584 + 118944 \beta_{1} - 317184 \beta_{2} - 19824 \beta_{3} ) q^{46} + ( -4185600 \beta_{1} + 86760 \beta_{2} - 43380 \beta_{3} ) q^{47} + ( -5505024 - 786432 \beta_{1} + 262144 \beta_{2} ) q^{48} + ( -12514605 - 406008 \beta_{1} + 1082688 \beta_{2} + 67668 \beta_{3} ) q^{49} + ( -177144192 - 8099568 \beta_{1} - 267624 \beta_{2} - 295092 \beta_{3} ) q^{51} + ( 35230720 + 184320 \beta_{1} - 491520 \beta_{2} - 30720 \beta_{3} ) q^{52} + ( -9081864 \beta_{1} - 356034 \beta_{2} + 178017 \beta_{3} ) q^{53} + ( 120415680 - 8885133 \beta_{1} + 614016 \beta_{2} + 134316 \beta_{3} ) q^{54} + ( -5848064 \beta_{1} + 196608 \beta_{2} - 98304 \beta_{3} ) q^{56} + ( 264688302 - 2830524 \beta_{1} - 392182 \beta_{2} - 54999 \beta_{3} ) q^{57} + ( 391044480 + 424368 \beta_{1} - 1131648 \beta_{2} - 70728 \beta_{3} ) q^{58} + ( -17198448 \beta_{1} - 139638 \beta_{2} + 69819 \beta_{3} ) q^{59} + ( -296009686 + 353592 \beta_{1} - 942912 \beta_{2} - 58932 \beta_{3} ) q^{61} + ( -5884942 \beta_{1} + 1169280 \beta_{2} - 584640 \beta_{3} ) q^{62} + ( 226251774 - 28899450 \beta_{1} + 1979652 \beta_{2} - 390171 \beta_{3} ) q^{63} -134217728 q^{64} + ( 780861312 - 5768784 \beta_{1} - 1932672 \beta_{2} - 158760 \beta_{3} ) q^{66} + ( 74341462 + 898506 \beta_{1} - 2396016 \beta_{2} - 149751 \beta_{3} ) q^{67} + ( 38043648 \beta_{1} - 724992 \beta_{2} + 362496 \beta_{3} ) q^{68} + ( 149067072 + 35706888 \beta_{1} + 936684 \beta_{2} - 368778 \beta_{3} ) q^{69} + ( 14146272 \beta_{1} + 1281588 \beta_{2} - 640794 \beta_{3} ) q^{71} + ( -372178944 - 19837440 \beta_{1} - 1376256 \beta_{2} + 86016 \beta_{3} ) q^{72} + ( -1633567250 + 832032 \beta_{1} - 2218752 \beta_{2} - 138672 \beta_{3} ) q^{73} + ( 16935046 \beta_{1} + 2182656 \beta_{2} - 1091328 \beta_{3} ) q^{74} + ( 200797184 + 893952 \beta_{1} - 2383872 \beta_{2} - 148992 \beta_{3} ) q^{76} + ( -35848848 \beta_{1} + 918876 \beta_{2} - 459438 \beta_{3} ) q^{77} + ( 330533760 + 53777490 \beta_{1} + 1451520 \beta_{2} - 275240 \beta_{3} ) q^{78} + ( 49820642 - 2886534 \beta_{1} + 7697424 \beta_{2} + 481089 \beta_{3} ) q^{79} + ( 364741137 - 70979328 \beta_{1} - 10971828 \beta_{2} - 1192590 \beta_{3} ) q^{81} + ( -2094667008 + 1931616 \beta_{1} - 5150976 \beta_{2} - 321936 \beta_{3} ) q^{82} + ( -24958608 \beta_{1} + 2330154 \beta_{2} - 1165077 \beta_{3} ) q^{83} + ( -1232385024 + 38473728 \beta_{1} - 5774336 \beta_{2} + 290304 \beta_{3} ) q^{84} + ( 118648918 \beta_{1} - 2604672 \beta_{2} + 1302336 \beta_{3} ) q^{86} + ( -52567200 + 136526292 \beta_{1} + 3341898 \beta_{2} - 3055035 \beta_{3} ) q^{87} + ( 989528064 + 2580480 \beta_{1} - 6881280 \beta_{2} - 430080 \beta_{3} ) q^{88} + ( 118832112 \beta_{1} + 3522372 \beta_{2} - 1761186 \beta_{3} ) q^{89} + ( 2079308020 - 2821500 \beta_{1} + 7524000 \beta_{2} + 470250 \beta_{3} ) q^{91} + ( 46252032 \beta_{1} + 2537472 \beta_{2} - 1268736 \beta_{3} ) q^{92} + ( -7936117098 + 142128336 \beta_{1} - 5446462 \beta_{2} + 1726515 \beta_{3} ) q^{93} + ( 2126369280 - 2082240 \beta_{1} + 5552640 \beta_{2} + 347040 \beta_{3} ) q^{94} + ( 352321536 - 5505024 \beta_{1} + 1048576 \beta_{3} ) q^{96} + ( 9794088766 + 1435608 \beta_{1} - 3828288 \beta_{2} - 239268 \beta_{3} ) q^{97} + ( -9266541 \beta_{1} - 8661504 \beta_{2} + 4330752 \beta_{3} ) q^{98} + ( -656728128 + 271729080 \beta_{1} - 586782 \beta_{2} - 6000813 \beta_{3} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q - 84 q^{3} - 2048 q^{4} + 5376 q^{6} + 45112 q^{7} + 159012 q^{9} + O(q^{10})$$ $$4 q - 84 q^{3} - 2048 q^{4} + 5376 q^{6} + 45112 q^{7} + 159012 q^{9} + 43008 q^{12} - 275240 q^{13} + 1048576 q^{16} + 2907648 q^{18} - 1568728 q^{19} + 9628008 q^{21} - 7730688 q^{22} - 2752512 q^{24} - 34619508 q^{27} - 23097344 q^{28} - 21785848 q^{31} - 25974144 q^{33} + 151087104 q^{34} - 81414144 q^{36} + 71014168 q^{37} + 217287240 q^{39} + 145233408 q^{42} + 470688664 q^{43} + 188814336 q^{46} - 22020096 q^{48} - 50058420 q^{49} - 708576768 q^{51} + 140922880 q^{52} + 481662720 q^{54} + 1058753208 q^{57} + 1564177920 q^{58} - 1184038744 q^{61} + 905007096 q^{63} - 536870912 q^{64} + 3123445248 q^{66} + 297365848 q^{67} + 596268288 q^{69} - 1488715776 q^{72} - 6534269000 q^{73} + 803188736 q^{76} + 1322135040 q^{78} + 199282568 q^{79} + 1458964548 q^{81} - 8378668032 q^{82} - 4929540096 q^{84} - 210268800 q^{87} + 3958112256 q^{88} + 8317232080 q^{91} - 31744468392 q^{93} + 8505477120 q^{94} + 1409286144 q^{96} + 39176355064 q^{97} - 2626912512 q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} - 2 x^{3} - 37 x^{2} + 38 x + 531$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$-32 \nu^{3} + 48 \nu^{2} + 464 \nu - 240$$$$)/93$$ $$\beta_{2}$$ $$=$$ $$($$$$-36 \nu^{3} + 240 \nu^{2} + 1824 \nu - 4548$$$$)/31$$ $$\beta_{3}$$ $$=$$ $$($$$$-64 \nu^{3} - 2880 \nu^{2} + 6880 \nu + 54576$$$$)/31$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{3} + 16 \beta_{2} - 60 \beta_{1} + 432$$$$)/864$$ $$\nu^{2}$$ $$=$$ $$($$$$-7 \beta_{3} + 32 \beta_{2} - 66 \beta_{1} + 16848$$$$)/864$$ $$\nu^{3}$$ $$=$$ $$($$$$\beta_{3} + 70 \beta_{2} - 870 \beta_{1} + 6264$$$$)/216$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/150\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$127$$ $$\chi(n)$$ $$-1$$ $$1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
101.1
 −4.10977 + 1.41421i 5.10977 + 1.41421i −4.10977 − 1.41421i 5.10977 − 1.41421i
22.6274i −242.269 18.8335i −512.000 0 −426.153 + 5481.92i −670.530 11585.2i 58339.6 + 9125.53i 0
101.2 22.6274i 200.269 + 137.627i −512.000 0 3114.15 4531.57i 23226.5 11585.2i 21166.4 + 55125.0i 0
101.3 22.6274i −242.269 + 18.8335i −512.000 0 −426.153 5481.92i −670.530 11585.2i 58339.6 9125.53i 0
101.4 22.6274i 200.269 137.627i −512.000 0 3114.15 + 4531.57i 23226.5 11585.2i 21166.4 55125.0i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.11.d.a 4
3.b odd 2 1 inner 150.11.d.a 4
5.b even 2 1 6.11.b.a 4
5.c odd 4 2 150.11.b.a 8
15.d odd 2 1 6.11.b.a 4
15.e even 4 2 150.11.b.a 8
20.d odd 2 1 48.11.e.d 4
40.e odd 2 1 192.11.e.h 4
40.f even 2 1 192.11.e.g 4
45.h odd 6 2 162.11.d.d 8
45.j even 6 2 162.11.d.d 8
60.h even 2 1 48.11.e.d 4
120.i odd 2 1 192.11.e.g 4
120.m even 2 1 192.11.e.h 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.11.b.a 4 5.b even 2 1
6.11.b.a 4 15.d odd 2 1
48.11.e.d 4 20.d odd 2 1
48.11.e.d 4 60.h even 2 1
150.11.b.a 8 5.c odd 4 2
150.11.b.a 8 15.e even 4 2
150.11.d.a 4 1.a even 1 1 trivial
150.11.d.a 4 3.b odd 2 1 inner
162.11.d.d 8 45.h odd 6 2
162.11.d.d 8 45.j even 6 2
192.11.e.g 4 40.f even 2 1
192.11.e.g 4 120.i odd 2 1
192.11.e.h 4 40.e odd 2 1
192.11.e.h 4 120.m even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{7}^{2} - 22556 T_{7} - 15574076$$ acting on $$S_{11}^{\mathrm{new}}(150, [\chi])$$.

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$( 512 + T^{2} )^{2}$$
$3$ $$3486784401 + 4960116 T - 75978 T^{2} + 84 T^{3} + T^{4}$$
$5$ $$T^{4}$$
$7$ $$( -15574076 - 22556 T + T^{2} )^{2}$$
$11$ $$21\!\cdots\!24$$$$+ 58313211264 T^{2} + T^{4}$$
$13$ $$( -52372127900 + 137620 T + T^{2} )^{2}$$
$17$ $$32\!\cdots\!84$$$$+ 7560967182336 T^{2} + T^{4}$$
$19$ $$( -1189491369116 + 784364 T + T^{2} )^{2}$$
$23$ $$61\!\cdots\!24$$$$+ 33055507478016 T^{2} + T^{4}$$
$29$ $$20\!\cdots\!00$$$$+ 907304099736960 T^{2} + T^{4}$$
$31$ $$( -1294078582786556 + 10892924 T + T^{2} )^{2}$$
$37$ $$( -4297319054834396 - 35507084 T + T^{2} )^{2}$$
$41$ $$28\!\cdots\!04$$$$+ 23561404561257984 T^{2} + T^{4}$$
$43$ $$( 7278142478596516 - 235344332 T + T^{2} )^{2}$$
$47$ $$26\!\cdots\!00$$$$+ 25124763600230400 T^{2} + T^{4}$$
$53$ $$37\!\cdots\!04$$$$+ 212636466457531776 T^{2} + T^{4}$$
$59$ $$20\!\cdots\!04$$$$+ 324064557407447424 T^{2} + T^{4}$$
$61$ $$( 32529703648081636 + 592019372 T + T^{2} )^{2}$$
$67$ $$( -350207761464045596 - 148682924 T + T^{2} )^{2}$$
$71$ $$49\!\cdots\!00$$$$+ 1847488216292328960 T^{2} + T^{4}$$
$73$ $$( 2363496913262627140 + 3267134500 T + T^{2} )^{2}$$
$79$ $$( -3668964988480567676 - 99641284 T + T^{2} )^{2}$$
$83$ $$57\!\cdots\!44$$$$+ 5977139602070968704 T^{2} + T^{4}$$
$89$ $$15\!\cdots\!84$$$$+ 27084125311735371264 T^{2} + T^{4}$$
$97$ $$( 95016028790224257796 - 19588177532 T + T^{2} )^{2}$$