Properties

Label 15.3.d.b
Level 15
Weight 3
Character orbit 15.d
Self dual Yes
Analytic conductor 0.409
Analytic rank 0
Dimension 1
CM disc. -15
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 15 = 3 \cdot 5 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 15.d (of order \(2\) and degree \(1\))

Newform invariants

Self dual: Yes
Analytic conductor: \(0.40872039654\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - 3q^{3} - 3q^{4} + 5q^{5} - 3q^{6} - 7q^{8} + 9q^{9} + O(q^{10}) \) \( q + q^{2} - 3q^{3} - 3q^{4} + 5q^{5} - 3q^{6} - 7q^{8} + 9q^{9} + 5q^{10} + 9q^{12} - 15q^{15} + 5q^{16} - 14q^{17} + 9q^{18} - 22q^{19} - 15q^{20} + 34q^{23} + 21q^{24} + 25q^{25} - 27q^{27} - 15q^{30} + 2q^{31} + 33q^{32} - 14q^{34} - 27q^{36} - 22q^{38} - 35q^{40} + 45q^{45} + 34q^{46} - 14q^{47} - 15q^{48} + 49q^{49} + 25q^{50} + 42q^{51} - 86q^{53} - 27q^{54} + 66q^{57} + 45q^{60} - 118q^{61} + 2q^{62} + 13q^{64} + 42q^{68} - 102q^{69} - 63q^{72} - 75q^{75} + 66q^{76} + 98q^{79} + 25q^{80} + 81q^{81} + 154q^{83} - 70q^{85} + 45q^{90} - 102q^{92} - 6q^{93} - 14q^{94} - 110q^{95} - 99q^{96} + 49q^{98} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/15\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(11\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
14.1
0
1.00000 −3.00000 −3.00000 5.00000 −3.00000 0 −7.00000 9.00000 5.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
15.d Odd 1 CM by \(\Q(\sqrt{-15}) \) yes

Hecke kernels

This newform can be constructed as the kernel of the linear operator \( T_{2} - 1 \) acting on \(S_{3}^{\mathrm{new}}(15, [\chi])\).