Properties

Label 15.10.a
Level $15$
Weight $10$
Character orbit 15.a
Rep. character $\chi_{15}(1,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $4$
Sturm bound $20$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 15 = 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 15.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(20\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(15))\).

Total New Old
Modular forms 20 6 14
Cusp forms 16 6 10
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(4\)\(1\)\(3\)\(3\)\(1\)\(2\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(6\)\(2\)\(4\)\(5\)\(2\)\(3\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(5\)\(2\)\(3\)\(4\)\(2\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(5\)\(1\)\(4\)\(4\)\(1\)\(3\)\(1\)\(0\)\(1\)
Plus space\(+\)\(9\)\(2\)\(7\)\(7\)\(2\)\(5\)\(2\)\(0\)\(2\)
Minus space\(-\)\(11\)\(4\)\(7\)\(9\)\(4\)\(5\)\(2\)\(0\)\(2\)

Trace form

\( 6 q + 68 q^{2} + 1538 q^{4} - 3078 q^{6} - 11428 q^{7} + 67932 q^{8} + 39366 q^{9} - 8750 q^{10} - 87076 q^{11} + 41472 q^{12} + 55888 q^{13} + 115452 q^{14} - 101250 q^{15} + 1085330 q^{16} - 420520 q^{17}+ \cdots - 571305636 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(15))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5
15.10.a.a 15.a 1.a $1$ $7.726$ \(\Q\) None 15.10.a.a \(-4\) \(81\) \(625\) \(-7680\) $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+3^{4}q^{3}-496q^{4}+5^{4}q^{5}+\cdots\)
15.10.a.b 15.a 1.a $1$ $7.726$ \(\Q\) None 15.10.a.b \(22\) \(-81\) \(-625\) \(-5988\) $+$ $+$ $\mathrm{SU}(2)$ \(q+22q^{2}-3^{4}q^{3}-28q^{4}-5^{4}q^{5}+\cdots\)
15.10.a.c 15.a 1.a $2$ $7.726$ \(\Q(\sqrt{4729}) \) None 15.10.a.c \(19\) \(162\) \(-1250\) \(-11872\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(10-\beta )q^{2}+3^{4}q^{3}+(770-19\beta )q^{4}+\cdots\)
15.10.a.d 15.a 1.a $2$ $7.726$ \(\Q(\sqrt{241}) \) None 15.10.a.d \(31\) \(-162\) \(1250\) \(14112\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(15-\beta )q^{2}-3^{4}q^{3}+(255-31\beta )q^{4}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(15))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(15)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)