Properties

Label 15.4.e
Level $15$
Weight $4$
Character orbit 15.e
Rep. character $\chi_{15}(2,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $8$
Newform subspaces $1$
Sturm bound $8$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 15 = 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 15.e (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(8\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(15, [\chi])\).

Total New Old
Modular forms 16 16 0
Cusp forms 8 8 0
Eisenstein series 8 8 0

Trace form

\( 8 q - 6 q^{3} - 12 q^{6} - 16 q^{7} - 100 q^{10} + 132 q^{12} + 68 q^{13} + 90 q^{15} + 284 q^{16} - 240 q^{18} - 492 q^{21} - 500 q^{22} - 220 q^{25} + 702 q^{27} + 508 q^{28} + 660 q^{30} + 616 q^{31}+ \cdots + 1904 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(15, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
15.4.e.a 15.e 15.e $8$ $0.885$ 8.0.\(\cdots\).8 None 15.4.e.a \(0\) \(-6\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{3}q^{2}+(-1-\beta _{2}+\beta _{5})q^{3}+(\beta _{2}+\cdots)q^{4}+\cdots\)