Defining parameters
Level: | \( N \) | \(=\) | \( 15 = 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 22 \) |
Character orbit: | \([\chi]\) | \(=\) | 15.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(44\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_0(15))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 14 | 30 |
Cusp forms | 40 | 14 | 26 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | Fricke | Dim. |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(3\) |
\(+\) | \(-\) | \(-\) | \(4\) |
\(-\) | \(+\) | \(-\) | \(4\) |
\(-\) | \(-\) | \(+\) | \(3\) |
Plus space | \(+\) | \(6\) | |
Minus space | \(-\) | \(8\) |
Trace form
Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_0(15))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 5 | |||||||
15.22.a.a | $1$ | $41.922$ | \(\Q\) | None | \(544\) | \(59049\) | \(-9765625\) | \(1277698380\) | $-$ | $+$ | \(q+544q^{2}+3^{10}q^{3}-1801216q^{4}+\cdots\) | |
15.22.a.b | $3$ | $41.922$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(-2300\) | \(177147\) | \(29296875\) | \(465666872\) | $-$ | $-$ | \(q+(-767-\beta _{1})q^{2}+3^{10}q^{3}+(421908+\cdots)q^{4}+\cdots\) | |
15.22.a.c | $3$ | $41.922$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(702\) | \(-177147\) | \(-29296875\) | \(-2072418204\) | $+$ | $+$ | \(q+(234+\beta _{1})q^{2}-3^{10}q^{3}+(1748076+\cdots)q^{4}+\cdots\) | |
15.22.a.d | $3$ | $41.922$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(803\) | \(177147\) | \(-29296875\) | \(-1577598316\) | $-$ | $+$ | \(q+(268-\beta _{1})q^{2}+3^{10}q^{3}+(2238318+\cdots)q^{4}+\cdots\) | |
15.22.a.e | $4$ | $41.922$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(-897\) | \(-236196\) | \(39062500\) | \(-234577504\) | $+$ | $-$ | \(q+(-224-\beta _{1})q^{2}-3^{10}q^{3}+(-290854+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_0(15))\) into lower level spaces
\( S_{22}^{\mathrm{old}}(\Gamma_0(15)) \cong \) \(S_{22}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)