Properties

Label 15.8.a
Level $15$
Weight $8$
Character orbit 15.a
Rep. character $\chi_{15}(1,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $3$
Sturm bound $16$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 15 = 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 15.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(16\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(15))\).

Total New Old
Modular forms 16 4 12
Cusp forms 12 4 8
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(5\)\(1\)\(4\)\(4\)\(1\)\(3\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(3\)\(0\)\(3\)\(2\)\(0\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(4\)\(1\)\(3\)\(3\)\(1\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(4\)\(2\)\(2\)\(3\)\(2\)\(1\)\(1\)\(0\)\(1\)
Plus space\(+\)\(9\)\(3\)\(6\)\(7\)\(3\)\(4\)\(2\)\(0\)\(2\)
Minus space\(-\)\(7\)\(1\)\(6\)\(5\)\(1\)\(4\)\(2\)\(0\)\(2\)

Trace form

\( 4 q - 28 q^{2} + 54 q^{3} + 466 q^{4} - 54 q^{6} + 2264 q^{7} - 2436 q^{8} + 2916 q^{9} + 5250 q^{10} - 2800 q^{11} + 10368 q^{12} - 11488 q^{13} - 20964 q^{14} + 6750 q^{15} + 20338 q^{16} - 32032 q^{17}+ \cdots - 2041200 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(15))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5
15.8.a.a 15.a 1.a $1$ $4.686$ \(\Q\) None 15.8.a.a \(-22\) \(27\) \(-125\) \(-420\) $-$ $+$ $\mathrm{SU}(2)$ \(q-22q^{2}+3^{3}q^{3}+356q^{4}-5^{3}q^{5}+\cdots\)
15.8.a.b 15.a 1.a $1$ $4.686$ \(\Q\) None 15.8.a.b \(-13\) \(-27\) \(-125\) \(1380\) $+$ $+$ $\mathrm{SU}(2)$ \(q-13q^{2}-3^{3}q^{3}+41q^{4}-5^{3}q^{5}+\cdots\)
15.8.a.c 15.a 1.a $2$ $4.686$ \(\Q(\sqrt{601}) \) None 15.8.a.c \(7\) \(54\) \(250\) \(1304\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(4-\beta )q^{2}+3^{3}q^{3}+(38-7\beta )q^{4}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(15))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(15)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)