Properties

Label 15.9
Level 15
Weight 9
Dimension 40
Nonzero newspaces 3
Newform subspaces 5
Sturm bound 144
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 15 = 3 \cdot 5 \)
Weight: \( k \) = \( 9 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 5 \)
Sturm bound: \(144\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(15))\).

Total New Old
Modular forms 72 44 28
Cusp forms 56 40 16
Eisenstein series 16 4 12

Trace form

\( 40 q - 112 q^{3} + 984 q^{4} - 444 q^{5} - 7808 q^{6} + 11696 q^{7} + 17460 q^{8} - 5780 q^{9} - 48276 q^{10} - 23616 q^{11} + 18868 q^{12} + 77956 q^{13} - 75136 q^{15} + 76544 q^{16} + 573300 q^{17} - 419800 q^{18}+ \cdots - 674325280 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(15))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
15.9.c \(\chi_{15}(11, \cdot)\) 15.9.c.a 10 1
15.9.d \(\chi_{15}(14, \cdot)\) 15.9.d.a 1 1
15.9.d.b 1
15.9.d.c 12
15.9.f \(\chi_{15}(7, \cdot)\) 15.9.f.a 16 2

Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(15))\) into lower level spaces

\( S_{9}^{\mathrm{old}}(\Gamma_1(15)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)