Properties

Label 15.3.c
Level $15$
Weight $3$
Character orbit 15.c
Rep. character $\chi_{15}(11,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $6$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 15 = 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 15.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(6\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(15, [\chi])\).

Total New Old
Modular forms 6 2 4
Cusp forms 2 2 0
Eisenstein series 4 0 4

Trace form

\( 2 q - 4 q^{3} - 2 q^{4} + 10 q^{6} - 12 q^{7} - 2 q^{9} + 10 q^{10} + 4 q^{12} + 32 q^{13} - 10 q^{15} - 38 q^{16} - 40 q^{18} - 4 q^{19} + 24 q^{21} + 20 q^{22} + 30 q^{24} - 10 q^{25} + 44 q^{27} + 12 q^{28}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(15, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
15.3.c.a 15.c 3.b $2$ $0.409$ \(\Q(\sqrt{-5}) \) None 15.3.c.a \(0\) \(-4\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}+(-2-\beta )q^{3}-q^{4}-\beta q^{5}+\cdots\)