Defining parameters
Level: | \( N \) | = | \( 15 = 3 \cdot 5 \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 3 \) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(15))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 12 | 12 |
Cusp forms | 8 | 8 | 0 |
Eisenstein series | 16 | 4 | 12 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(15))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
15.3.c | \(\chi_{15}(11, \cdot)\) | 15.3.c.a | 2 | 1 |
15.3.d | \(\chi_{15}(14, \cdot)\) | 15.3.d.a | 1 | 1 |
15.3.d.b | 1 | |||
15.3.f | \(\chi_{15}(7, \cdot)\) | 15.3.f.a | 4 | 2 |