Properties

Label 15.10.a.d
Level $15$
Weight $10$
Character orbit 15.a
Self dual yes
Analytic conductor $7.726$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [15,10,Mod(1,15)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(15, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("15.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 15 = 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 15.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,31] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.72553754246\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{241}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(-1 + 3\sqrt{241})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 15) q^{2} - 81 q^{3} + ( - 31 \beta + 255) q^{4} + 625 q^{5} + (81 \beta - 1215) q^{6} + ( - 224 \beta + 6944) q^{7} + ( - 239 \beta + 12947) q^{8} + 6561 q^{9} + ( - 625 \beta + 9375) q^{10}+ \cdots + (15536448 \beta - 62801892) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 31 q^{2} - 162 q^{3} + 541 q^{4} + 1250 q^{5} - 2511 q^{6} + 14112 q^{7} + 26133 q^{8} + 13122 q^{9} + 19375 q^{10} - 21512 q^{11} - 43821 q^{12} + 24284 q^{13} + 461664 q^{14} - 101250 q^{15} + 387265 q^{16}+ \cdots - 141140232 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
8.26209
−7.26209
−7.78626 −81.0000 −451.374 625.000 630.687 1839.88 7501.08 6561.00 −4866.41
1.2 38.7863 −81.0000 992.374 625.000 −3141.69 12272.1 18631.9 6561.00 24241.4
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 15.10.a.d 2
3.b odd 2 1 45.10.a.d 2
4.b odd 2 1 240.10.a.r 2
5.b even 2 1 75.10.a.f 2
5.c odd 4 2 75.10.b.f 4
15.d odd 2 1 225.10.a.k 2
15.e even 4 2 225.10.b.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.10.a.d 2 1.a even 1 1 trivial
45.10.a.d 2 3.b odd 2 1
75.10.a.f 2 5.b even 2 1
75.10.b.f 4 5.c odd 4 2
225.10.a.k 2 15.d odd 2 1
225.10.b.i 4 15.e even 4 2
240.10.a.r 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 31T_{2} - 302 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(15))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 31T - 302 \) Copy content Toggle raw display
$3$ \( (T + 81)^{2} \) Copy content Toggle raw display
$5$ \( (T - 625)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 14112 T + 22579200 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 2924934128 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 15338329532 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 24505657916 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 15492203120 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 239117414400 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 13616383922300 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 16415447040000 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 99286893737380 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 38475315093220 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 254550637865456 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 18\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 14677210114460 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 99\!\cdots\!20 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 28\!\cdots\!96 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 20\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 147594805309376 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 12\!\cdots\!60 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 19\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 60\!\cdots\!92 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 13\!\cdots\!20 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 68\!\cdots\!64 \) Copy content Toggle raw display
show more
show less