Properties

Label 15.4.b.a
Level $15$
Weight $4$
Character orbit 15.b
Analytic conductor $0.885$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 15 = 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 15.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.885028650086\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{41})\)
Defining polynomial: \(x^{4} + 21 x^{2} + 100\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{1} q^{2} + \beta_{2} q^{3} + ( -5 + \beta_{3} ) q^{4} + ( 2 + \beta_{1} - 2 \beta_{2} - \beta_{3} ) q^{5} + ( 5 - \beta_{3} ) q^{6} + ( 6 \beta_{1} - 4 \beta_{2} ) q^{7} + ( \beta_{1} + 8 \beta_{2} ) q^{8} -9 q^{9} +O(q^{10})\) \( q -\beta_{1} q^{2} + \beta_{2} q^{3} + ( -5 + \beta_{3} ) q^{4} + ( 2 + \beta_{1} - 2 \beta_{2} - \beta_{3} ) q^{5} + ( 5 - \beta_{3} ) q^{6} + ( 6 \beta_{1} - 4 \beta_{2} ) q^{7} + ( \beta_{1} + 8 \beta_{2} ) q^{8} -9 q^{9} + ( 3 - 6 \beta_{1} - 8 \beta_{2} + \beta_{3} ) q^{10} + ( -22 + 2 \beta_{3} ) q^{11} -9 \beta_{1} q^{12} + ( -6 \beta_{1} + 16 \beta_{2} ) q^{13} + ( 58 - 2 \beta_{3} ) q^{14} + ( 13 + 9 \beta_{1} - 3 \beta_{2} + \beta_{3} ) q^{15} + ( 13 - \beta_{3} ) q^{16} + ( -10 \beta_{1} - 12 \beta_{2} ) q^{17} + 9 \beta_{1} q^{18} + ( -24 - 8 \beta_{3} ) q^{19} + ( -102 + 9 \beta_{1} - 8 \beta_{2} + 6 \beta_{3} ) q^{20} + ( 6 + 6 \beta_{3} ) q^{21} + ( 30 \beta_{1} + 16 \beta_{2} ) q^{22} + ( 8 \beta_{1} - 12 \beta_{2} ) q^{23} + ( -77 + \beta_{3} ) q^{24} + ( 67 - 24 \beta_{1} + 28 \beta_{2} - 6 \beta_{3} ) q^{25} + ( 2 - 10 \beta_{3} ) q^{26} -9 \beta_{2} q^{27} + ( -18 \beta_{1} - 48 \beta_{2} ) q^{28} + ( 152 + 14 \beta_{3} ) q^{29} + ( 102 - 9 \beta_{1} + 8 \beta_{2} - 6 \beta_{3} ) q^{30} + ( 24 + 4 \beta_{3} ) q^{31} + ( -9 \beta_{1} + 56 \beta_{2} ) q^{32} + ( -18 \beta_{1} - 12 \beta_{2} ) q^{33} + ( -190 + 22 \beta_{3} ) q^{34} + ( -70 + 60 \beta_{2} - 10 \beta_{3} ) q^{35} + ( 45 - 9 \beta_{3} ) q^{36} + ( -54 \beta_{1} - 24 \beta_{2} ) q^{37} + ( -8 \beta_{1} - 64 \beta_{2} ) q^{38} + ( -114 - 6 \beta_{3} ) q^{39} + ( 101 + 78 \beta_{1} - 16 \beta_{2} + 7 \beta_{3} ) q^{40} + ( -206 + 4 \beta_{3} ) q^{41} + ( 18 \beta_{1} + 48 \beta_{2} ) q^{42} + ( 96 \beta_{1} - 28 \beta_{2} ) q^{43} + ( 294 - 30 \beta_{3} ) q^{44} + ( -18 - 9 \beta_{1} + 18 \beta_{2} + 9 \beta_{3} ) q^{45} + ( 44 + 4 \beta_{3} ) q^{46} + ( 92 \beta_{1} - 76 \beta_{2} ) q^{47} + ( 9 \beta_{1} + 8 \beta_{2} ) q^{48} + ( -29 - 12 \beta_{3} ) q^{49} + ( -172 - 91 \beta_{1} - 48 \beta_{2} - 4 \beta_{3} ) q^{50} + ( 158 - 10 \beta_{3} ) q^{51} + ( -90 \beta_{1} + 48 \beta_{2} ) q^{52} + ( -82 \beta_{1} + 108 \beta_{2} ) q^{53} + ( -45 + 9 \beta_{3} ) q^{54} + ( -228 + 6 \beta_{1} + 8 \beta_{2} + 24 \beta_{3} ) q^{55} + ( -10 + 50 \beta_{3} ) q^{56} + ( 72 \beta_{1} - 64 \beta_{2} ) q^{57} + ( -96 \beta_{1} + 112 \beta_{2} ) q^{58} + ( 94 - 2 \beta_{3} ) q^{59} + ( 27 - 54 \beta_{1} - 72 \beta_{2} + 9 \beta_{3} ) q^{60} + ( 186 - 32 \beta_{3} ) q^{61} + ( -8 \beta_{1} + 32 \beta_{2} ) q^{62} + ( -54 \beta_{1} + 36 \beta_{2} ) q^{63} + ( 267 - 55 \beta_{3} ) q^{64} + ( 226 + 108 \beta_{1} - 96 \beta_{2} + 22 \beta_{3} ) q^{65} + ( -294 + 30 \beta_{3} ) q^{66} + ( -60 \beta_{1} - 92 \beta_{2} ) q^{67} + ( 198 \beta_{1} + 80 \beta_{2} ) q^{68} + ( 68 + 8 \beta_{3} ) q^{69} + ( 300 + 30 \beta_{1} - 80 \beta_{2} - 60 \beta_{3} ) q^{70} + ( 12 - 60 \beta_{3} ) q^{71} + ( -9 \beta_{1} - 72 \beta_{2} ) q^{72} + ( 108 \beta_{1} + 168 \beta_{2} ) q^{73} + ( -822 + 78 \beta_{3} ) q^{74} + ( -132 + 54 \beta_{1} + 37 \beta_{2} - 24 \beta_{3} ) q^{75} + ( -616 + 8 \beta_{3} ) q^{76} + ( -108 \beta_{1} - 48 \beta_{2} ) q^{77} + ( 90 \beta_{1} - 48 \beta_{2} ) q^{78} + ( -240 + 100 \beta_{3} ) q^{79} + ( 118 - \beta_{1} - 8 \beta_{2} - 14 \beta_{3} ) q^{80} + 81 q^{81} + ( 222 \beta_{1} + 32 \beta_{2} ) q^{82} + ( -208 \beta_{1} - 60 \beta_{2} ) q^{83} + ( 522 - 18 \beta_{3} ) q^{84} + ( -126 - 168 \beta_{1} - 44 \beta_{2} - 2 \beta_{3} ) q^{85} + ( 1108 - 68 \beta_{3} ) q^{86} + ( -126 \beta_{1} + 222 \beta_{2} ) q^{87} + ( -174 \beta_{1} - 112 \beta_{2} ) q^{88} + ( -534 - 48 \beta_{3} ) q^{89} + ( -27 + 54 \beta_{1} + 72 \beta_{2} - 9 \beta_{3} ) q^{90} + ( 444 + 84 \beta_{3} ) q^{91} + ( 36 \beta_{1} - 64 \beta_{2} ) q^{92} + ( -36 \beta_{1} + 44 \beta_{2} ) q^{93} + ( 816 - 16 \beta_{3} ) q^{94} + ( 688 - 136 \beta_{1} + 192 \beta_{2} + 16 \beta_{3} ) q^{95} + ( -459 - 9 \beta_{3} ) q^{96} + ( 240 \beta_{1} + 8 \beta_{2} ) q^{97} + ( -19 \beta_{1} - 96 \beta_{2} ) q^{98} + ( 198 - 18 \beta_{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 18q^{4} + 6q^{5} + 18q^{6} - 36q^{9} + O(q^{10}) \) \( 4q - 18q^{4} + 6q^{5} + 18q^{6} - 36q^{9} + 14q^{10} - 84q^{11} + 228q^{14} + 54q^{15} + 50q^{16} - 112q^{19} - 396q^{20} + 36q^{21} - 306q^{24} + 256q^{25} - 12q^{26} + 636q^{29} + 396q^{30} + 104q^{31} - 716q^{34} - 300q^{35} + 162q^{36} - 468q^{39} + 418q^{40} - 816q^{41} + 1116q^{44} - 54q^{45} + 184q^{46} - 140q^{49} - 696q^{50} + 612q^{51} - 162q^{54} - 864q^{55} + 60q^{56} + 372q^{59} + 126q^{60} + 680q^{61} + 958q^{64} + 948q^{65} - 1116q^{66} + 288q^{69} + 1080q^{70} - 72q^{71} - 3132q^{74} - 576q^{75} - 2448q^{76} - 760q^{79} + 444q^{80} + 324q^{81} + 2052q^{84} - 508q^{85} + 4296q^{86} - 2232q^{89} - 126q^{90} + 1944q^{91} + 3232q^{94} + 2784q^{95} - 1854q^{96} + 756q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 21 x^{2} + 100\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{3} + \nu \)\()/10\)
\(\beta_{2}\)\(=\)\((\)\( 3 \nu^{3} + 33 \nu \)\()/10\)
\(\beta_{3}\)\(=\)\( 3 \nu^{2} + 32 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{2} - 3 \beta_{1}\)\()/3\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{3} - 32\)\()/3\)
\(\nu^{3}\)\(=\)\((\)\(-\beta_{2} + 33 \beta_{1}\)\()/3\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/15\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(11\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4.1
3.70156i
2.70156i
2.70156i
3.70156i
4.70156i 3.00000i −14.1047 11.1047 1.29844i 14.1047 16.2094i 28.7016i −9.00000 −6.10469 52.2094i
4.2 1.70156i 3.00000i 5.10469 −8.10469 + 7.70156i −5.10469 22.2094i 22.2984i −9.00000 13.1047 + 13.7906i
4.3 1.70156i 3.00000i 5.10469 −8.10469 7.70156i −5.10469 22.2094i 22.2984i −9.00000 13.1047 13.7906i
4.4 4.70156i 3.00000i −14.1047 11.1047 + 1.29844i 14.1047 16.2094i 28.7016i −9.00000 −6.10469 + 52.2094i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 15.4.b.a 4
3.b odd 2 1 45.4.b.b 4
4.b odd 2 1 240.4.f.f 4
5.b even 2 1 inner 15.4.b.a 4
5.c odd 4 1 75.4.a.c 2
5.c odd 4 1 75.4.a.f 2
8.b even 2 1 960.4.f.q 4
8.d odd 2 1 960.4.f.p 4
12.b even 2 1 720.4.f.j 4
15.d odd 2 1 45.4.b.b 4
15.e even 4 1 225.4.a.i 2
15.e even 4 1 225.4.a.o 2
20.d odd 2 1 240.4.f.f 4
20.e even 4 1 1200.4.a.bn 2
20.e even 4 1 1200.4.a.bt 2
40.e odd 2 1 960.4.f.p 4
40.f even 2 1 960.4.f.q 4
60.h even 2 1 720.4.f.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.4.b.a 4 1.a even 1 1 trivial
15.4.b.a 4 5.b even 2 1 inner
45.4.b.b 4 3.b odd 2 1
45.4.b.b 4 15.d odd 2 1
75.4.a.c 2 5.c odd 4 1
75.4.a.f 2 5.c odd 4 1
225.4.a.i 2 15.e even 4 1
225.4.a.o 2 15.e even 4 1
240.4.f.f 4 4.b odd 2 1
240.4.f.f 4 20.d odd 2 1
720.4.f.j 4 12.b even 2 1
720.4.f.j 4 60.h even 2 1
960.4.f.p 4 8.d odd 2 1
960.4.f.p 4 40.e odd 2 1
960.4.f.q 4 8.b even 2 1
960.4.f.q 4 40.f even 2 1
1200.4.a.bn 2 20.e even 4 1
1200.4.a.bt 2 20.e even 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(15, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 64 + 25 T^{2} + T^{4} \)
$3$ \( ( 9 + T^{2} )^{2} \)
$5$ \( 15625 - 750 T - 110 T^{2} - 6 T^{3} + T^{4} \)
$7$ \( 129600 + 756 T^{2} + T^{4} \)
$11$ \( ( 72 + 42 T + T^{2} )^{2} \)
$13$ \( 1327104 + 3780 T^{2} + T^{4} \)
$17$ \( 2483776 + 7252 T^{2} + T^{4} \)
$19$ \( ( -5120 + 56 T + T^{2} )^{2} \)
$23$ \( 6400 + 2464 T^{2} + T^{4} \)
$29$ \( ( 7200 - 318 T + T^{2} )^{2} \)
$31$ \( ( -800 - 52 T + T^{2} )^{2} \)
$37$ \( 41990400 + 106596 T^{2} + T^{4} \)
$41$ \( ( 40140 + 408 T + T^{2} )^{2} \)
$43$ \( 8256266496 + 196128 T^{2} + T^{4} \)
$47$ \( 6186766336 + 189712 T^{2} + T^{4} \)
$53$ \( 813390400 + 218644 T^{2} + T^{4} \)
$59$ \( ( 8280 - 186 T + T^{2} )^{2} \)
$61$ \( ( -65564 - 340 T + T^{2} )^{2} \)
$67$ \( 9419867136 + 341712 T^{2} + T^{4} \)
$71$ \( ( -331776 + 36 T + T^{2} )^{2} \)
$73$ \( 104976000000 + 1126224 T^{2} + T^{4} \)
$79$ \( ( -886400 + 380 T + T^{2} )^{2} \)
$83$ \( 40558737664 + 1371040 T^{2} + T^{4} \)
$89$ \( ( 98820 + 1116 T + T^{2} )^{2} \)
$97$ \( 196199387136 + 1475712 T^{2} + T^{4} \)
show more
show less