Defining parameters
Level: | \( N \) | \(=\) | \( 15 = 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 15.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(8\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(15))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 8 | 2 | 6 |
Cusp forms | 4 | 2 | 2 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | Fricke | Dim. |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(0\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(15))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 5 | |||||||
15.4.a.a | $1$ | $0.885$ | \(\Q\) | None | \(1\) | \(3\) | \(5\) | \(-24\) | $-$ | $-$ | \(q+q^{2}+3q^{3}-7q^{4}+5q^{5}+3q^{6}+\cdots\) | |
15.4.a.b | $1$ | $0.885$ | \(\Q\) | None | \(3\) | \(-3\) | \(-5\) | \(20\) | $+$ | $+$ | \(q+3q^{2}-3q^{3}+q^{4}-5q^{5}-9q^{6}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(15))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(15)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)