# Properties

 Label 15.8.a.c Level 15 Weight 8 Character orbit 15.a Self dual Yes Analytic conductor 4.686 Analytic rank 0 Dimension 2 CM No Inner twists 1

# Related objects

## Newspace parameters

 Level: $$N$$ = $$15 = 3 \cdot 5$$ Weight: $$k$$ = $$8$$ Character orbit: $$[\chi]$$ = 15.a (trivial)

## Newform invariants

 Self dual: Yes Analytic conductor: $$4.68577538226$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{601})$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \frac{1}{2}(1 + \sqrt{601})$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 4 - \beta ) q^{2} + 27 q^{3} + ( 38 - 7 \beta ) q^{4} + 125 q^{5} + ( 108 - 27 \beta ) q^{6} + ( 624 + 56 \beta ) q^{7} + ( 690 + 69 \beta ) q^{8} + 729 q^{9} +O(q^{10})$$ $$q + ( 4 - \beta ) q^{2} + 27 q^{3} + ( 38 - 7 \beta ) q^{4} + 125 q^{5} + ( 108 - 27 \beta ) q^{6} + ( 624 + 56 \beta ) q^{7} + ( 690 + 69 \beta ) q^{8} + 729 q^{9} + ( 500 - 125 \beta ) q^{10} + ( 1492 + 464 \beta ) q^{11} + ( 1026 - 189 \beta ) q^{12} + ( -4082 - 824 \beta ) q^{13} + ( -5904 - 456 \beta ) q^{14} + 3375 q^{15} + ( -12454 + 413 \beta ) q^{16} + ( -3446 + 1400 \beta ) q^{17} + ( 2916 - 729 \beta ) q^{18} + ( -25820 + 2056 \beta ) q^{19} + ( 4750 - 875 \beta ) q^{20} + ( 16848 + 1512 \beta ) q^{21} + ( -63632 - 100 \beta ) q^{22} + ( 48528 - 5208 \beta ) q^{23} + ( 18630 + 1863 \beta ) q^{24} + 15625 q^{25} + ( 107272 + 1610 \beta ) q^{26} + 19683 q^{27} + ( -35088 - 2632 \beta ) q^{28} + ( 95030 - 8288 \beta ) q^{29} + ( 13500 - 3375 \beta ) q^{30} + ( 151032 + 2168 \beta ) q^{31} + ( -200086 + 4861 \beta ) q^{32} + ( 40284 + 12528 \beta ) q^{33} + ( -223784 + 7646 \beta ) q^{34} + ( 78000 + 7000 \beta ) q^{35} + ( 27702 - 5103 \beta ) q^{36} + ( -243946 - 14424 \beta ) q^{37} + ( -411680 + 31988 \beta ) q^{38} + ( -110214 - 22248 \beta ) q^{39} + ( 86250 + 8625 \beta ) q^{40} + ( 326282 - 21392 \beta ) q^{41} + ( -159408 - 12312 \beta ) q^{42} + ( 180388 - 7136 \beta ) q^{43} + ( -430504 + 3940 \beta ) q^{44} + 91125 q^{45} + ( 975312 - 64152 \beta ) q^{46} + ( -236696 + 5912 \beta ) q^{47} + ( -336258 + 11151 \beta ) q^{48} + ( 36233 + 73024 \beta ) q^{49} + ( 62500 - 15625 \beta ) q^{50} + ( -93042 + 37800 \beta ) q^{51} + ( 710084 + 3030 \beta ) q^{52} + ( -290642 + 13232 \beta ) q^{53} + ( 78732 - 19683 \beta ) q^{54} + ( 186500 + 58000 \beta ) q^{55} + ( 1010160 + 85560 \beta ) q^{56} + ( -697140 + 55512 \beta ) q^{57} + ( 1623320 - 119894 \beta ) q^{58} + ( 218500 - 149776 \beta ) q^{59} + ( 128250 - 23625 \beta ) q^{60} + ( -1257818 + 1456 \beta ) q^{61} + ( 278928 - 144528 \beta ) q^{62} + ( 454896 + 40824 \beta ) q^{63} + ( 64618 + 161805 \beta ) q^{64} + ( -510250 - 103000 \beta ) q^{65} + ( -1718064 - 2700 \beta ) q^{66} + ( -2601876 + 129920 \beta ) q^{67} + ( -1600948 + 67522 \beta ) q^{68} + ( 1310256 - 140616 \beta ) q^{69} + ( -738000 - 57000 \beta ) q^{70} + ( -1912648 + 76480 \beta ) q^{71} + ( 503010 + 50301 \beta ) q^{72} + ( -544502 - 388208 \beta ) q^{73} + ( 1187816 + 200674 \beta ) q^{74} + 421875 q^{75} + ( -3139960 + 244476 \beta ) q^{76} + ( 4828608 + 399072 \beta ) q^{77} + ( 2896344 + 43470 \beta ) q^{78} + ( -2273640 - 80440 \beta ) q^{79} + ( -1556750 + 51625 \beta ) q^{80} + 531441 q^{81} + ( 4513928 - 390458 \beta ) q^{82} + ( -2990532 - 91872 \beta ) q^{83} + ( -947376 - 71064 \beta ) q^{84} + ( -430750 + 175000 \beta ) q^{85} + ( 1791952 - 201796 \beta ) q^{86} + ( 2565810 - 223776 \beta ) q^{87} + ( 5831880 + 455124 \beta ) q^{88} + ( 8247930 + 20496 \beta ) q^{89} + ( 364500 - 91125 \beta ) q^{90} + ( -9468768 - 788912 \beta ) q^{91} + ( 7312464 - 501144 \beta ) q^{92} + ( 4077864 + 58536 \beta ) q^{93} + ( -1833584 + 254432 \beta ) q^{94} + ( -3227500 + 257000 \beta ) q^{95} + ( -5402322 + 131247 \beta ) q^{96} + ( 1147394 + 428640 \beta ) q^{97} + ( -10808668 + 182839 \beta ) q^{98} + ( 1087668 + 338256 \beta ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 7q^{2} + 54q^{3} + 69q^{4} + 250q^{5} + 189q^{6} + 1304q^{7} + 1449q^{8} + 1458q^{9} + O(q^{10})$$ $$2q + 7q^{2} + 54q^{3} + 69q^{4} + 250q^{5} + 189q^{6} + 1304q^{7} + 1449q^{8} + 1458q^{9} + 875q^{10} + 3448q^{11} + 1863q^{12} - 8988q^{13} - 12264q^{14} + 6750q^{15} - 24495q^{16} - 5492q^{17} + 5103q^{18} - 49584q^{19} + 8625q^{20} + 35208q^{21} - 127364q^{22} + 91848q^{23} + 39123q^{24} + 31250q^{25} + 216154q^{26} + 39366q^{27} - 72808q^{28} + 181772q^{29} + 23625q^{30} + 304232q^{31} - 395311q^{32} + 93096q^{33} - 439922q^{34} + 163000q^{35} + 50301q^{36} - 502316q^{37} - 791372q^{38} - 242676q^{39} + 181125q^{40} + 631172q^{41} - 331128q^{42} + 353640q^{43} - 857068q^{44} + 182250q^{45} + 1886472q^{46} - 467480q^{47} - 661365q^{48} + 145490q^{49} + 109375q^{50} - 148284q^{51} + 1423198q^{52} - 568052q^{53} + 137781q^{54} + 431000q^{55} + 2105880q^{56} - 1338768q^{57} + 3126746q^{58} + 287224q^{59} + 232875q^{60} - 2514180q^{61} + 413328q^{62} + 950616q^{63} + 291041q^{64} - 1123500q^{65} - 3438828q^{66} - 5073832q^{67} - 3134374q^{68} + 2479896q^{69} - 1533000q^{70} - 3748816q^{71} + 1056321q^{72} - 1477212q^{73} + 2576306q^{74} + 843750q^{75} - 6035444q^{76} + 10056288q^{77} + 5836158q^{78} - 4627720q^{79} - 3061875q^{80} + 1062882q^{81} + 8637398q^{82} - 6072936q^{83} - 1965816q^{84} - 686500q^{85} + 3382108q^{86} + 4907844q^{87} + 12118884q^{88} + 16516356q^{89} + 637875q^{90} - 19726448q^{91} + 14123784q^{92} + 8214264q^{93} - 3412736q^{94} - 6198000q^{95} - 10673397q^{96} + 2723428q^{97} - 21434497q^{98} + 2513592q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 12.7577 −11.7577
−8.75765 27.0000 −51.3036 125.000 −236.457 1338.43 1570.28 729.000 −1094.71
1.2 15.7577 27.0000 120.304 125.000 425.457 −34.4284 −121.278 729.000 1969.71
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$5$$ $$-1$$

## Hecke kernels

This newform can be constructed as the kernel of the linear operator $$T_{2}^{2} - 7 T_{2} - 138$$ acting on $$S_{8}^{\mathrm{new}}(\Gamma_0(15))$$.