Defining parameters
Level: | \( N \) | \(=\) | \( 15 = 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 15.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(20\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(15))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 20 | 6 | 14 |
Cusp forms | 16 | 6 | 10 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(4\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(15))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 5 | |||||||
15.10.a.a | $1$ | $7.726$ | \(\Q\) | None | \(-4\) | \(81\) | \(625\) | \(-7680\) | $-$ | $-$ | \(q-4q^{2}+3^{4}q^{3}-496q^{4}+5^{4}q^{5}+\cdots\) | |
15.10.a.b | $1$ | $7.726$ | \(\Q\) | None | \(22\) | \(-81\) | \(-625\) | \(-5988\) | $+$ | $+$ | \(q+22q^{2}-3^{4}q^{3}-28q^{4}-5^{4}q^{5}+\cdots\) | |
15.10.a.c | $2$ | $7.726$ | \(\Q(\sqrt{4729}) \) | None | \(19\) | \(162\) | \(-1250\) | \(-11872\) | $-$ | $+$ | \(q+(10-\beta )q^{2}+3^{4}q^{3}+(770-19\beta )q^{4}+\cdots\) | |
15.10.a.d | $2$ | $7.726$ | \(\Q(\sqrt{241}) \) | None | \(31\) | \(-162\) | \(1250\) | \(14112\) | $+$ | $-$ | \(q+(15-\beta )q^{2}-3^{4}q^{3}+(255-31\beta )q^{4}+\cdots\) |
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(15))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(15)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)