# Properties

 Label 15.3.f Level $15$ Weight $3$ Character orbit 15.f Rep. character $\chi_{15}(7,\cdot)$ Character field $\Q(\zeta_{4})$ Dimension $4$ Newform subspaces $1$ Sturm bound $6$ Trace bound $0$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$15 = 3 \cdot 5$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 15.f (of order $$4$$ and degree $$2$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$5$$ Character field: $$\Q(i)$$ Newform subspaces: $$1$$ Sturm bound: $$6$$ Trace bound: $$0$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{3}(15, [\chi])$$.

Total New Old
Modular forms 12 4 8
Cusp forms 4 4 0
Eisenstein series 8 0 8

## Trace form

 $$4 q - 4 q^{2} - 4 q^{5} - 12 q^{6} + 4 q^{7} + 12 q^{8} + O(q^{10})$$ $$4 q - 4 q^{2} - 4 q^{5} - 12 q^{6} + 4 q^{7} + 12 q^{8} + 4 q^{10} + 16 q^{11} + 24 q^{12} - 32 q^{13} + 24 q^{15} - 20 q^{16} - 40 q^{17} - 12 q^{18} - 36 q^{20} - 24 q^{21} + 20 q^{22} + 56 q^{23} + 16 q^{25} + 88 q^{26} + 44 q^{28} - 24 q^{30} - 16 q^{31} - 76 q^{32} - 36 q^{33} - 40 q^{35} + 12 q^{36} + 64 q^{37} - 96 q^{38} + 48 q^{40} - 56 q^{41} + 12 q^{42} - 8 q^{43} + 36 q^{45} - 136 q^{46} + 128 q^{47} + 48 q^{48} + 164 q^{50} + 72 q^{51} - 80 q^{52} + 56 q^{53} - 124 q^{55} - 72 q^{57} - 12 q^{58} - 84 q^{60} + 200 q^{61} + 88 q^{62} + 12 q^{63} - 112 q^{65} + 24 q^{66} - 200 q^{67} - 104 q^{68} - 60 q^{70} - 272 q^{71} - 36 q^{72} + 76 q^{73} + 24 q^{75} + 312 q^{76} + 88 q^{77} + 120 q^{78} + 164 q^{80} - 36 q^{81} + 128 q^{82} - 16 q^{83} + 232 q^{85} - 224 q^{86} - 84 q^{87} + 12 q^{88} - 96 q^{90} - 16 q^{91} + 104 q^{92} - 72 q^{93} + 144 q^{95} - 84 q^{96} - 20 q^{97} - 188 q^{98} + O(q^{100})$$

## Decomposition of $$S_{3}^{\mathrm{new}}(15, [\chi])$$ into newform subspaces

Label Dim $A$ Field CM Traces $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
15.3.f.a $4$ $0.409$ $$\Q(i, \sqrt{6})$$ None $$-4$$ $$0$$ $$-4$$ $$4$$ $$q+(-1+\beta _{1}-\beta _{2})q^{2}+\beta _{3}q^{3}+(-2\beta _{1}+\cdots)q^{4}+\cdots$$