Properties

Label 15.4
Level 15
Weight 4
Dimension 14
Nonzero newspaces 3
Newform subspaces 4
Sturm bound 64
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 15 = 3 \cdot 5 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 4 \)
Sturm bound: \(64\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(15))\).

Total New Old
Modular forms 32 22 10
Cusp forms 16 14 2
Eisenstein series 16 8 8

Trace form

\( 14 q + 4 q^{2} - 6 q^{3} - 24 q^{4} + 6 q^{5} - 20 q^{7} - 36 q^{8} - 18 q^{9} - 96 q^{10} - 56 q^{11} + 108 q^{12} + 164 q^{13} + 264 q^{14} + 174 q^{15} + 304 q^{16} + 40 q^{17} - 204 q^{18} - 256 q^{19}+ \cdots + 1008 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
15.4.a \(\chi_{15}(1, \cdot)\) 15.4.a.a 1 1
15.4.a.b 1
15.4.b \(\chi_{15}(4, \cdot)\) 15.4.b.a 4 1
15.4.e \(\chi_{15}(2, \cdot)\) 15.4.e.a 8 2

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(15))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(15)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 1}\)