Properties

Label 15.5.f
Level $15$
Weight $5$
Character orbit 15.f
Rep. character $\chi_{15}(7,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $8$
Newform subspaces $1$
Sturm bound $10$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 15 = 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 15.f (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(10\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(15, [\chi])\).

Total New Old
Modular forms 20 8 12
Cusp forms 12 8 4
Eisenstein series 8 0 8

Trace form

\( 8 q - 84 q^{5} + 36 q^{6} + 20 q^{7} + 180 q^{8} + 104 q^{10} - 288 q^{11} - 360 q^{12} - 340 q^{13} + 144 q^{15} + 620 q^{16} + 900 q^{17} + 564 q^{20} + 792 q^{21} - 1100 q^{22} - 1560 q^{23} - 1204 q^{25}+ \cdots + 46440 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(15, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
15.5.f.a 15.f 5.c $8$ $1.551$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 15.5.f.a \(0\) \(0\) \(-84\) \(20\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{2}+\beta _{5}q^{3}+(-\beta _{1}-12\beta _{2}-2\beta _{3}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{5}^{\mathrm{old}}(15, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(15, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 2}\)