Properties

Label 15.8
Level 15
Weight 8
Dimension 36
Nonzero newspaces 3
Newform subspaces 5
Sturm bound 128
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 15 = 3 \cdot 5 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 5 \)
Sturm bound: \(128\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(15))\).

Total New Old
Modular forms 64 44 20
Cusp forms 48 36 12
Eisenstein series 16 8 8

Trace form

\( 36 q - 28 q^{2} + 78 q^{3} - 200 q^{4} - 444 q^{5} + 1356 q^{6} + 3608 q^{7} - 2436 q^{8} - 2916 q^{9} - 4616 q^{10} + 7952 q^{11} + 8340 q^{12} + 5360 q^{13} - 34488 q^{14} + 26814 q^{15} + 38000 q^{16}+ \cdots - 9879408 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(15))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
15.8.a \(\chi_{15}(1, \cdot)\) 15.8.a.a 1 1
15.8.a.b 1
15.8.a.c 2
15.8.b \(\chi_{15}(4, \cdot)\) 15.8.b.a 8 1
15.8.e \(\chi_{15}(2, \cdot)\) 15.8.e.a 24 2

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(15))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(15)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)