Properties

Label 1480.2.q.b.1321.6
Level $1480$
Weight $2$
Character 1480.1321
Analytic conductor $11.818$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1480,2,Mod(121,1480)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1480.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1480, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1480 = 2^{3} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1480.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,2,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.8178594991\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 2 x^{17} + 18 x^{16} - 22 x^{15} + 194 x^{14} - 224 x^{13} + 1053 x^{12} - 770 x^{11} + \cdots + 441 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1321.6
Root \(0.579516 - 1.00375i\) of defining polynomial
Character \(\chi\) \(=\) 1480.1321
Dual form 1480.2.q.b.121.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.579516 - 1.00375i) q^{3} +(0.500000 - 0.866025i) q^{5} +(-1.05730 + 1.83130i) q^{7} +(0.828323 + 1.43470i) q^{9} +1.33240 q^{11} +(-0.166509 + 0.288401i) q^{13} +(-0.579516 - 1.00375i) q^{15} +(-3.96884 - 6.87424i) q^{17} +(2.30116 - 3.98572i) q^{19} +(1.22545 + 2.12254i) q^{21} +1.88058 q^{23} +(-0.500000 - 0.866025i) q^{25} +5.39720 q^{27} +4.92639 q^{29} +8.17565 q^{31} +(0.772146 - 1.33740i) q^{33} +(1.05730 + 1.83130i) q^{35} +(1.07456 - 5.98710i) q^{37} +(0.192989 + 0.334266i) q^{39} +(-5.67758 + 9.83387i) q^{41} -0.0283197 q^{43} +1.65665 q^{45} +7.84019 q^{47} +(1.26422 + 2.18970i) q^{49} -9.20003 q^{51} +(2.86824 + 4.96793i) q^{53} +(0.666199 - 1.15389i) q^{55} +(-2.66712 - 4.61958i) q^{57} +(1.02570 + 1.77656i) q^{59} +(6.44385 - 11.1611i) q^{61} -3.50315 q^{63} +(0.166509 + 0.288401i) q^{65} +(5.07370 - 8.78790i) q^{67} +(1.08983 - 1.88764i) q^{69} +(2.32718 - 4.03079i) q^{71} -6.70986 q^{73} -1.15903 q^{75} +(-1.40875 + 2.44002i) q^{77} +(6.84041 - 11.8479i) q^{79} +(0.642795 - 1.11335i) q^{81} +(0.276189 + 0.478373i) q^{83} -7.93769 q^{85} +(2.85492 - 4.94487i) q^{87} +(-8.23445 - 14.2625i) q^{89} +(-0.352100 - 0.609855i) q^{91} +(4.73792 - 8.20631i) q^{93} +(-2.30116 - 3.98572i) q^{95} +0.0622295 q^{97} +(1.10366 + 1.91159i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{3} + 9 q^{5} - 5 q^{9} - 6 q^{11} + 2 q^{13} - 2 q^{15} + q^{17} - 5 q^{21} + 12 q^{23} - 9 q^{25} - 10 q^{27} - 20 q^{29} + 28 q^{31} + 11 q^{33} - 5 q^{39} - 5 q^{41} + 2 q^{43} - 10 q^{45}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1480\mathbb{Z}\right)^\times\).

\(n\) \(297\) \(741\) \(1001\) \(1111\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.579516 1.00375i 0.334584 0.579516i −0.648821 0.760941i \(-0.724738\pi\)
0.983405 + 0.181425i \(0.0580710\pi\)
\(4\) 0 0
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0 0
\(7\) −1.05730 + 1.83130i −0.399623 + 0.692167i −0.993679 0.112256i \(-0.964192\pi\)
0.594056 + 0.804423i \(0.297526\pi\)
\(8\) 0 0
\(9\) 0.828323 + 1.43470i 0.276108 + 0.478232i
\(10\) 0 0
\(11\) 1.33240 0.401733 0.200867 0.979619i \(-0.435624\pi\)
0.200867 + 0.979619i \(0.435624\pi\)
\(12\) 0 0
\(13\) −0.166509 + 0.288401i −0.0461812 + 0.0799881i −0.888192 0.459472i \(-0.848038\pi\)
0.842011 + 0.539461i \(0.181372\pi\)
\(14\) 0 0
\(15\) −0.579516 1.00375i −0.149630 0.259167i
\(16\) 0 0
\(17\) −3.96884 6.87424i −0.962586 1.66725i −0.715966 0.698135i \(-0.754014\pi\)
−0.246620 0.969112i \(-0.579320\pi\)
\(18\) 0 0
\(19\) 2.30116 3.98572i 0.527922 0.914388i −0.471548 0.881840i \(-0.656305\pi\)
0.999470 0.0325474i \(-0.0103620\pi\)
\(20\) 0 0
\(21\) 1.22545 + 2.12254i 0.267415 + 0.463176i
\(22\) 0 0
\(23\) 1.88058 0.392128 0.196064 0.980591i \(-0.437184\pi\)
0.196064 + 0.980591i \(0.437184\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 5.39720 1.03869
\(28\) 0 0
\(29\) 4.92639 0.914808 0.457404 0.889259i \(-0.348779\pi\)
0.457404 + 0.889259i \(0.348779\pi\)
\(30\) 0 0
\(31\) 8.17565 1.46839 0.734195 0.678939i \(-0.237560\pi\)
0.734195 + 0.678939i \(0.237560\pi\)
\(32\) 0 0
\(33\) 0.772146 1.33740i 0.134413 0.232811i
\(34\) 0 0
\(35\) 1.05730 + 1.83130i 0.178717 + 0.309547i
\(36\) 0 0
\(37\) 1.07456 5.98710i 0.176657 0.984272i
\(38\) 0 0
\(39\) 0.192989 + 0.334266i 0.0309029 + 0.0535254i
\(40\) 0 0
\(41\) −5.67758 + 9.83387i −0.886690 + 1.53579i −0.0429252 + 0.999078i \(0.513668\pi\)
−0.843765 + 0.536713i \(0.819666\pi\)
\(42\) 0 0
\(43\) −0.0283197 −0.00431871 −0.00215936 0.999998i \(-0.500687\pi\)
−0.00215936 + 0.999998i \(0.500687\pi\)
\(44\) 0 0
\(45\) 1.65665 0.246958
\(46\) 0 0
\(47\) 7.84019 1.14361 0.571805 0.820390i \(-0.306243\pi\)
0.571805 + 0.820390i \(0.306243\pi\)
\(48\) 0 0
\(49\) 1.26422 + 2.18970i 0.180603 + 0.312814i
\(50\) 0 0
\(51\) −9.20003 −1.28826
\(52\) 0 0
\(53\) 2.86824 + 4.96793i 0.393983 + 0.682398i 0.992971 0.118360i \(-0.0377637\pi\)
−0.598988 + 0.800758i \(0.704430\pi\)
\(54\) 0 0
\(55\) 0.666199 1.15389i 0.0898303 0.155591i
\(56\) 0 0
\(57\) −2.66712 4.61958i −0.353268 0.611878i
\(58\) 0 0
\(59\) 1.02570 + 1.77656i 0.133534 + 0.231288i 0.925037 0.379878i \(-0.124034\pi\)
−0.791502 + 0.611166i \(0.790701\pi\)
\(60\) 0 0
\(61\) 6.44385 11.1611i 0.825051 1.42903i −0.0768294 0.997044i \(-0.524480\pi\)
0.901880 0.431986i \(-0.142187\pi\)
\(62\) 0 0
\(63\) −3.50315 −0.441356
\(64\) 0 0
\(65\) 0.166509 + 0.288401i 0.0206528 + 0.0357718i
\(66\) 0 0
\(67\) 5.07370 8.78790i 0.619851 1.07361i −0.369662 0.929166i \(-0.620527\pi\)
0.989513 0.144446i \(-0.0461402\pi\)
\(68\) 0 0
\(69\) 1.08983 1.88764i 0.131200 0.227245i
\(70\) 0 0
\(71\) 2.32718 4.03079i 0.276185 0.478367i −0.694248 0.719735i \(-0.744263\pi\)
0.970433 + 0.241369i \(0.0775964\pi\)
\(72\) 0 0
\(73\) −6.70986 −0.785329 −0.392665 0.919682i \(-0.628447\pi\)
−0.392665 + 0.919682i \(0.628447\pi\)
\(74\) 0 0
\(75\) −1.15903 −0.133833
\(76\) 0 0
\(77\) −1.40875 + 2.44002i −0.160542 + 0.278067i
\(78\) 0 0
\(79\) 6.84041 11.8479i 0.769606 1.33300i −0.168170 0.985758i \(-0.553786\pi\)
0.937777 0.347239i \(-0.112881\pi\)
\(80\) 0 0
\(81\) 0.642795 1.11335i 0.0714217 0.123706i
\(82\) 0 0
\(83\) 0.276189 + 0.478373i 0.0303156 + 0.0525082i 0.880785 0.473516i \(-0.157015\pi\)
−0.850470 + 0.526024i \(0.823682\pi\)
\(84\) 0 0
\(85\) −7.93769 −0.860963
\(86\) 0 0
\(87\) 2.85492 4.94487i 0.306080 0.530146i
\(88\) 0 0
\(89\) −8.23445 14.2625i −0.872850 1.51182i −0.859036 0.511915i \(-0.828936\pi\)
−0.0138137 0.999905i \(-0.504397\pi\)
\(90\) 0 0
\(91\) −0.352100 0.609855i −0.0369101 0.0639302i
\(92\) 0 0
\(93\) 4.73792 8.20631i 0.491299 0.850955i
\(94\) 0 0
\(95\) −2.30116 3.98572i −0.236094 0.408927i
\(96\) 0 0
\(97\) 0.0622295 0.00631844 0.00315922 0.999995i \(-0.498994\pi\)
0.00315922 + 0.999995i \(0.498994\pi\)
\(98\) 0 0
\(99\) 1.10366 + 1.91159i 0.110922 + 0.192122i
\(100\) 0 0
\(101\) −11.3680 −1.13116 −0.565580 0.824693i \(-0.691348\pi\)
−0.565580 + 0.824693i \(0.691348\pi\)
\(102\) 0 0
\(103\) −17.1621 −1.69104 −0.845518 0.533947i \(-0.820708\pi\)
−0.845518 + 0.533947i \(0.820708\pi\)
\(104\) 0 0
\(105\) 2.45090 0.239183
\(106\) 0 0
\(107\) −2.66025 + 4.60769i −0.257176 + 0.445443i −0.965484 0.260461i \(-0.916125\pi\)
0.708308 + 0.705904i \(0.249459\pi\)
\(108\) 0 0
\(109\) 9.81219 + 16.9952i 0.939838 + 1.62785i 0.765772 + 0.643112i \(0.222357\pi\)
0.174066 + 0.984734i \(0.444309\pi\)
\(110\) 0 0
\(111\) −5.38683 4.54821i −0.511295 0.431697i
\(112\) 0 0
\(113\) 3.74604 + 6.48834i 0.352398 + 0.610372i 0.986669 0.162739i \(-0.0520329\pi\)
−0.634271 + 0.773111i \(0.718700\pi\)
\(114\) 0 0
\(115\) 0.940291 1.62863i 0.0876826 0.151871i
\(116\) 0 0
\(117\) −0.551691 −0.0510039
\(118\) 0 0
\(119\) 16.7851 1.53869
\(120\) 0 0
\(121\) −9.22471 −0.838610
\(122\) 0 0
\(123\) 6.58050 + 11.3978i 0.593344 + 1.02770i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −4.51826 7.82586i −0.400931 0.694433i 0.592908 0.805270i \(-0.297980\pi\)
−0.993839 + 0.110838i \(0.964647\pi\)
\(128\) 0 0
\(129\) −0.0164117 + 0.0284259i −0.00144497 + 0.00250276i
\(130\) 0 0
\(131\) 5.66342 + 9.80934i 0.494816 + 0.857046i 0.999982 0.00597596i \(-0.00190222\pi\)
−0.505166 + 0.863022i \(0.668569\pi\)
\(132\) 0 0
\(133\) 4.86604 + 8.42823i 0.421939 + 0.730821i
\(134\) 0 0
\(135\) 2.69860 4.67411i 0.232259 0.402284i
\(136\) 0 0
\(137\) −9.58054 −0.818521 −0.409260 0.912418i \(-0.634213\pi\)
−0.409260 + 0.912418i \(0.634213\pi\)
\(138\) 0 0
\(139\) 7.06695 + 12.2403i 0.599410 + 1.03821i 0.992908 + 0.118884i \(0.0379316\pi\)
−0.393498 + 0.919326i \(0.628735\pi\)
\(140\) 0 0
\(141\) 4.54352 7.86960i 0.382633 0.662740i
\(142\) 0 0
\(143\) −0.221856 + 0.384265i −0.0185525 + 0.0321339i
\(144\) 0 0
\(145\) 2.46320 4.26638i 0.204557 0.354304i
\(146\) 0 0
\(147\) 2.93055 0.241707
\(148\) 0 0
\(149\) −18.3543 −1.50365 −0.751823 0.659365i \(-0.770825\pi\)
−0.751823 + 0.659365i \(0.770825\pi\)
\(150\) 0 0
\(151\) −5.92511 + 10.2626i −0.482179 + 0.835158i −0.999791 0.0204572i \(-0.993488\pi\)
0.517612 + 0.855616i \(0.326821\pi\)
\(152\) 0 0
\(153\) 6.57496 11.3882i 0.531554 0.920679i
\(154\) 0 0
\(155\) 4.08782 7.08032i 0.328342 0.568705i
\(156\) 0 0
\(157\) −7.49778 12.9865i −0.598388 1.03644i −0.993059 0.117616i \(-0.962475\pi\)
0.394671 0.918822i \(-0.370858\pi\)
\(158\) 0 0
\(159\) 6.64875 0.527280
\(160\) 0 0
\(161\) −1.98834 + 3.44391i −0.156703 + 0.271418i
\(162\) 0 0
\(163\) 6.74159 + 11.6768i 0.528042 + 0.914596i 0.999466 + 0.0326892i \(0.0104071\pi\)
−0.471423 + 0.881907i \(0.656260\pi\)
\(164\) 0 0
\(165\) −0.772146 1.33740i −0.0601115 0.104116i
\(166\) 0 0
\(167\) 3.62755 6.28310i 0.280708 0.486201i −0.690851 0.722997i \(-0.742764\pi\)
0.971559 + 0.236796i \(0.0760973\pi\)
\(168\) 0 0
\(169\) 6.44455 + 11.1623i 0.495735 + 0.858638i
\(170\) 0 0
\(171\) 7.62441 0.583053
\(172\) 0 0
\(173\) 4.28159 + 7.41592i 0.325523 + 0.563822i 0.981618 0.190856i \(-0.0611263\pi\)
−0.656095 + 0.754678i \(0.727793\pi\)
\(174\) 0 0
\(175\) 2.11461 0.159849
\(176\) 0 0
\(177\) 2.37763 0.178714
\(178\) 0 0
\(179\) −12.0613 −0.901502 −0.450751 0.892650i \(-0.648844\pi\)
−0.450751 + 0.892650i \(0.648844\pi\)
\(180\) 0 0
\(181\) −3.22639 + 5.58828i −0.239816 + 0.415373i −0.960661 0.277722i \(-0.910420\pi\)
0.720845 + 0.693096i \(0.243754\pi\)
\(182\) 0 0
\(183\) −7.46863 12.9360i −0.552097 0.956260i
\(184\) 0 0
\(185\) −4.64769 3.92415i −0.341705 0.288509i
\(186\) 0 0
\(187\) −5.28808 9.15922i −0.386703 0.669789i
\(188\) 0 0
\(189\) −5.70647 + 9.88390i −0.415085 + 0.718948i
\(190\) 0 0
\(191\) 20.3453 1.47213 0.736067 0.676909i \(-0.236681\pi\)
0.736067 + 0.676909i \(0.236681\pi\)
\(192\) 0 0
\(193\) −14.4284 −1.03858 −0.519288 0.854599i \(-0.673803\pi\)
−0.519288 + 0.854599i \(0.673803\pi\)
\(194\) 0 0
\(195\) 0.385977 0.0276404
\(196\) 0 0
\(197\) −0.257215 0.445509i −0.0183258 0.0317412i 0.856717 0.515787i \(-0.172500\pi\)
−0.875043 + 0.484045i \(0.839167\pi\)
\(198\) 0 0
\(199\) −6.14595 −0.435675 −0.217837 0.975985i \(-0.569900\pi\)
−0.217837 + 0.975985i \(0.569900\pi\)
\(200\) 0 0
\(201\) −5.88057 10.1855i −0.414784 0.718427i
\(202\) 0 0
\(203\) −5.20869 + 9.02171i −0.365578 + 0.633200i
\(204\) 0 0
\(205\) 5.67758 + 9.83387i 0.396540 + 0.686827i
\(206\) 0 0
\(207\) 1.55773 + 2.69806i 0.108270 + 0.187528i
\(208\) 0 0
\(209\) 3.06606 5.31057i 0.212084 0.367340i
\(210\) 0 0
\(211\) 14.1321 0.972895 0.486447 0.873710i \(-0.338293\pi\)
0.486447 + 0.873710i \(0.338293\pi\)
\(212\) 0 0
\(213\) −2.69727 4.67181i −0.184814 0.320107i
\(214\) 0 0
\(215\) −0.0141598 + 0.0245256i −0.000965693 + 0.00167263i
\(216\) 0 0
\(217\) −8.64413 + 14.9721i −0.586802 + 1.01637i
\(218\) 0 0
\(219\) −3.88847 + 6.73503i −0.262758 + 0.455111i
\(220\) 0 0
\(221\) 2.64338 0.177813
\(222\) 0 0
\(223\) 26.8757 1.79973 0.899866 0.436166i \(-0.143664\pi\)
0.899866 + 0.436166i \(0.143664\pi\)
\(224\) 0 0
\(225\) 0.828323 1.43470i 0.0552215 0.0956465i
\(226\) 0 0
\(227\) −9.56489 + 16.5669i −0.634844 + 1.09958i 0.351704 + 0.936111i \(0.385602\pi\)
−0.986548 + 0.163471i \(0.947731\pi\)
\(228\) 0 0
\(229\) 12.5663 21.7655i 0.830406 1.43831i −0.0673100 0.997732i \(-0.521442\pi\)
0.897716 0.440574i \(-0.145225\pi\)
\(230\) 0 0
\(231\) 1.63278 + 2.82807i 0.107429 + 0.186073i
\(232\) 0 0
\(233\) 8.71343 0.570836 0.285418 0.958403i \(-0.407868\pi\)
0.285418 + 0.958403i \(0.407868\pi\)
\(234\) 0 0
\(235\) 3.92010 6.78981i 0.255719 0.442918i
\(236\) 0 0
\(237\) −7.92825 13.7321i −0.514995 0.891998i
\(238\) 0 0
\(239\) 2.04391 + 3.54015i 0.132209 + 0.228994i 0.924528 0.381114i \(-0.124460\pi\)
−0.792319 + 0.610108i \(0.791126\pi\)
\(240\) 0 0
\(241\) 0.637375 1.10397i 0.0410569 0.0711127i −0.844767 0.535135i \(-0.820261\pi\)
0.885824 + 0.464022i \(0.153594\pi\)
\(242\) 0 0
\(243\) 7.35078 + 12.7319i 0.471553 + 0.816753i
\(244\) 0 0
\(245\) 2.52844 0.161536
\(246\) 0 0
\(247\) 0.766325 + 1.32731i 0.0487601 + 0.0844550i
\(248\) 0 0
\(249\) 0.640223 0.0405725
\(250\) 0 0
\(251\) −17.7027 −1.11738 −0.558692 0.829375i \(-0.688697\pi\)
−0.558692 + 0.829375i \(0.688697\pi\)
\(252\) 0 0
\(253\) 2.50568 0.157531
\(254\) 0 0
\(255\) −4.60001 + 7.96746i −0.288064 + 0.498942i
\(256\) 0 0
\(257\) −7.49772 12.9864i −0.467695 0.810071i 0.531624 0.846981i \(-0.321582\pi\)
−0.999319 + 0.0369094i \(0.988249\pi\)
\(258\) 0 0
\(259\) 9.82804 + 8.29803i 0.610685 + 0.515614i
\(260\) 0 0
\(261\) 4.08064 + 7.06788i 0.252585 + 0.437491i
\(262\) 0 0
\(263\) −15.5877 + 26.9987i −0.961180 + 1.66481i −0.241634 + 0.970368i \(0.577683\pi\)
−0.719546 + 0.694445i \(0.755650\pi\)
\(264\) 0 0
\(265\) 5.73647 0.352389
\(266\) 0 0
\(267\) −19.0880 −1.16816
\(268\) 0 0
\(269\) −7.35774 −0.448609 −0.224305 0.974519i \(-0.572011\pi\)
−0.224305 + 0.974519i \(0.572011\pi\)
\(270\) 0 0
\(271\) 9.03739 + 15.6532i 0.548982 + 0.950865i 0.998345 + 0.0575154i \(0.0183178\pi\)
−0.449363 + 0.893350i \(0.648349\pi\)
\(272\) 0 0
\(273\) −0.816190 −0.0493981
\(274\) 0 0
\(275\) −0.666199 1.15389i −0.0401733 0.0695822i
\(276\) 0 0
\(277\) −10.7376 + 18.5981i −0.645160 + 1.11745i 0.339105 + 0.940749i \(0.389876\pi\)
−0.984265 + 0.176701i \(0.943458\pi\)
\(278\) 0 0
\(279\) 6.77207 + 11.7296i 0.405433 + 0.702231i
\(280\) 0 0
\(281\) −7.67604 13.2953i −0.457914 0.793131i 0.540936 0.841064i \(-0.318070\pi\)
−0.998851 + 0.0479329i \(0.984737\pi\)
\(282\) 0 0
\(283\) 5.10323 8.83905i 0.303355 0.525427i −0.673538 0.739152i \(-0.735226\pi\)
0.976894 + 0.213725i \(0.0685597\pi\)
\(284\) 0 0
\(285\) −5.33423 −0.315973
\(286\) 0 0
\(287\) −12.0059 20.7947i −0.708683 1.22748i
\(288\) 0 0
\(289\) −23.0034 + 39.8431i −1.35314 + 2.34371i
\(290\) 0 0
\(291\) 0.0360630 0.0624629i 0.00211405 0.00366164i
\(292\) 0 0
\(293\) 4.95047 8.57446i 0.289209 0.500925i −0.684412 0.729096i \(-0.739941\pi\)
0.973621 + 0.228170i \(0.0732743\pi\)
\(294\) 0 0
\(295\) 2.05139 0.119437
\(296\) 0 0
\(297\) 7.19122 0.417277
\(298\) 0 0
\(299\) −0.313133 + 0.542362i −0.0181089 + 0.0313656i
\(300\) 0 0
\(301\) 0.0299425 0.0518619i 0.00172586 0.00298927i
\(302\) 0 0
\(303\) −6.58795 + 11.4107i −0.378468 + 0.655525i
\(304\) 0 0
\(305\) −6.44385 11.1611i −0.368974 0.639082i
\(306\) 0 0
\(307\) −24.9863 −1.42604 −0.713022 0.701142i \(-0.752674\pi\)
−0.713022 + 0.701142i \(0.752674\pi\)
\(308\) 0 0
\(309\) −9.94573 + 17.2265i −0.565793 + 0.979982i
\(310\) 0 0
\(311\) 11.0652 + 19.1656i 0.627452 + 1.08678i 0.988061 + 0.154062i \(0.0492355\pi\)
−0.360609 + 0.932717i \(0.617431\pi\)
\(312\) 0 0
\(313\) −1.96428 3.40223i −0.111028 0.192305i 0.805157 0.593061i \(-0.202081\pi\)
−0.916185 + 0.400756i \(0.868748\pi\)
\(314\) 0 0
\(315\) −1.75158 + 3.03382i −0.0986901 + 0.170936i
\(316\) 0 0
\(317\) −4.75818 8.24142i −0.267246 0.462884i 0.700903 0.713256i \(-0.252780\pi\)
−0.968150 + 0.250372i \(0.919447\pi\)
\(318\) 0 0
\(319\) 6.56392 0.367509
\(320\) 0 0
\(321\) 3.08332 + 5.34046i 0.172094 + 0.298076i
\(322\) 0 0
\(323\) −36.5317 −2.03268
\(324\) 0 0
\(325\) 0.333017 0.0184725
\(326\) 0 0
\(327\) 22.7453 1.25782
\(328\) 0 0
\(329\) −8.28946 + 14.3578i −0.457013 + 0.791569i
\(330\) 0 0
\(331\) −11.0296 19.1039i −0.606244 1.05005i −0.991854 0.127383i \(-0.959342\pi\)
0.385609 0.922662i \(-0.373991\pi\)
\(332\) 0 0
\(333\) 9.47975 3.41757i 0.519487 0.187282i
\(334\) 0 0
\(335\) −5.07370 8.78790i −0.277206 0.480134i
\(336\) 0 0
\(337\) 12.2222 21.1694i 0.665783 1.15317i −0.313289 0.949658i \(-0.601431\pi\)
0.979072 0.203513i \(-0.0652358\pi\)
\(338\) 0 0
\(339\) 8.68357 0.471627
\(340\) 0 0
\(341\) 10.8932 0.589901
\(342\) 0 0
\(343\) −20.1489 −1.08794
\(344\) 0 0
\(345\) −1.08983 1.88764i −0.0586743 0.101627i
\(346\) 0 0
\(347\) −8.32578 −0.446951 −0.223476 0.974710i \(-0.571740\pi\)
−0.223476 + 0.974710i \(0.571740\pi\)
\(348\) 0 0
\(349\) 2.18239 + 3.78001i 0.116821 + 0.202339i 0.918506 0.395407i \(-0.129396\pi\)
−0.801685 + 0.597746i \(0.796063\pi\)
\(350\) 0 0
\(351\) −0.898680 + 1.55656i −0.0479680 + 0.0830830i
\(352\) 0 0
\(353\) 3.28058 + 5.68213i 0.174607 + 0.302429i 0.940025 0.341105i \(-0.110801\pi\)
−0.765418 + 0.643534i \(0.777468\pi\)
\(354\) 0 0
\(355\) −2.32718 4.03079i −0.123514 0.213932i
\(356\) 0 0
\(357\) 9.72722 16.8480i 0.514819 0.891693i
\(358\) 0 0
\(359\) 2.53533 0.133810 0.0669048 0.997759i \(-0.478688\pi\)
0.0669048 + 0.997759i \(0.478688\pi\)
\(360\) 0 0
\(361\) −1.09066 1.88908i −0.0574033 0.0994254i
\(362\) 0 0
\(363\) −5.34587 + 9.25932i −0.280585 + 0.485988i
\(364\) 0 0
\(365\) −3.35493 + 5.81091i −0.175605 + 0.304157i
\(366\) 0 0
\(367\) 16.6186 28.7842i 0.867483 1.50252i 0.00292206 0.999996i \(-0.499070\pi\)
0.864561 0.502528i \(-0.167597\pi\)
\(368\) 0 0
\(369\) −18.8115 −0.979287
\(370\) 0 0
\(371\) −12.1304 −0.629778
\(372\) 0 0
\(373\) −13.3785 + 23.1722i −0.692711 + 1.19981i 0.278235 + 0.960513i \(0.410251\pi\)
−0.970946 + 0.239298i \(0.923083\pi\)
\(374\) 0 0
\(375\) −0.579516 + 1.00375i −0.0299261 + 0.0518335i
\(376\) 0 0
\(377\) −0.820286 + 1.42078i −0.0422469 + 0.0731738i
\(378\) 0 0
\(379\) 15.2192 + 26.3604i 0.781757 + 1.35404i 0.930918 + 0.365230i \(0.119009\pi\)
−0.149161 + 0.988813i \(0.547657\pi\)
\(380\) 0 0
\(381\) −10.4736 −0.536580
\(382\) 0 0
\(383\) 1.08492 1.87913i 0.0554367 0.0960192i −0.836975 0.547241i \(-0.815678\pi\)
0.892412 + 0.451222i \(0.149012\pi\)
\(384\) 0 0
\(385\) 1.40875 + 2.44002i 0.0717965 + 0.124355i
\(386\) 0 0
\(387\) −0.0234578 0.0406302i −0.00119243 0.00206535i
\(388\) 0 0
\(389\) −13.1203 + 22.7250i −0.665224 + 1.15220i 0.314000 + 0.949423i \(0.398331\pi\)
−0.979224 + 0.202780i \(0.935003\pi\)
\(390\) 0 0
\(391\) −7.46373 12.9276i −0.377457 0.653775i
\(392\) 0 0
\(393\) 13.1282 0.662229
\(394\) 0 0
\(395\) −6.84041 11.8479i −0.344178 0.596135i
\(396\) 0 0
\(397\) −1.54228 −0.0774049 −0.0387024 0.999251i \(-0.512322\pi\)
−0.0387024 + 0.999251i \(0.512322\pi\)
\(398\) 0 0
\(399\) 11.2798 0.564696
\(400\) 0 0
\(401\) −3.24489 −0.162042 −0.0810211 0.996712i \(-0.525818\pi\)
−0.0810211 + 0.996712i \(0.525818\pi\)
\(402\) 0 0
\(403\) −1.36131 + 2.35787i −0.0678119 + 0.117454i
\(404\) 0 0
\(405\) −0.642795 1.11335i −0.0319407 0.0553230i
\(406\) 0 0
\(407\) 1.43175 7.97720i 0.0709691 0.395415i
\(408\) 0 0
\(409\) 18.3292 + 31.7471i 0.906319 + 1.56979i 0.819137 + 0.573598i \(0.194453\pi\)
0.0871823 + 0.996192i \(0.472214\pi\)
\(410\) 0 0
\(411\) −5.55207 + 9.61647i −0.273864 + 0.474346i
\(412\) 0 0
\(413\) −4.33789 −0.213453
\(414\) 0 0
\(415\) 0.552377 0.0271151
\(416\) 0 0
\(417\) 16.3816 0.802212
\(418\) 0 0
\(419\) −10.5878 18.3386i −0.517248 0.895900i −0.999799 0.0200324i \(-0.993623\pi\)
0.482551 0.875868i \(-0.339710\pi\)
\(420\) 0 0
\(421\) 17.9193 0.873333 0.436667 0.899623i \(-0.356159\pi\)
0.436667 + 0.899623i \(0.356159\pi\)
\(422\) 0 0
\(423\) 6.49421 + 11.2483i 0.315759 + 0.546911i
\(424\) 0 0
\(425\) −3.96884 + 6.87424i −0.192517 + 0.333449i
\(426\) 0 0
\(427\) 13.6262 + 23.6013i 0.659419 + 1.14215i
\(428\) 0 0
\(429\) 0.257138 + 0.445376i 0.0124147 + 0.0215029i
\(430\) 0 0
\(431\) −8.61013 + 14.9132i −0.414735 + 0.718342i −0.995401 0.0957999i \(-0.969459\pi\)
0.580665 + 0.814142i \(0.302792\pi\)
\(432\) 0 0
\(433\) 40.4571 1.94424 0.972122 0.234475i \(-0.0753370\pi\)
0.972122 + 0.234475i \(0.0753370\pi\)
\(434\) 0 0
\(435\) −2.85492 4.94487i −0.136883 0.237088i
\(436\) 0 0
\(437\) 4.32752 7.49548i 0.207013 0.358557i
\(438\) 0 0
\(439\) 14.7398 25.5301i 0.703492 1.21848i −0.263742 0.964593i \(-0.584957\pi\)
0.967233 0.253890i \(-0.0817100\pi\)
\(440\) 0 0
\(441\) −2.09437 + 3.62755i −0.0997317 + 0.172740i
\(442\) 0 0
\(443\) −3.09221 −0.146915 −0.0734576 0.997298i \(-0.523403\pi\)
−0.0734576 + 0.997298i \(0.523403\pi\)
\(444\) 0 0
\(445\) −16.4689 −0.780700
\(446\) 0 0
\(447\) −10.6366 + 18.4232i −0.503095 + 0.871386i
\(448\) 0 0
\(449\) −17.0935 + 29.6068i −0.806693 + 1.39723i 0.108449 + 0.994102i \(0.465412\pi\)
−0.915142 + 0.403131i \(0.867922\pi\)
\(450\) 0 0
\(451\) −7.56480 + 13.1026i −0.356213 + 0.616979i
\(452\) 0 0
\(453\) 6.86740 + 11.8947i 0.322658 + 0.558861i
\(454\) 0 0
\(455\) −0.704200 −0.0330134
\(456\) 0 0
\(457\) 3.87073 6.70430i 0.181065 0.313614i −0.761178 0.648542i \(-0.775379\pi\)
0.942243 + 0.334929i \(0.108712\pi\)
\(458\) 0 0
\(459\) −21.4206 37.1016i −0.999830 1.73176i
\(460\) 0 0
\(461\) 1.34540 + 2.33030i 0.0626616 + 0.108533i 0.895654 0.444751i \(-0.146708\pi\)
−0.832993 + 0.553284i \(0.813374\pi\)
\(462\) 0 0
\(463\) 7.61567 13.1907i 0.353930 0.613025i −0.633004 0.774149i \(-0.718178\pi\)
0.986934 + 0.161123i \(0.0515116\pi\)
\(464\) 0 0
\(465\) −4.73792 8.20631i −0.219716 0.380559i
\(466\) 0 0
\(467\) 13.3039 0.615631 0.307816 0.951446i \(-0.400402\pi\)
0.307816 + 0.951446i \(0.400402\pi\)
\(468\) 0 0
\(469\) 10.7289 + 18.5829i 0.495413 + 0.858081i
\(470\) 0 0
\(471\) −17.3803 −0.800843
\(472\) 0 0
\(473\) −0.0377331 −0.00173497
\(474\) 0 0
\(475\) −4.60232 −0.211169
\(476\) 0 0
\(477\) −4.75165 + 8.23010i −0.217563 + 0.376830i
\(478\) 0 0
\(479\) −0.969846 1.67982i −0.0443134 0.0767531i 0.843018 0.537885i \(-0.180777\pi\)
−0.887331 + 0.461132i \(0.847443\pi\)
\(480\) 0 0
\(481\) 1.54776 + 1.30681i 0.0705719 + 0.0595853i
\(482\) 0 0
\(483\) 2.30455 + 3.99160i 0.104861 + 0.181624i
\(484\) 0 0
\(485\) 0.0311147 0.0538923i 0.00141285 0.00244712i
\(486\) 0 0
\(487\) −16.5404 −0.749519 −0.374760 0.927122i \(-0.622275\pi\)
−0.374760 + 0.927122i \(0.622275\pi\)
\(488\) 0 0
\(489\) 15.6274 0.706697
\(490\) 0 0
\(491\) −25.3482 −1.14395 −0.571974 0.820271i \(-0.693822\pi\)
−0.571974 + 0.820271i \(0.693822\pi\)
\(492\) 0 0
\(493\) −19.5521 33.8652i −0.880581 1.52521i
\(494\) 0 0
\(495\) 2.20731 0.0992113
\(496\) 0 0
\(497\) 4.92106 + 8.52353i 0.220740 + 0.382332i
\(498\) 0 0
\(499\) 0.480873 0.832896i 0.0215268 0.0372855i −0.855061 0.518527i \(-0.826481\pi\)
0.876588 + 0.481241i \(0.159814\pi\)
\(500\) 0 0
\(501\) −4.20445 7.28232i −0.187841 0.325350i
\(502\) 0 0
\(503\) −21.7436 37.6611i −0.969501 1.67922i −0.697003 0.717068i \(-0.745483\pi\)
−0.272498 0.962156i \(-0.587850\pi\)
\(504\) 0 0
\(505\) −5.68401 + 9.84499i −0.252935 + 0.438096i
\(506\) 0 0
\(507\) 14.9389 0.663459
\(508\) 0 0
\(509\) 0.179617 + 0.311107i 0.00796140 + 0.0137896i 0.869979 0.493089i \(-0.164132\pi\)
−0.862017 + 0.506879i \(0.830799\pi\)
\(510\) 0 0
\(511\) 7.09435 12.2878i 0.313836 0.543579i
\(512\) 0 0
\(513\) 12.4198 21.5117i 0.548348 0.949767i
\(514\) 0 0
\(515\) −8.58107 + 14.8629i −0.378127 + 0.654935i
\(516\) 0 0
\(517\) 10.4463 0.459426
\(518\) 0 0
\(519\) 9.92499 0.435659
\(520\) 0 0
\(521\) 12.7623 22.1049i 0.559125 0.968433i −0.438445 0.898758i \(-0.644471\pi\)
0.997570 0.0696745i \(-0.0221961\pi\)
\(522\) 0 0
\(523\) −11.2172 + 19.4287i −0.490492 + 0.849558i −0.999940 0.0109439i \(-0.996516\pi\)
0.509448 + 0.860502i \(0.329850\pi\)
\(524\) 0 0
\(525\) 1.22545 2.12254i 0.0534829 0.0926351i
\(526\) 0 0
\(527\) −32.4479 56.2013i −1.41345 2.44817i
\(528\) 0 0
\(529\) −19.4634 −0.846235
\(530\) 0 0
\(531\) −1.69922 + 2.94313i −0.0737397 + 0.127721i
\(532\) 0 0
\(533\) −1.89073 3.27485i −0.0818967 0.141849i
\(534\) 0 0
\(535\) 2.66025 + 4.60769i 0.115013 + 0.199208i
\(536\) 0 0
\(537\) −6.98970 + 12.1065i −0.301628 + 0.522435i
\(538\) 0 0
\(539\) 1.68445 + 2.91755i 0.0725542 + 0.125668i
\(540\) 0 0
\(541\) 13.0251 0.559994 0.279997 0.960001i \(-0.409667\pi\)
0.279997 + 0.960001i \(0.409667\pi\)
\(542\) 0 0
\(543\) 3.73949 + 6.47699i 0.160477 + 0.277954i
\(544\) 0 0
\(545\) 19.6244 0.840616
\(546\) 0 0
\(547\) −14.8344 −0.634273 −0.317136 0.948380i \(-0.602721\pi\)
−0.317136 + 0.948380i \(0.602721\pi\)
\(548\) 0 0
\(549\) 21.3504 0.911211
\(550\) 0 0
\(551\) 11.3364 19.6352i 0.482947 0.836489i
\(552\) 0 0
\(553\) 14.4648 + 25.0537i 0.615105 + 1.06539i
\(554\) 0 0
\(555\) −6.63228 + 2.39102i −0.281525 + 0.101493i
\(556\) 0 0
\(557\) −2.65892 4.60539i −0.112662 0.195137i 0.804181 0.594385i \(-0.202604\pi\)
−0.916843 + 0.399248i \(0.869271\pi\)
\(558\) 0 0
\(559\) 0.00471547 0.00816743i 0.000199443 0.000345446i
\(560\) 0 0
\(561\) −12.2581 −0.517538
\(562\) 0 0
\(563\) 0.490546 0.0206741 0.0103370 0.999947i \(-0.496710\pi\)
0.0103370 + 0.999947i \(0.496710\pi\)
\(564\) 0 0
\(565\) 7.49209 0.315195
\(566\) 0 0
\(567\) 1.35926 + 2.35430i 0.0570835 + 0.0988715i
\(568\) 0 0
\(569\) −0.803075 −0.0336666 −0.0168333 0.999858i \(-0.505358\pi\)
−0.0168333 + 0.999858i \(0.505358\pi\)
\(570\) 0 0
\(571\) 12.9210 + 22.3799i 0.540729 + 0.936570i 0.998862 + 0.0476863i \(0.0151848\pi\)
−0.458134 + 0.888883i \(0.651482\pi\)
\(572\) 0 0
\(573\) 11.7904 20.4216i 0.492552 0.853125i
\(574\) 0 0
\(575\) −0.940291 1.62863i −0.0392128 0.0679186i
\(576\) 0 0
\(577\) −14.6597 25.3913i −0.610291 1.05706i −0.991191 0.132439i \(-0.957719\pi\)
0.380900 0.924616i \(-0.375614\pi\)
\(578\) 0 0
\(579\) −8.36147 + 14.4825i −0.347491 + 0.601872i
\(580\) 0 0
\(581\) −1.16806 −0.0484593
\(582\) 0 0
\(583\) 3.82163 + 6.61926i 0.158276 + 0.274142i
\(584\) 0 0
\(585\) −0.275846 + 0.477779i −0.0114048 + 0.0197537i
\(586\) 0 0
\(587\) 5.61625 9.72763i 0.231807 0.401502i −0.726533 0.687132i \(-0.758869\pi\)
0.958340 + 0.285630i \(0.0922028\pi\)
\(588\) 0 0
\(589\) 18.8135 32.5859i 0.775195 1.34268i
\(590\) 0 0
\(591\) −0.596240 −0.0245260
\(592\) 0 0
\(593\) −15.3217 −0.629187 −0.314594 0.949226i \(-0.601868\pi\)
−0.314594 + 0.949226i \(0.601868\pi\)
\(594\) 0 0
\(595\) 8.39254 14.5363i 0.344060 0.595930i
\(596\) 0 0
\(597\) −3.56168 + 6.16900i −0.145770 + 0.252481i
\(598\) 0 0
\(599\) 3.71983 6.44293i 0.151988 0.263251i −0.779970 0.625817i \(-0.784766\pi\)
0.931958 + 0.362566i \(0.118099\pi\)
\(600\) 0 0
\(601\) 23.2207 + 40.2195i 0.947194 + 1.64059i 0.751298 + 0.659963i \(0.229428\pi\)
0.195896 + 0.980625i \(0.437239\pi\)
\(602\) 0 0
\(603\) 16.8106 0.684582
\(604\) 0 0
\(605\) −4.61236 + 7.98884i −0.187519 + 0.324792i
\(606\) 0 0
\(607\) −6.71616 11.6327i −0.272601 0.472158i 0.696926 0.717143i \(-0.254550\pi\)
−0.969527 + 0.244985i \(0.921217\pi\)
\(608\) 0 0
\(609\) 6.03703 + 10.4565i 0.244633 + 0.423717i
\(610\) 0 0
\(611\) −1.30546 + 2.26112i −0.0528132 + 0.0914752i
\(612\) 0 0
\(613\) 9.75168 + 16.8904i 0.393867 + 0.682197i 0.992956 0.118485i \(-0.0378038\pi\)
−0.599089 + 0.800682i \(0.704470\pi\)
\(614\) 0 0
\(615\) 13.1610 0.530703
\(616\) 0 0
\(617\) −14.1255 24.4660i −0.568670 0.984965i −0.996698 0.0811994i \(-0.974125\pi\)
0.428028 0.903765i \(-0.359208\pi\)
\(618\) 0 0
\(619\) −45.3987 −1.82473 −0.912363 0.409382i \(-0.865744\pi\)
−0.912363 + 0.409382i \(0.865744\pi\)
\(620\) 0 0
\(621\) 10.1499 0.407300
\(622\) 0 0
\(623\) 34.8252 1.39524
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) −3.55366 6.15512i −0.141920 0.245812i
\(628\) 0 0
\(629\) −45.4215 + 16.3750i −1.81107 + 0.652915i
\(630\) 0 0
\(631\) 1.10770 + 1.91860i 0.0440970 + 0.0763783i 0.887231 0.461324i \(-0.152626\pi\)
−0.843134 + 0.537703i \(0.819292\pi\)
\(632\) 0 0
\(633\) 8.18978 14.1851i 0.325515 0.563808i
\(634\) 0 0
\(635\) −9.03652 −0.358603
\(636\) 0 0
\(637\) −0.842015 −0.0333618
\(638\) 0 0
\(639\) 7.71061 0.305027
\(640\) 0 0
\(641\) −0.00620447 0.0107465i −0.000245062 0.000424460i 0.865903 0.500212i \(-0.166745\pi\)
−0.866148 + 0.499788i \(0.833411\pi\)
\(642\) 0 0
\(643\) −15.9563 −0.629256 −0.314628 0.949215i \(-0.601880\pi\)
−0.314628 + 0.949215i \(0.601880\pi\)
\(644\) 0 0
\(645\) 0.0164117 + 0.0284259i 0.000646210 + 0.00111927i
\(646\) 0 0
\(647\) −20.3275 + 35.2082i −0.799155 + 1.38418i 0.121013 + 0.992651i \(0.461386\pi\)
−0.920167 + 0.391525i \(0.871948\pi\)
\(648\) 0 0
\(649\) 1.36664 + 2.36708i 0.0536452 + 0.0929161i
\(650\) 0 0
\(651\) 10.0188 + 17.3531i 0.392669 + 0.680122i
\(652\) 0 0
\(653\) 3.73604 6.47102i 0.146203 0.253231i −0.783618 0.621243i \(-0.786628\pi\)
0.929821 + 0.368012i \(0.119961\pi\)
\(654\) 0 0
\(655\) 11.3268 0.442577
\(656\) 0 0
\(657\) −5.55793 9.62661i −0.216835 0.375570i
\(658\) 0 0
\(659\) −13.0456 + 22.5956i −0.508183 + 0.880198i 0.491772 + 0.870724i \(0.336349\pi\)
−0.999955 + 0.00947442i \(0.996984\pi\)
\(660\) 0 0
\(661\) −4.71341 + 8.16387i −0.183330 + 0.317538i −0.943013 0.332757i \(-0.892021\pi\)
0.759682 + 0.650295i \(0.225355\pi\)
\(662\) 0 0
\(663\) 1.53188 2.65330i 0.0594934 0.103046i
\(664\) 0 0
\(665\) 9.73209 0.377394
\(666\) 0 0
\(667\) 9.26448 0.358722
\(668\) 0 0
\(669\) 15.5749 26.9765i 0.602161 1.04297i
\(670\) 0 0
\(671\) 8.58578 14.8710i 0.331450 0.574089i
\(672\) 0 0
\(673\) 9.93393 17.2061i 0.382925 0.663245i −0.608554 0.793512i \(-0.708250\pi\)
0.991479 + 0.130267i \(0.0415835\pi\)
\(674\) 0 0
\(675\) −2.69860 4.67411i −0.103869 0.179907i
\(676\) 0 0
\(677\) −15.2768 −0.587134 −0.293567 0.955938i \(-0.594842\pi\)
−0.293567 + 0.955938i \(0.594842\pi\)
\(678\) 0 0
\(679\) −0.0657954 + 0.113961i −0.00252500 + 0.00437342i
\(680\) 0 0
\(681\) 11.0860 + 19.2015i 0.424817 + 0.735804i
\(682\) 0 0
\(683\) 4.22019 + 7.30959i 0.161481 + 0.279694i 0.935400 0.353591i \(-0.115040\pi\)
−0.773919 + 0.633285i \(0.781706\pi\)
\(684\) 0 0
\(685\) −4.79027 + 8.29699i −0.183027 + 0.317012i
\(686\) 0 0
\(687\) −14.5648 25.2269i −0.555681 0.962467i
\(688\) 0 0
\(689\) −1.91034 −0.0727783
\(690\) 0 0
\(691\) −13.5524 23.4735i −0.515559 0.892974i −0.999837 0.0180596i \(-0.994251\pi\)
0.484278 0.874914i \(-0.339082\pi\)
\(692\) 0 0
\(693\) −4.66759 −0.177307
\(694\) 0 0
\(695\) 14.1339 0.536129
\(696\) 0 0
\(697\) 90.1338 3.41406
\(698\) 0 0
\(699\) 5.04957 8.74612i 0.190992 0.330809i
\(700\) 0 0
\(701\) 4.51376 + 7.81806i 0.170482 + 0.295284i 0.938589 0.345038i \(-0.112134\pi\)
−0.768106 + 0.640322i \(0.778801\pi\)
\(702\) 0 0
\(703\) −21.3902 18.0602i −0.806745 0.681152i
\(704\) 0 0
\(705\) −4.54352 7.86960i −0.171119 0.296386i
\(706\) 0 0
\(707\) 12.0194 20.8183i 0.452037 0.782952i
\(708\) 0 0
\(709\) 3.10642 0.116664 0.0583320 0.998297i \(-0.481422\pi\)
0.0583320 + 0.998297i \(0.481422\pi\)
\(710\) 0 0
\(711\) 22.6643 0.849977
\(712\) 0 0
\(713\) 15.3750 0.575797
\(714\) 0 0
\(715\) 0.221856 + 0.384265i 0.00829693 + 0.0143707i
\(716\) 0 0
\(717\) 4.73791 0.176941
\(718\) 0 0
\(719\) 1.54564 + 2.67713i 0.0576427 + 0.0998400i 0.893407 0.449249i \(-0.148308\pi\)
−0.835764 + 0.549089i \(0.814975\pi\)
\(720\) 0 0
\(721\) 18.1456 31.4291i 0.675777 1.17048i
\(722\) 0 0
\(723\) −0.738738 1.27953i −0.0274740 0.0475863i
\(724\) 0 0
\(725\) −2.46320 4.26638i −0.0914808 0.158449i
\(726\) 0 0
\(727\) 6.50596 11.2687i 0.241293 0.417931i −0.719790 0.694192i \(-0.755762\pi\)
0.961083 + 0.276261i \(0.0890953\pi\)
\(728\) 0 0
\(729\) 20.8963 0.773939
\(730\) 0 0
\(731\) 0.112396 + 0.194676i 0.00415713 + 0.00720036i
\(732\) 0 0
\(733\) −3.54090 + 6.13302i −0.130786 + 0.226528i −0.923980 0.382441i \(-0.875083\pi\)
0.793194 + 0.608969i \(0.208417\pi\)
\(734\) 0 0
\(735\) 1.46527 2.53793i 0.0540474 0.0936128i
\(736\) 0 0
\(737\) 6.76018 11.7090i 0.249015 0.431306i
\(738\) 0 0
\(739\) 41.8709 1.54025 0.770123 0.637895i \(-0.220195\pi\)
0.770123 + 0.637895i \(0.220195\pi\)
\(740\) 0 0
\(741\) 1.77639 0.0652573
\(742\) 0 0
\(743\) 25.6857 44.4890i 0.942318 1.63214i 0.181283 0.983431i \(-0.441975\pi\)
0.761034 0.648711i \(-0.224692\pi\)
\(744\) 0 0
\(745\) −9.17717 + 15.8953i −0.336225 + 0.582359i
\(746\) 0 0
\(747\) −0.457547 + 0.792494i −0.0167408 + 0.0289958i
\(748\) 0 0
\(749\) −5.62539 9.74345i −0.205547 0.356018i
\(750\) 0 0
\(751\) −21.6234 −0.789050 −0.394525 0.918885i \(-0.629091\pi\)
−0.394525 + 0.918885i \(0.629091\pi\)
\(752\) 0 0
\(753\) −10.2590 + 17.7691i −0.373859 + 0.647542i
\(754\) 0 0
\(755\) 5.92511 + 10.2626i 0.215637 + 0.373494i
\(756\) 0 0
\(757\) 11.2105 + 19.4171i 0.407452 + 0.705727i 0.994603 0.103750i \(-0.0330842\pi\)
−0.587152 + 0.809477i \(0.699751\pi\)
\(758\) 0 0
\(759\) 1.45208 2.51508i 0.0527073 0.0912917i
\(760\) 0 0
\(761\) −6.67009 11.5529i −0.241791 0.418793i 0.719434 0.694561i \(-0.244401\pi\)
−0.961224 + 0.275768i \(0.911068\pi\)
\(762\) 0 0
\(763\) −41.4978 −1.50232
\(764\) 0 0
\(765\) −6.57496 11.3882i −0.237718 0.411740i
\(766\) 0 0
\(767\) −0.683149 −0.0246671
\(768\) 0 0
\(769\) −44.3490 −1.59926 −0.799632 0.600490i \(-0.794972\pi\)
−0.799632 + 0.600490i \(0.794972\pi\)
\(770\) 0 0
\(771\) −17.3802 −0.625932
\(772\) 0 0
\(773\) 16.6627 28.8606i 0.599316 1.03805i −0.393607 0.919279i \(-0.628773\pi\)
0.992922 0.118766i \(-0.0378939\pi\)
\(774\) 0 0
\(775\) −4.08782 7.08032i −0.146839 0.254333i
\(776\) 0 0
\(777\) 14.0247 5.05607i 0.503132 0.181385i
\(778\) 0 0
\(779\) 26.1300 + 45.2586i 0.936206 + 1.62156i
\(780\) 0 0
\(781\) 3.10073 5.37061i 0.110953 0.192176i
\(782\) 0 0
\(783\) 26.5887 0.950203
\(784\) 0 0
\(785\) −14.9956 −0.535214
\(786\) 0 0
\(787\) −23.9729 −0.854541 −0.427271 0.904124i \(-0.640525\pi\)
−0.427271 + 0.904124i \(0.640525\pi\)
\(788\) 0 0
\(789\) 18.0667 + 31.2924i 0.643190 + 1.11404i
\(790\) 0 0
\(791\) −15.8428 −0.563306
\(792\) 0 0
\(793\) 2.14591 + 3.71683i 0.0762036 + 0.131989i
\(794\) 0 0
\(795\) 3.32438 5.75799i 0.117904 0.204215i
\(796\) 0 0
\(797\) 13.8252 + 23.9459i 0.489712 + 0.848206i 0.999930 0.0118392i \(-0.00376861\pi\)
−0.510218 + 0.860045i \(0.670435\pi\)
\(798\) 0 0
\(799\) −31.1165 53.8953i −1.10082 1.90668i
\(800\) 0 0
\(801\) 13.6416 23.6279i 0.482001 0.834850i
\(802\) 0 0
\(803\) −8.94020 −0.315493
\(804\) 0 0
\(805\) 1.98834 + 3.44391i 0.0700799 + 0.121382i
\(806\) 0 0
\(807\) −4.26393 + 7.38534i −0.150097 + 0.259976i
\(808\) 0 0
\(809\) 11.8194 20.4718i 0.415549 0.719752i −0.579937 0.814661i \(-0.696923\pi\)
0.995486 + 0.0949096i \(0.0302562\pi\)
\(810\) 0 0
\(811\) 23.5927 40.8638i 0.828453 1.43492i −0.0707985 0.997491i \(-0.522555\pi\)
0.899251 0.437432i \(-0.144112\pi\)
\(812\) 0 0
\(813\) 20.9492 0.734722
\(814\) 0 0
\(815\) 13.4832 0.472296
\(816\) 0 0
\(817\) −0.0651681 + 0.112874i −0.00227994 + 0.00394898i
\(818\) 0 0
\(819\) 0.583305 1.01031i 0.0203823 0.0353032i
\(820\) 0 0
\(821\) 21.6382 37.4785i 0.755180 1.30801i −0.190105 0.981764i \(-0.560883\pi\)
0.945285 0.326246i \(-0.105784\pi\)
\(822\) 0 0
\(823\) 13.8533 + 23.9946i 0.482895 + 0.836399i 0.999807 0.0196397i \(-0.00625190\pi\)
−0.516912 + 0.856039i \(0.672919\pi\)
\(824\) 0 0
\(825\) −1.54429 −0.0537653
\(826\) 0 0
\(827\) −19.7530 + 34.2133i −0.686880 + 1.18971i 0.285962 + 0.958241i \(0.407687\pi\)
−0.972842 + 0.231470i \(0.925646\pi\)
\(828\) 0 0
\(829\) −2.66910 4.62302i −0.0927018 0.160564i 0.815945 0.578129i \(-0.196217\pi\)
−0.908647 + 0.417565i \(0.862884\pi\)
\(830\) 0 0
\(831\) 12.4452 + 21.5557i 0.431720 + 0.747760i
\(832\) 0 0
\(833\) 10.0350 17.3811i 0.347692 0.602220i
\(834\) 0 0
\(835\) −3.62755 6.28310i −0.125537 0.217436i
\(836\) 0 0
\(837\) 44.1256 1.52520
\(838\) 0 0
\(839\) 8.40571 + 14.5591i 0.290197 + 0.502636i 0.973856 0.227165i \(-0.0729458\pi\)
−0.683659 + 0.729802i \(0.739612\pi\)
\(840\) 0 0
\(841\) −4.73067 −0.163126
\(842\) 0 0
\(843\) −17.7935 −0.612842
\(844\) 0 0
\(845\) 12.8891 0.443399
\(846\) 0 0
\(847\) 9.75332 16.8932i 0.335128 0.580459i
\(848\) 0 0
\(849\) −5.91480 10.2447i −0.202995 0.351598i
\(850\) 0 0
\(851\) 2.02081 11.2592i 0.0692724 0.385961i
\(852\) 0 0
\(853\) 5.45114 + 9.44165i 0.186643 + 0.323276i 0.944129 0.329576i \(-0.106906\pi\)
−0.757486 + 0.652852i \(0.773572\pi\)
\(854\) 0 0
\(855\) 3.81220 6.60293i 0.130375 0.225815i
\(856\) 0 0
\(857\) −24.4064 −0.833707 −0.416854 0.908974i \(-0.636867\pi\)
−0.416854 + 0.908974i \(0.636867\pi\)
\(858\) 0 0
\(859\) 45.8914 1.56579 0.782897 0.622151i \(-0.213741\pi\)
0.782897 + 0.622151i \(0.213741\pi\)
\(860\) 0 0
\(861\) −27.8303 −0.948455
\(862\) 0 0
\(863\) 24.1822 + 41.8848i 0.823172 + 1.42578i 0.903308 + 0.428992i \(0.141131\pi\)
−0.0801363 + 0.996784i \(0.525536\pi\)
\(864\) 0 0
\(865\) 8.56317 0.291157
\(866\) 0 0
\(867\) 26.6617 + 46.1794i 0.905479 + 1.56834i
\(868\) 0 0
\(869\) 9.11415 15.7862i 0.309176 0.535509i
\(870\) 0 0
\(871\) 1.68963 + 2.92652i 0.0572508 + 0.0991614i
\(872\) 0 0
\(873\) 0.0515461 + 0.0892804i 0.00174457 + 0.00302168i
\(874\) 0 0
\(875\) 1.05730 1.83130i 0.0357434 0.0619093i
\(876\) 0 0
\(877\) 17.4607 0.589607 0.294804 0.955558i \(-0.404746\pi\)
0.294804 + 0.955558i \(0.404746\pi\)
\(878\) 0 0
\(879\) −5.73775 9.93807i −0.193529 0.335203i
\(880\) 0 0
\(881\) −0.914437 + 1.58385i −0.0308082 + 0.0533613i −0.881018 0.473082i \(-0.843141\pi\)
0.850210 + 0.526443i \(0.176475\pi\)
\(882\) 0 0
\(883\) −21.5325 + 37.2954i −0.724627 + 1.25509i 0.234500 + 0.972116i \(0.424655\pi\)
−0.959127 + 0.282975i \(0.908679\pi\)
\(884\) 0 0
\(885\) 1.18881 2.05909i 0.0399616 0.0692155i
\(886\) 0 0
\(887\) 7.78827 0.261505 0.130752 0.991415i \(-0.458261\pi\)
0.130752 + 0.991415i \(0.458261\pi\)
\(888\) 0 0
\(889\) 19.1087 0.640885
\(890\) 0 0
\(891\) 0.856459 1.48343i 0.0286925 0.0496968i
\(892\) 0 0
\(893\) 18.0415 31.2488i 0.603737 1.04570i
\(894\) 0 0
\(895\) −6.03064 + 10.4454i −0.201582 + 0.349150i
\(896\) 0 0
\(897\) 0.362931 + 0.628615i 0.0121179 + 0.0209888i
\(898\) 0 0
\(899\) 40.2764 1.34329
\(900\) 0 0
\(901\) 22.7672 39.4339i 0.758484 1.31373i
\(902\) 0 0
\(903\) −0.0347043 0.0601096i −0.00115489 0.00200032i
\(904\) 0 0
\(905\) 3.22639 + 5.58828i 0.107249 + 0.185761i
\(906\) 0 0
\(907\) 3.01183 5.21664i 0.100006 0.173216i −0.811681 0.584101i \(-0.801447\pi\)
0.911687 + 0.410886i \(0.134780\pi\)
\(908\) 0 0
\(909\) −9.41639 16.3097i −0.312322 0.540957i
\(910\) 0 0
\(911\) −48.4044 −1.60371 −0.801854 0.597520i \(-0.796153\pi\)
−0.801854 + 0.597520i \(0.796153\pi\)
\(912\) 0 0
\(913\) 0.367993 + 0.637383i 0.0121788 + 0.0210943i
\(914\) 0 0
\(915\) −14.9373 −0.493811
\(916\) 0 0
\(917\) −23.9518 −0.790959
\(918\) 0 0
\(919\) −40.2174 −1.32665 −0.663324 0.748332i \(-0.730855\pi\)
−0.663324 + 0.748332i \(0.730855\pi\)
\(920\) 0 0
\(921\) −14.4800 + 25.0800i −0.477131 + 0.826415i
\(922\) 0 0
\(923\) 0.774990 + 1.34232i 0.0255091 + 0.0441830i
\(924\) 0 0
\(925\) −5.72226 + 2.06295i −0.188147 + 0.0678293i
\(926\) 0 0
\(927\) −14.2158 24.6225i −0.466908 0.808708i
\(928\) 0 0
\(929\) −3.27362 + 5.67008i −0.107404 + 0.186029i −0.914718 0.404093i \(-0.867587\pi\)
0.807314 + 0.590122i \(0.200921\pi\)
\(930\) 0 0
\(931\) 11.6367 0.381377
\(932\) 0 0
\(933\) 25.6499 0.839741
\(934\) 0 0
\(935\) −10.5762 −0.345877
\(936\) 0 0
\(937\) 6.50507 + 11.2671i 0.212511 + 0.368081i 0.952500 0.304539i \(-0.0985024\pi\)
−0.739988 + 0.672620i \(0.765169\pi\)
\(938\) 0 0
\(939\) −4.55332 −0.148592
\(940\) 0 0
\(941\) 10.3312 + 17.8942i 0.336788 + 0.583334i 0.983827 0.179123i \(-0.0573261\pi\)
−0.647039 + 0.762457i \(0.723993\pi\)
\(942\) 0 0
\(943\) −10.6772 + 18.4934i −0.347696 + 0.602227i
\(944\) 0 0
\(945\) 5.70647 + 9.88390i 0.185632 + 0.321523i
\(946\) 0 0
\(947\) 8.71617 + 15.0969i 0.283238 + 0.490582i 0.972180 0.234234i \(-0.0752582\pi\)
−0.688943 + 0.724816i \(0.741925\pi\)
\(948\) 0 0
\(949\) 1.11725 1.93513i 0.0362674 0.0628170i
\(950\) 0 0
\(951\) −11.0298 −0.357665
\(952\) 0 0
\(953\) −25.5157 44.1945i −0.826534 1.43160i −0.900741 0.434356i \(-0.856976\pi\)
0.0742069 0.997243i \(-0.476357\pi\)
\(954\) 0 0
\(955\) 10.1726 17.6195i 0.329179 0.570155i
\(956\) 0 0
\(957\) 3.80389 6.58854i 0.122962 0.212977i
\(958\) 0 0
\(959\) 10.1295 17.5449i 0.327100 0.566553i
\(960\) 0 0
\(961\) 35.8412 1.15617
\(962\) 0 0
\(963\) −8.81419 −0.284033
\(964\) 0 0
\(965\) −7.21418 + 12.4953i −0.232233 + 0.402239i
\(966\) 0 0
\(967\) −2.78414 + 4.82226i −0.0895318 + 0.155074i −0.907313 0.420455i \(-0.861870\pi\)
0.817782 + 0.575529i \(0.195204\pi\)
\(968\) 0 0
\(969\) −21.1707 + 36.6688i −0.680102 + 1.17797i
\(970\) 0 0
\(971\) −17.4415 30.2096i −0.559726 0.969473i −0.997519 0.0703978i \(-0.977573\pi\)
0.437793 0.899076i \(-0.355760\pi\)
\(972\) 0 0
\(973\) −29.8876 −0.958153
\(974\) 0 0
\(975\) 0.192989 0.334266i 0.00618058 0.0107051i
\(976\) 0 0
\(977\) −12.8183 22.2019i −0.410093 0.710302i 0.584806 0.811173i \(-0.301171\pi\)
−0.994900 + 0.100871i \(0.967837\pi\)
\(978\) 0 0
\(979\) −10.9716 19.0033i −0.350653 0.607348i
\(980\) 0 0
\(981\) −16.2553 + 28.1550i −0.518993 + 0.898921i
\(982\) 0 0
\(983\) 13.0998 + 22.6895i 0.417819 + 0.723684i 0.995720 0.0924231i \(-0.0294612\pi\)
−0.577901 + 0.816107i \(0.696128\pi\)
\(984\) 0 0
\(985\) −0.514429 −0.0163911
\(986\) 0 0
\(987\) 9.60775 + 16.6411i 0.305818 + 0.529692i
\(988\) 0 0
\(989\) −0.0532575 −0.00169349
\(990\) 0 0
\(991\) 29.7660 0.945547 0.472773 0.881184i \(-0.343253\pi\)
0.472773 + 0.881184i \(0.343253\pi\)
\(992\) 0 0
\(993\) −25.5674 −0.811357
\(994\) 0 0
\(995\) −3.07298 + 5.32255i −0.0974199 + 0.168736i
\(996\) 0 0
\(997\) 18.6399 + 32.2853i 0.590332 + 1.02249i 0.994188 + 0.107662i \(0.0343365\pi\)
−0.403855 + 0.914823i \(0.632330\pi\)
\(998\) 0 0
\(999\) 5.79964 32.3136i 0.183493 1.02236i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1480.2.q.b.1321.6 yes 18
37.10 even 3 inner 1480.2.q.b.121.6 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1480.2.q.b.121.6 18 37.10 even 3 inner
1480.2.q.b.1321.6 yes 18 1.1 even 1 trivial