Defining parameters
| Level: | \( N \) | \(=\) | \( 15 = 3 \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 8 \) |
| Character orbit: | \([\chi]\) | \(=\) | 15.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(16\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(15))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 16 | 4 | 12 |
| Cusp forms | 12 | 4 | 8 |
| Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(5\) | \(1\) | \(4\) | \(4\) | \(1\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(3\) | \(0\) | \(3\) | \(2\) | \(0\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(4\) | \(1\) | \(3\) | \(3\) | \(1\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(4\) | \(2\) | \(2\) | \(3\) | \(2\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(9\) | \(3\) | \(6\) | \(7\) | \(3\) | \(4\) | \(2\) | \(0\) | \(2\) | ||||
| Minus space | \(-\) | \(7\) | \(1\) | \(6\) | \(5\) | \(1\) | \(4\) | \(2\) | \(0\) | \(2\) | ||||
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(15))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 5 | |||||||
| 15.8.a.a | $1$ | $4.686$ | \(\Q\) | None | \(-22\) | \(27\) | \(-125\) | \(-420\) | $-$ | $+$ | \(q-22q^{2}+3^{3}q^{3}+356q^{4}-5^{3}q^{5}+\cdots\) | |
| 15.8.a.b | $1$ | $4.686$ | \(\Q\) | None | \(-13\) | \(-27\) | \(-125\) | \(1380\) | $+$ | $+$ | \(q-13q^{2}-3^{3}q^{3}+41q^{4}-5^{3}q^{5}+\cdots\) | |
| 15.8.a.c | $2$ | $4.686$ | \(\Q(\sqrt{601}) \) | None | \(7\) | \(54\) | \(250\) | \(1304\) | $-$ | $-$ | \(q+(4-\beta )q^{2}+3^{3}q^{3}+(38-7\beta )q^{4}+\cdots\) | |
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(15))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_0(15)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)