Properties

Label 15.6
Level 15
Weight 6
Dimension 24
Nonzero newspaces 3
Newform subspaces 5
Sturm bound 96
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 15 = 3 \cdot 5 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 5 \)
Sturm bound: \(96\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(15))\).

Total New Old
Modular forms 48 32 16
Cusp forms 32 24 8
Eisenstein series 16 8 8

Trace form

\( 24 q + 4 q^{2} - 18 q^{3} + 88 q^{4} + 120 q^{5} - 156 q^{6} - 312 q^{7} - 228 q^{8} + 1800 q^{10} + 1168 q^{11} - 444 q^{12} - 2904 q^{13} - 5976 q^{14} - 3450 q^{15} + 4720 q^{16} + 2656 q^{17} + 6324 q^{18}+ \cdots + 40176 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(15))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
15.6.a \(\chi_{15}(1, \cdot)\) 15.6.a.a 1 1
15.6.a.b 1
15.6.a.c 2
15.6.b \(\chi_{15}(4, \cdot)\) 15.6.b.a 4 1
15.6.e \(\chi_{15}(2, \cdot)\) 15.6.e.a 16 2

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(15))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(15)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)