Properties

Label 1480.2.q.b.1321.4
Level $1480$
Weight $2$
Character 1480.1321
Analytic conductor $11.818$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1480,2,Mod(121,1480)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1480.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1480, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1480 = 2^{3} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1480.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,2,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.8178594991\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 2 x^{17} + 18 x^{16} - 22 x^{15} + 194 x^{14} - 224 x^{13} + 1053 x^{12} - 770 x^{11} + \cdots + 441 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1321.4
Root \(-0.306255 + 0.530449i\) of defining polynomial
Character \(\chi\) \(=\) 1480.1321
Dual form 1480.2.q.b.121.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.306255 + 0.530449i) q^{3} +(0.500000 - 0.866025i) q^{5} +(-0.678169 + 1.17462i) q^{7} +(1.31242 + 2.27317i) q^{9} -2.73037 q^{11} +(3.10944 - 5.38571i) q^{13} +(0.306255 + 0.530449i) q^{15} +(2.91361 + 5.04652i) q^{17} +(-2.51249 + 4.35176i) q^{19} +(-0.415385 - 0.719468i) q^{21} -0.514732 q^{23} +(-0.500000 - 0.866025i) q^{25} -3.44526 q^{27} +1.82540 q^{29} +6.69702 q^{31} +(0.836188 - 1.44832i) q^{33} +(0.678169 + 1.17462i) q^{35} +(-5.61559 + 2.33778i) q^{37} +(1.90456 + 3.29880i) q^{39} +(-1.20673 + 2.09012i) q^{41} -6.52538 q^{43} +2.62483 q^{45} +13.2834 q^{47} +(2.58017 + 4.46899i) q^{49} -3.56923 q^{51} +(6.71541 + 11.6314i) q^{53} +(-1.36518 + 2.36457i) q^{55} +(-1.53892 - 2.66550i) q^{57} +(-2.57006 - 4.45148i) q^{59} +(-1.70164 + 2.94732i) q^{61} -3.56016 q^{63} +(-3.10944 - 5.38571i) q^{65} +(-7.05205 + 12.2145i) q^{67} +(0.157639 - 0.273039i) q^{69} +(-0.706064 + 1.22294i) q^{71} +5.23092 q^{73} +0.612510 q^{75} +(1.85165 - 3.20715i) q^{77} +(-2.48939 + 4.31175i) q^{79} +(-2.88212 + 4.99198i) q^{81} +(3.93127 + 6.80917i) q^{83} +5.82722 q^{85} +(-0.559038 + 0.968282i) q^{87} +(-6.89387 - 11.9405i) q^{89} +(4.21746 + 7.30485i) q^{91} +(-2.05099 + 3.55243i) q^{93} +(2.51249 + 4.35176i) q^{95} +16.6114 q^{97} +(-3.58338 - 6.20659i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{3} + 9 q^{5} - 5 q^{9} - 6 q^{11} + 2 q^{13} - 2 q^{15} + q^{17} - 5 q^{21} + 12 q^{23} - 9 q^{25} - 10 q^{27} - 20 q^{29} + 28 q^{31} + 11 q^{33} - 5 q^{39} - 5 q^{41} + 2 q^{43} - 10 q^{45}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1480\mathbb{Z}\right)^\times\).

\(n\) \(297\) \(741\) \(1001\) \(1111\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.306255 + 0.530449i −0.176816 + 0.306255i −0.940788 0.338995i \(-0.889913\pi\)
0.763972 + 0.645249i \(0.223247\pi\)
\(4\) 0 0
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0 0
\(7\) −0.678169 + 1.17462i −0.256324 + 0.443966i −0.965254 0.261313i \(-0.915845\pi\)
0.708930 + 0.705278i \(0.249178\pi\)
\(8\) 0 0
\(9\) 1.31242 + 2.27317i 0.437472 + 0.757724i
\(10\) 0 0
\(11\) −2.73037 −0.823237 −0.411618 0.911356i \(-0.635036\pi\)
−0.411618 + 0.911356i \(0.635036\pi\)
\(12\) 0 0
\(13\) 3.10944 5.38571i 0.862405 1.49373i −0.00719691 0.999974i \(-0.502291\pi\)
0.869601 0.493754i \(-0.164376\pi\)
\(14\) 0 0
\(15\) 0.306255 + 0.530449i 0.0790746 + 0.136961i
\(16\) 0 0
\(17\) 2.91361 + 5.04652i 0.706655 + 1.22396i 0.966091 + 0.258202i \(0.0831299\pi\)
−0.259436 + 0.965760i \(0.583537\pi\)
\(18\) 0 0
\(19\) −2.51249 + 4.35176i −0.576405 + 0.998362i 0.419483 + 0.907763i \(0.362212\pi\)
−0.995887 + 0.0905991i \(0.971122\pi\)
\(20\) 0 0
\(21\) −0.415385 0.719468i −0.0906444 0.157001i
\(22\) 0 0
\(23\) −0.514732 −0.107329 −0.0536645 0.998559i \(-0.517090\pi\)
−0.0536645 + 0.998559i \(0.517090\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) −3.44526 −0.663041
\(28\) 0 0
\(29\) 1.82540 0.338969 0.169484 0.985533i \(-0.445790\pi\)
0.169484 + 0.985533i \(0.445790\pi\)
\(30\) 0 0
\(31\) 6.69702 1.20282 0.601410 0.798940i \(-0.294606\pi\)
0.601410 + 0.798940i \(0.294606\pi\)
\(32\) 0 0
\(33\) 0.836188 1.44832i 0.145562 0.252120i
\(34\) 0 0
\(35\) 0.678169 + 1.17462i 0.114631 + 0.198548i
\(36\) 0 0
\(37\) −5.61559 + 2.33778i −0.923197 + 0.384328i
\(38\) 0 0
\(39\) 1.90456 + 3.29880i 0.304974 + 0.528231i
\(40\) 0 0
\(41\) −1.20673 + 2.09012i −0.188460 + 0.326422i −0.944737 0.327830i \(-0.893683\pi\)
0.756277 + 0.654251i \(0.227016\pi\)
\(42\) 0 0
\(43\) −6.52538 −0.995112 −0.497556 0.867432i \(-0.665769\pi\)
−0.497556 + 0.867432i \(0.665769\pi\)
\(44\) 0 0
\(45\) 2.62483 0.391287
\(46\) 0 0
\(47\) 13.2834 1.93758 0.968791 0.247878i \(-0.0797332\pi\)
0.968791 + 0.247878i \(0.0797332\pi\)
\(48\) 0 0
\(49\) 2.58017 + 4.46899i 0.368596 + 0.638427i
\(50\) 0 0
\(51\) −3.56923 −0.499792
\(52\) 0 0
\(53\) 6.71541 + 11.6314i 0.922433 + 1.59770i 0.795638 + 0.605772i \(0.207136\pi\)
0.126795 + 0.991929i \(0.459531\pi\)
\(54\) 0 0
\(55\) −1.36518 + 2.36457i −0.184081 + 0.318838i
\(56\) 0 0
\(57\) −1.53892 2.66550i −0.203836 0.353053i
\(58\) 0 0
\(59\) −2.57006 4.45148i −0.334594 0.579533i 0.648813 0.760948i \(-0.275266\pi\)
−0.983407 + 0.181415i \(0.941932\pi\)
\(60\) 0 0
\(61\) −1.70164 + 2.94732i −0.217872 + 0.377366i −0.954157 0.299306i \(-0.903245\pi\)
0.736285 + 0.676672i \(0.236578\pi\)
\(62\) 0 0
\(63\) −3.56016 −0.448538
\(64\) 0 0
\(65\) −3.10944 5.38571i −0.385679 0.668016i
\(66\) 0 0
\(67\) −7.05205 + 12.2145i −0.861545 + 1.49224i 0.00889193 + 0.999960i \(0.497170\pi\)
−0.870437 + 0.492280i \(0.836164\pi\)
\(68\) 0 0
\(69\) 0.157639 0.273039i 0.0189775 0.0328700i
\(70\) 0 0
\(71\) −0.706064 + 1.22294i −0.0837943 + 0.145136i −0.904877 0.425674i \(-0.860037\pi\)
0.821082 + 0.570810i \(0.193371\pi\)
\(72\) 0 0
\(73\) 5.23092 0.612233 0.306116 0.951994i \(-0.400970\pi\)
0.306116 + 0.951994i \(0.400970\pi\)
\(74\) 0 0
\(75\) 0.612510 0.0707265
\(76\) 0 0
\(77\) 1.85165 3.20715i 0.211015 0.365489i
\(78\) 0 0
\(79\) −2.48939 + 4.31175i −0.280079 + 0.485110i −0.971404 0.237433i \(-0.923694\pi\)
0.691325 + 0.722544i \(0.257027\pi\)
\(80\) 0 0
\(81\) −2.88212 + 4.99198i −0.320236 + 0.554664i
\(82\) 0 0
\(83\) 3.93127 + 6.80917i 0.431513 + 0.747403i 0.997004 0.0773516i \(-0.0246464\pi\)
−0.565490 + 0.824755i \(0.691313\pi\)
\(84\) 0 0
\(85\) 5.82722 0.632051
\(86\) 0 0
\(87\) −0.559038 + 0.968282i −0.0599352 + 0.103811i
\(88\) 0 0
\(89\) −6.89387 11.9405i −0.730749 1.26569i −0.956564 0.291524i \(-0.905838\pi\)
0.225815 0.974170i \(-0.427496\pi\)
\(90\) 0 0
\(91\) 4.21746 + 7.30485i 0.442110 + 0.765756i
\(92\) 0 0
\(93\) −2.05099 + 3.55243i −0.212678 + 0.368370i
\(94\) 0 0
\(95\) 2.51249 + 4.35176i 0.257776 + 0.446481i
\(96\) 0 0
\(97\) 16.6114 1.68663 0.843314 0.537421i \(-0.180602\pi\)
0.843314 + 0.537421i \(0.180602\pi\)
\(98\) 0 0
\(99\) −3.58338 6.20659i −0.360143 0.623786i
\(100\) 0 0
\(101\) 1.58871 0.158082 0.0790412 0.996871i \(-0.474814\pi\)
0.0790412 + 0.996871i \(0.474814\pi\)
\(102\) 0 0
\(103\) −2.72413 −0.268417 −0.134208 0.990953i \(-0.542849\pi\)
−0.134208 + 0.990953i \(0.542849\pi\)
\(104\) 0 0
\(105\) −0.830770 −0.0810749
\(106\) 0 0
\(107\) 5.48744 9.50452i 0.530491 0.918837i −0.468876 0.883264i \(-0.655341\pi\)
0.999367 0.0355731i \(-0.0113257\pi\)
\(108\) 0 0
\(109\) −6.56474 11.3705i −0.628788 1.08909i −0.987795 0.155758i \(-0.950218\pi\)
0.359008 0.933335i \(-0.383115\pi\)
\(110\) 0 0
\(111\) 0.479728 3.69474i 0.0455338 0.350689i
\(112\) 0 0
\(113\) 6.04864 + 10.4766i 0.569009 + 0.985552i 0.996664 + 0.0816100i \(0.0260062\pi\)
−0.427656 + 0.903942i \(0.640660\pi\)
\(114\) 0 0
\(115\) −0.257366 + 0.445771i −0.0239995 + 0.0415684i
\(116\) 0 0
\(117\) 16.3235 1.50911
\(118\) 0 0
\(119\) −7.90369 −0.724530
\(120\) 0 0
\(121\) −3.54509 −0.322281
\(122\) 0 0
\(123\) −0.739134 1.28022i −0.0666455 0.115433i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 7.02114 + 12.1610i 0.623025 + 1.07911i 0.988919 + 0.148454i \(0.0474299\pi\)
−0.365894 + 0.930656i \(0.619237\pi\)
\(128\) 0 0
\(129\) 1.99843 3.46138i 0.175952 0.304758i
\(130\) 0 0
\(131\) −2.05596 3.56103i −0.179630 0.311129i 0.762124 0.647431i \(-0.224157\pi\)
−0.941754 + 0.336303i \(0.890823\pi\)
\(132\) 0 0
\(133\) −3.40779 5.90246i −0.295493 0.511808i
\(134\) 0 0
\(135\) −1.72263 + 2.98369i −0.148261 + 0.256795i
\(136\) 0 0
\(137\) 16.3643 1.39810 0.699049 0.715074i \(-0.253607\pi\)
0.699049 + 0.715074i \(0.253607\pi\)
\(138\) 0 0
\(139\) 9.93668 + 17.2108i 0.842818 + 1.45980i 0.887503 + 0.460802i \(0.152438\pi\)
−0.0446850 + 0.999001i \(0.514228\pi\)
\(140\) 0 0
\(141\) −4.06810 + 7.04616i −0.342596 + 0.593394i
\(142\) 0 0
\(143\) −8.48992 + 14.7050i −0.709963 + 1.22969i
\(144\) 0 0
\(145\) 0.912701 1.58084i 0.0757957 0.131282i
\(146\) 0 0
\(147\) −3.16076 −0.260695
\(148\) 0 0
\(149\) −16.9239 −1.38646 −0.693231 0.720715i \(-0.743814\pi\)
−0.693231 + 0.720715i \(0.743814\pi\)
\(150\) 0 0
\(151\) −1.57163 + 2.72215i −0.127898 + 0.221525i −0.922862 0.385131i \(-0.874156\pi\)
0.794964 + 0.606656i \(0.207490\pi\)
\(152\) 0 0
\(153\) −7.64774 + 13.2463i −0.618283 + 1.07090i
\(154\) 0 0
\(155\) 3.34851 5.79979i 0.268959 0.465850i
\(156\) 0 0
\(157\) 7.61633 + 13.1919i 0.607849 + 1.05283i 0.991594 + 0.129387i \(0.0413008\pi\)
−0.383745 + 0.923439i \(0.625366\pi\)
\(158\) 0 0
\(159\) −8.22651 −0.652405
\(160\) 0 0
\(161\) 0.349075 0.604616i 0.0275110 0.0476504i
\(162\) 0 0
\(163\) −0.329069 0.569965i −0.0257747 0.0446431i 0.852850 0.522155i \(-0.174872\pi\)
−0.878625 + 0.477512i \(0.841539\pi\)
\(164\) 0 0
\(165\) −0.836188 1.44832i −0.0650971 0.112752i
\(166\) 0 0
\(167\) −7.13516 + 12.3585i −0.552136 + 0.956327i 0.445985 + 0.895041i \(0.352854\pi\)
−0.998120 + 0.0612862i \(0.980480\pi\)
\(168\) 0 0
\(169\) −12.8373 22.2348i −0.987483 1.71037i
\(170\) 0 0
\(171\) −13.1897 −1.00864
\(172\) 0 0
\(173\) −11.6384 20.1582i −0.884849 1.53260i −0.845887 0.533362i \(-0.820928\pi\)
−0.0389615 0.999241i \(-0.512405\pi\)
\(174\) 0 0
\(175\) 1.35634 0.102530
\(176\) 0 0
\(177\) 3.14838 0.236646
\(178\) 0 0
\(179\) −7.53264 −0.563016 −0.281508 0.959559i \(-0.590835\pi\)
−0.281508 + 0.959559i \(0.590835\pi\)
\(180\) 0 0
\(181\) 1.96924 3.41082i 0.146372 0.253524i −0.783512 0.621377i \(-0.786574\pi\)
0.929884 + 0.367853i \(0.119907\pi\)
\(182\) 0 0
\(183\) −1.04227 1.80526i −0.0770468 0.133449i
\(184\) 0 0
\(185\) −0.783218 + 6.03213i −0.0575833 + 0.443491i
\(186\) 0 0
\(187\) −7.95523 13.7789i −0.581744 1.00761i
\(188\) 0 0
\(189\) 2.33647 4.04689i 0.169953 0.294368i
\(190\) 0 0
\(191\) −0.518016 −0.0374823 −0.0187411 0.999824i \(-0.505966\pi\)
−0.0187411 + 0.999824i \(0.505966\pi\)
\(192\) 0 0
\(193\) −14.7767 −1.06365 −0.531825 0.846855i \(-0.678493\pi\)
−0.531825 + 0.846855i \(0.678493\pi\)
\(194\) 0 0
\(195\) 3.80913 0.272777
\(196\) 0 0
\(197\) −5.37374 9.30759i −0.382863 0.663138i 0.608607 0.793472i \(-0.291729\pi\)
−0.991470 + 0.130334i \(0.958395\pi\)
\(198\) 0 0
\(199\) 0.397018 0.0281438 0.0140719 0.999901i \(-0.495521\pi\)
0.0140719 + 0.999901i \(0.495521\pi\)
\(200\) 0 0
\(201\) −4.31945 7.48150i −0.304670 0.527705i
\(202\) 0 0
\(203\) −1.23793 + 2.14416i −0.0868857 + 0.150490i
\(204\) 0 0
\(205\) 1.20673 + 2.09012i 0.0842817 + 0.145980i
\(206\) 0 0
\(207\) −0.675543 1.17007i −0.0469535 0.0813258i
\(208\) 0 0
\(209\) 6.86002 11.8819i 0.474518 0.821889i
\(210\) 0 0
\(211\) 26.6079 1.83176 0.915882 0.401447i \(-0.131492\pi\)
0.915882 + 0.401447i \(0.131492\pi\)
\(212\) 0 0
\(213\) −0.432471 0.749061i −0.0296324 0.0513248i
\(214\) 0 0
\(215\) −3.26269 + 5.65115i −0.222514 + 0.385405i
\(216\) 0 0
\(217\) −4.54171 + 7.86648i −0.308312 + 0.534011i
\(218\) 0 0
\(219\) −1.60199 + 2.77473i −0.108253 + 0.187499i
\(220\) 0 0
\(221\) 36.2389 2.43769
\(222\) 0 0
\(223\) −9.47163 −0.634267 −0.317134 0.948381i \(-0.602720\pi\)
−0.317134 + 0.948381i \(0.602720\pi\)
\(224\) 0 0
\(225\) 1.31242 2.27317i 0.0874944 0.151545i
\(226\) 0 0
\(227\) 12.2462 21.2110i 0.812806 1.40782i −0.0980871 0.995178i \(-0.531272\pi\)
0.910893 0.412643i \(-0.135394\pi\)
\(228\) 0 0
\(229\) −5.07983 + 8.79852i −0.335684 + 0.581422i −0.983616 0.180276i \(-0.942301\pi\)
0.647932 + 0.761698i \(0.275634\pi\)
\(230\) 0 0
\(231\) 1.13415 + 1.96441i 0.0746218 + 0.129249i
\(232\) 0 0
\(233\) 12.2345 0.801510 0.400755 0.916185i \(-0.368748\pi\)
0.400755 + 0.916185i \(0.368748\pi\)
\(234\) 0 0
\(235\) 6.64170 11.5038i 0.433257 0.750422i
\(236\) 0 0
\(237\) −1.52478 2.64099i −0.0990449 0.171551i
\(238\) 0 0
\(239\) −7.40511 12.8260i −0.478997 0.829647i 0.520713 0.853732i \(-0.325666\pi\)
−0.999710 + 0.0240848i \(0.992333\pi\)
\(240\) 0 0
\(241\) 0.920953 1.59514i 0.0593238 0.102752i −0.834838 0.550495i \(-0.814439\pi\)
0.894162 + 0.447743i \(0.147772\pi\)
\(242\) 0 0
\(243\) −6.93322 12.0087i −0.444766 0.770358i
\(244\) 0 0
\(245\) 5.16035 0.329682
\(246\) 0 0
\(247\) 15.6249 + 27.0631i 0.994188 + 1.72198i
\(248\) 0 0
\(249\) −4.81589 −0.305194
\(250\) 0 0
\(251\) 0.899505 0.0567762 0.0283881 0.999597i \(-0.490963\pi\)
0.0283881 + 0.999597i \(0.490963\pi\)
\(252\) 0 0
\(253\) 1.40541 0.0883572
\(254\) 0 0
\(255\) −1.78462 + 3.09104i −0.111757 + 0.193569i
\(256\) 0 0
\(257\) −13.3337 23.0946i −0.831732 1.44060i −0.896664 0.442713i \(-0.854016\pi\)
0.0649314 0.997890i \(-0.479317\pi\)
\(258\) 0 0
\(259\) 1.06231 8.18161i 0.0660086 0.508380i
\(260\) 0 0
\(261\) 2.39569 + 4.14945i 0.148289 + 0.256845i
\(262\) 0 0
\(263\) 14.9665 25.9227i 0.922872 1.59846i 0.127923 0.991784i \(-0.459169\pi\)
0.794948 0.606677i \(-0.207498\pi\)
\(264\) 0 0
\(265\) 13.4308 0.825049
\(266\) 0 0
\(267\) 8.44512 0.516833
\(268\) 0 0
\(269\) 4.46816 0.272428 0.136214 0.990679i \(-0.456506\pi\)
0.136214 + 0.990679i \(0.456506\pi\)
\(270\) 0 0
\(271\) −2.61844 4.53527i −0.159059 0.275498i 0.775471 0.631384i \(-0.217513\pi\)
−0.934530 + 0.355886i \(0.884179\pi\)
\(272\) 0 0
\(273\) −5.16647 −0.312689
\(274\) 0 0
\(275\) 1.36518 + 2.36457i 0.0823237 + 0.142589i
\(276\) 0 0
\(277\) 7.09495 12.2888i 0.426294 0.738363i −0.570246 0.821474i \(-0.693152\pi\)
0.996540 + 0.0831109i \(0.0264856\pi\)
\(278\) 0 0
\(279\) 8.78928 + 15.2235i 0.526200 + 0.911406i
\(280\) 0 0
\(281\) −11.4250 19.7887i −0.681560 1.18050i −0.974505 0.224367i \(-0.927968\pi\)
0.292945 0.956129i \(-0.405365\pi\)
\(282\) 0 0
\(283\) 11.8382 20.5044i 0.703710 1.21886i −0.263446 0.964674i \(-0.584859\pi\)
0.967155 0.254186i \(-0.0818077\pi\)
\(284\) 0 0
\(285\) −3.07785 −0.182316
\(286\) 0 0
\(287\) −1.63673 2.83491i −0.0966134 0.167339i
\(288\) 0 0
\(289\) −8.47827 + 14.6848i −0.498722 + 0.863811i
\(290\) 0 0
\(291\) −5.08731 + 8.81147i −0.298223 + 0.516538i
\(292\) 0 0
\(293\) 8.24410 14.2792i 0.481625 0.834199i −0.518152 0.855288i \(-0.673380\pi\)
0.999778 + 0.0210889i \(0.00671332\pi\)
\(294\) 0 0
\(295\) −5.14013 −0.299270
\(296\) 0 0
\(297\) 9.40683 0.545840
\(298\) 0 0
\(299\) −1.60053 + 2.77220i −0.0925611 + 0.160320i
\(300\) 0 0
\(301\) 4.42531 7.66487i 0.255071 0.441796i
\(302\) 0 0
\(303\) −0.486550 + 0.842729i −0.0279516 + 0.0484135i
\(304\) 0 0
\(305\) 1.70164 + 2.94732i 0.0974355 + 0.168763i
\(306\) 0 0
\(307\) −12.1002 −0.690597 −0.345299 0.938493i \(-0.612222\pi\)
−0.345299 + 0.938493i \(0.612222\pi\)
\(308\) 0 0
\(309\) 0.834278 1.44501i 0.0474604 0.0822039i
\(310\) 0 0
\(311\) −14.8212 25.6710i −0.840431 1.45567i −0.889531 0.456875i \(-0.848969\pi\)
0.0491004 0.998794i \(-0.484365\pi\)
\(312\) 0 0
\(313\) 1.39331 + 2.41328i 0.0787543 + 0.136406i 0.902713 0.430244i \(-0.141572\pi\)
−0.823958 + 0.566650i \(0.808239\pi\)
\(314\) 0 0
\(315\) −1.78008 + 3.08319i −0.100296 + 0.173718i
\(316\) 0 0
\(317\) 9.11267 + 15.7836i 0.511818 + 0.886495i 0.999906 + 0.0137008i \(0.00436123\pi\)
−0.488088 + 0.872795i \(0.662305\pi\)
\(318\) 0 0
\(319\) −4.98402 −0.279051
\(320\) 0 0
\(321\) 3.36111 + 5.82161i 0.187599 + 0.324931i
\(322\) 0 0
\(323\) −29.2817 −1.62928
\(324\) 0 0
\(325\) −6.21889 −0.344962
\(326\) 0 0
\(327\) 8.04193 0.444720
\(328\) 0 0
\(329\) −9.00839 + 15.6030i −0.496649 + 0.860220i
\(330\) 0 0
\(331\) −16.4084 28.4202i −0.901887 1.56211i −0.825043 0.565070i \(-0.808849\pi\)
−0.0768438 0.997043i \(-0.524484\pi\)
\(332\) 0 0
\(333\) −12.6842 9.69705i −0.695087 0.531395i
\(334\) 0 0
\(335\) 7.05205 + 12.2145i 0.385295 + 0.667350i
\(336\) 0 0
\(337\) −1.62221 + 2.80975i −0.0883675 + 0.153057i −0.906821 0.421515i \(-0.861498\pi\)
0.818454 + 0.574572i \(0.194832\pi\)
\(338\) 0 0
\(339\) −7.40970 −0.402440
\(340\) 0 0
\(341\) −18.2853 −0.990206
\(342\) 0 0
\(343\) −16.4935 −0.890568
\(344\) 0 0
\(345\) −0.157639 0.273039i −0.00848701 0.0146999i
\(346\) 0 0
\(347\) 23.5901 1.26638 0.633190 0.773996i \(-0.281745\pi\)
0.633190 + 0.773996i \(0.281745\pi\)
\(348\) 0 0
\(349\) −1.36694 2.36762i −0.0731709 0.126736i 0.827119 0.562028i \(-0.189979\pi\)
−0.900289 + 0.435292i \(0.856645\pi\)
\(350\) 0 0
\(351\) −10.7129 + 18.5552i −0.571810 + 0.990404i
\(352\) 0 0
\(353\) 5.93272 + 10.2758i 0.315767 + 0.546924i 0.979600 0.200956i \(-0.0644049\pi\)
−0.663833 + 0.747881i \(0.731072\pi\)
\(354\) 0 0
\(355\) 0.706064 + 1.22294i 0.0374740 + 0.0649068i
\(356\) 0 0
\(357\) 2.42054 4.19250i 0.128109 0.221891i
\(358\) 0 0
\(359\) −6.17772 −0.326048 −0.163024 0.986622i \(-0.552125\pi\)
−0.163024 + 0.986622i \(0.552125\pi\)
\(360\) 0 0
\(361\) −3.12522 5.41303i −0.164485 0.284897i
\(362\) 0 0
\(363\) 1.08570 1.88049i 0.0569846 0.0987002i
\(364\) 0 0
\(365\) 2.61546 4.53011i 0.136899 0.237117i
\(366\) 0 0
\(367\) 5.38025 9.31886i 0.280847 0.486441i −0.690747 0.723097i \(-0.742718\pi\)
0.971594 + 0.236656i \(0.0760514\pi\)
\(368\) 0 0
\(369\) −6.33493 −0.329783
\(370\) 0 0
\(371\) −18.2167 −0.945766
\(372\) 0 0
\(373\) −11.8085 + 20.4529i −0.611419 + 1.05901i 0.379582 + 0.925158i \(0.376068\pi\)
−0.991001 + 0.133851i \(0.957266\pi\)
\(374\) 0 0
\(375\) 0.306255 0.530449i 0.0158149 0.0273923i
\(376\) 0 0
\(377\) 5.67598 9.83109i 0.292328 0.506327i
\(378\) 0 0
\(379\) −15.3305 26.5533i −0.787477 1.36395i −0.927508 0.373803i \(-0.878054\pi\)
0.140031 0.990147i \(-0.455280\pi\)
\(380\) 0 0
\(381\) −8.60102 −0.440644
\(382\) 0 0
\(383\) 9.04640 15.6688i 0.462250 0.800640i −0.536823 0.843695i \(-0.680376\pi\)
0.999073 + 0.0430550i \(0.0137091\pi\)
\(384\) 0 0
\(385\) −1.85165 3.20715i −0.0943689 0.163452i
\(386\) 0 0
\(387\) −8.56402 14.8333i −0.435334 0.754020i
\(388\) 0 0
\(389\) 16.1718 28.0103i 0.819941 1.42018i −0.0857843 0.996314i \(-0.527340\pi\)
0.905725 0.423865i \(-0.139327\pi\)
\(390\) 0 0
\(391\) −1.49973 2.59761i −0.0758446 0.131367i
\(392\) 0 0
\(393\) 2.51859 0.127046
\(394\) 0 0
\(395\) 2.48939 + 4.31175i 0.125255 + 0.216948i
\(396\) 0 0
\(397\) 6.73163 0.337851 0.168925 0.985629i \(-0.445970\pi\)
0.168925 + 0.985629i \(0.445970\pi\)
\(398\) 0 0
\(399\) 4.17460 0.208992
\(400\) 0 0
\(401\) 8.91980 0.445434 0.222717 0.974883i \(-0.428507\pi\)
0.222717 + 0.974883i \(0.428507\pi\)
\(402\) 0 0
\(403\) 20.8240 36.0682i 1.03732 1.79669i
\(404\) 0 0
\(405\) 2.88212 + 4.99198i 0.143214 + 0.248053i
\(406\) 0 0
\(407\) 15.3326 6.38299i 0.760009 0.316393i
\(408\) 0 0
\(409\) −6.78629 11.7542i −0.335561 0.581208i 0.648032 0.761613i \(-0.275592\pi\)
−0.983592 + 0.180405i \(0.942259\pi\)
\(410\) 0 0
\(411\) −5.01165 + 8.68043i −0.247206 + 0.428174i
\(412\) 0 0
\(413\) 6.97175 0.343057
\(414\) 0 0
\(415\) 7.86255 0.385957
\(416\) 0 0
\(417\) −12.1726 −0.596096
\(418\) 0 0
\(419\) 18.1984 + 31.5206i 0.889051 + 1.53988i 0.840999 + 0.541037i \(0.181968\pi\)
0.0480525 + 0.998845i \(0.484699\pi\)
\(420\) 0 0
\(421\) 2.00978 0.0979505 0.0489753 0.998800i \(-0.484404\pi\)
0.0489753 + 0.998800i \(0.484404\pi\)
\(422\) 0 0
\(423\) 17.4333 + 30.1954i 0.847638 + 1.46815i
\(424\) 0 0
\(425\) 2.91361 5.04652i 0.141331 0.244792i
\(426\) 0 0
\(427\) −2.30800 3.99757i −0.111692 0.193456i
\(428\) 0 0
\(429\) −5.20016 9.00694i −0.251066 0.434859i
\(430\) 0 0
\(431\) 2.86903 4.96931i 0.138196 0.239363i −0.788618 0.614884i \(-0.789203\pi\)
0.926814 + 0.375521i \(0.122536\pi\)
\(432\) 0 0
\(433\) −16.7097 −0.803018 −0.401509 0.915855i \(-0.631514\pi\)
−0.401509 + 0.915855i \(0.631514\pi\)
\(434\) 0 0
\(435\) 0.559038 + 0.968282i 0.0268038 + 0.0464256i
\(436\) 0 0
\(437\) 1.29326 2.23999i 0.0618650 0.107153i
\(438\) 0 0
\(439\) −8.10459 + 14.0376i −0.386811 + 0.669977i −0.992019 0.126091i \(-0.959757\pi\)
0.605207 + 0.796068i \(0.293090\pi\)
\(440\) 0 0
\(441\) −6.77252 + 11.7304i −0.322501 + 0.558588i
\(442\) 0 0
\(443\) −39.2925 −1.86684 −0.933422 0.358780i \(-0.883193\pi\)
−0.933422 + 0.358780i \(0.883193\pi\)
\(444\) 0 0
\(445\) −13.7877 −0.653602
\(446\) 0 0
\(447\) 5.18303 8.97728i 0.245149 0.424611i
\(448\) 0 0
\(449\) 7.17341 12.4247i 0.338534 0.586359i −0.645623 0.763656i \(-0.723402\pi\)
0.984157 + 0.177298i \(0.0567355\pi\)
\(450\) 0 0
\(451\) 3.29482 5.70679i 0.155147 0.268722i
\(452\) 0 0
\(453\) −0.962640 1.66734i −0.0452288 0.0783385i
\(454\) 0 0
\(455\) 8.43491 0.395435
\(456\) 0 0
\(457\) −14.4454 + 25.0201i −0.675725 + 1.17039i 0.300531 + 0.953772i \(0.402836\pi\)
−0.976256 + 0.216618i \(0.930497\pi\)
\(458\) 0 0
\(459\) −10.0382 17.3866i −0.468541 0.811537i
\(460\) 0 0
\(461\) 11.8683 + 20.5564i 0.552760 + 0.957409i 0.998074 + 0.0620343i \(0.0197588\pi\)
−0.445314 + 0.895375i \(0.646908\pi\)
\(462\) 0 0
\(463\) 6.29313 10.9000i 0.292467 0.506567i −0.681926 0.731421i \(-0.738857\pi\)
0.974392 + 0.224854i \(0.0721906\pi\)
\(464\) 0 0
\(465\) 2.05099 + 3.55243i 0.0951126 + 0.164740i
\(466\) 0 0
\(467\) −4.78804 −0.221564 −0.110782 0.993845i \(-0.535336\pi\)
−0.110782 + 0.993845i \(0.535336\pi\)
\(468\) 0 0
\(469\) −9.56497 16.5670i −0.441669 0.764993i
\(470\) 0 0
\(471\) −9.33015 −0.429910
\(472\) 0 0
\(473\) 17.8167 0.819213
\(474\) 0 0
\(475\) 5.02498 0.230562
\(476\) 0 0
\(477\) −17.6268 + 30.5306i −0.807077 + 1.39790i
\(478\) 0 0
\(479\) 12.5778 + 21.7853i 0.574693 + 0.995397i 0.996075 + 0.0885141i \(0.0282118\pi\)
−0.421382 + 0.906883i \(0.638455\pi\)
\(480\) 0 0
\(481\) −4.87074 + 37.5131i −0.222087 + 1.71045i
\(482\) 0 0
\(483\) 0.213812 + 0.370333i 0.00972878 + 0.0168507i
\(484\) 0 0
\(485\) 8.30568 14.3859i 0.377141 0.653228i
\(486\) 0 0
\(487\) 38.3971 1.73994 0.869970 0.493104i \(-0.164138\pi\)
0.869970 + 0.493104i \(0.164138\pi\)
\(488\) 0 0
\(489\) 0.403116 0.0182295
\(490\) 0 0
\(491\) 19.4434 0.877469 0.438735 0.898617i \(-0.355427\pi\)
0.438735 + 0.898617i \(0.355427\pi\)
\(492\) 0 0
\(493\) 5.31851 + 9.21193i 0.239534 + 0.414885i
\(494\) 0 0
\(495\) −7.16676 −0.322122
\(496\) 0 0
\(497\) −0.957661 1.65872i −0.0429570 0.0744036i
\(498\) 0 0
\(499\) −12.7614 + 22.1034i −0.571279 + 0.989484i 0.425156 + 0.905120i \(0.360219\pi\)
−0.996435 + 0.0843641i \(0.973114\pi\)
\(500\) 0 0
\(501\) −4.37036 7.56968i −0.195253 0.338188i
\(502\) 0 0
\(503\) 1.86071 + 3.22285i 0.0829651 + 0.143700i 0.904522 0.426426i \(-0.140228\pi\)
−0.821557 + 0.570126i \(0.806894\pi\)
\(504\) 0 0
\(505\) 0.794355 1.37586i 0.0353483 0.0612251i
\(506\) 0 0
\(507\) 15.7259 0.698412
\(508\) 0 0
\(509\) −12.8873 22.3215i −0.571221 0.989383i −0.996441 0.0842932i \(-0.973137\pi\)
0.425220 0.905090i \(-0.360197\pi\)
\(510\) 0 0
\(511\) −3.54745 + 6.14436i −0.156930 + 0.271810i
\(512\) 0 0
\(513\) 8.65619 14.9930i 0.382180 0.661955i
\(514\) 0 0
\(515\) −1.36207 + 2.35917i −0.0600198 + 0.103957i
\(516\) 0 0
\(517\) −36.2686 −1.59509
\(518\) 0 0
\(519\) 14.2572 0.625822
\(520\) 0 0
\(521\) −1.24309 + 2.15310i −0.0544609 + 0.0943290i −0.891971 0.452093i \(-0.850677\pi\)
0.837510 + 0.546422i \(0.184011\pi\)
\(522\) 0 0
\(523\) −10.7289 + 18.5830i −0.469142 + 0.812577i −0.999378 0.0352727i \(-0.988770\pi\)
0.530236 + 0.847850i \(0.322103\pi\)
\(524\) 0 0
\(525\) −0.415385 + 0.719468i −0.0181289 + 0.0314002i
\(526\) 0 0
\(527\) 19.5125 + 33.7967i 0.849979 + 1.47221i
\(528\) 0 0
\(529\) −22.7351 −0.988480
\(530\) 0 0
\(531\) 6.74599 11.6844i 0.292751 0.507059i
\(532\) 0 0
\(533\) 7.50452 + 12.9982i 0.325057 + 0.563015i
\(534\) 0 0
\(535\) −5.48744 9.50452i −0.237243 0.410916i
\(536\) 0 0
\(537\) 2.30691 3.99568i 0.0995504 0.172426i
\(538\) 0 0
\(539\) −7.04482 12.2020i −0.303442 0.525577i
\(540\) 0 0
\(541\) −10.4218 −0.448069 −0.224035 0.974581i \(-0.571923\pi\)
−0.224035 + 0.974581i \(0.571923\pi\)
\(542\) 0 0
\(543\) 1.20618 + 2.08916i 0.0517620 + 0.0896544i
\(544\) 0 0
\(545\) −13.1295 −0.562405
\(546\) 0 0
\(547\) −13.8476 −0.592082 −0.296041 0.955175i \(-0.595666\pi\)
−0.296041 + 0.955175i \(0.595666\pi\)
\(548\) 0 0
\(549\) −8.93303 −0.381252
\(550\) 0 0
\(551\) −4.58630 + 7.94371i −0.195383 + 0.338413i
\(552\) 0 0
\(553\) −3.37646 5.84820i −0.143582 0.248691i
\(554\) 0 0
\(555\) −2.95987 2.26282i −0.125640 0.0960516i
\(556\) 0 0
\(557\) 16.9417 + 29.3439i 0.717842 + 1.24334i 0.961853 + 0.273567i \(0.0882034\pi\)
−0.244011 + 0.969772i \(0.578463\pi\)
\(558\) 0 0
\(559\) −20.2903 + 35.1439i −0.858189 + 1.48643i
\(560\) 0 0
\(561\) 9.74531 0.411447
\(562\) 0 0
\(563\) 25.9013 1.09161 0.545805 0.837912i \(-0.316224\pi\)
0.545805 + 0.837912i \(0.316224\pi\)
\(564\) 0 0
\(565\) 12.0973 0.508937
\(566\) 0 0
\(567\) −3.90913 6.77081i −0.164168 0.284347i
\(568\) 0 0
\(569\) −8.45724 −0.354546 −0.177273 0.984162i \(-0.556728\pi\)
−0.177273 + 0.984162i \(0.556728\pi\)
\(570\) 0 0
\(571\) 6.92323 + 11.9914i 0.289728 + 0.501824i 0.973745 0.227642i \(-0.0731018\pi\)
−0.684017 + 0.729466i \(0.739768\pi\)
\(572\) 0 0
\(573\) 0.158645 0.274781i 0.00662748 0.0114791i
\(574\) 0 0
\(575\) 0.257366 + 0.445771i 0.0107329 + 0.0185899i
\(576\) 0 0
\(577\) 7.14576 + 12.3768i 0.297482 + 0.515254i 0.975559 0.219737i \(-0.0705198\pi\)
−0.678077 + 0.734991i \(0.737187\pi\)
\(578\) 0 0
\(579\) 4.52543 7.83828i 0.188070 0.325748i
\(580\) 0 0
\(581\) −10.6643 −0.442429
\(582\) 0 0
\(583\) −18.3355 31.7581i −0.759381 1.31529i
\(584\) 0 0
\(585\) 8.16177 14.1366i 0.337448 0.584476i
\(586\) 0 0
\(587\) 14.4511 25.0300i 0.596461 1.03310i −0.396878 0.917871i \(-0.629907\pi\)
0.993339 0.115229i \(-0.0367602\pi\)
\(588\) 0 0
\(589\) −16.8262 + 29.1438i −0.693312 + 1.20085i
\(590\) 0 0
\(591\) 6.58293 0.270786
\(592\) 0 0
\(593\) 8.27506 0.339816 0.169908 0.985460i \(-0.445653\pi\)
0.169908 + 0.985460i \(0.445653\pi\)
\(594\) 0 0
\(595\) −3.95184 + 6.84479i −0.162010 + 0.280609i
\(596\) 0 0
\(597\) −0.121589 + 0.210598i −0.00497629 + 0.00861919i
\(598\) 0 0
\(599\) −3.63294 + 6.29244i −0.148438 + 0.257102i −0.930650 0.365910i \(-0.880758\pi\)
0.782212 + 0.623012i \(0.214091\pi\)
\(600\) 0 0
\(601\) −11.7975 20.4338i −0.481229 0.833513i 0.518539 0.855054i \(-0.326476\pi\)
−0.999768 + 0.0215412i \(0.993143\pi\)
\(602\) 0 0
\(603\) −37.0209 −1.50761
\(604\) 0 0
\(605\) −1.77255 + 3.07014i −0.0720643 + 0.124819i
\(606\) 0 0
\(607\) 8.85148 + 15.3312i 0.359271 + 0.622275i 0.987839 0.155479i \(-0.0496922\pi\)
−0.628569 + 0.777754i \(0.716359\pi\)
\(608\) 0 0
\(609\) −0.758244 1.31332i −0.0307256 0.0532183i
\(610\) 0 0
\(611\) 41.3040 71.5406i 1.67098 2.89422i
\(612\) 0 0
\(613\) 7.17698 + 12.4309i 0.289875 + 0.502079i 0.973780 0.227493i \(-0.0730528\pi\)
−0.683904 + 0.729572i \(0.739719\pi\)
\(614\) 0 0
\(615\) −1.47827 −0.0596095
\(616\) 0 0
\(617\) 12.9750 + 22.4733i 0.522352 + 0.904740i 0.999662 + 0.0260053i \(0.00827866\pi\)
−0.477310 + 0.878735i \(0.658388\pi\)
\(618\) 0 0
\(619\) 40.6118 1.63232 0.816162 0.577823i \(-0.196098\pi\)
0.816162 + 0.577823i \(0.196098\pi\)
\(620\) 0 0
\(621\) 1.77339 0.0711636
\(622\) 0 0
\(623\) 18.7008 0.749233
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 4.20183 + 7.27778i 0.167805 + 0.290647i
\(628\) 0 0
\(629\) −28.1593 21.5278i −1.12278 0.858370i
\(630\) 0 0
\(631\) −13.7563 23.8266i −0.547631 0.948524i −0.998436 0.0559019i \(-0.982197\pi\)
0.450806 0.892622i \(-0.351137\pi\)
\(632\) 0 0
\(633\) −8.14880 + 14.1141i −0.323886 + 0.560987i
\(634\) 0 0
\(635\) 14.0423 0.557250
\(636\) 0 0
\(637\) 32.0916 1.27152
\(638\) 0 0
\(639\) −3.70660 −0.146631
\(640\) 0 0
\(641\) 9.49302 + 16.4424i 0.374952 + 0.649435i 0.990320 0.138804i \(-0.0443259\pi\)
−0.615368 + 0.788240i \(0.710993\pi\)
\(642\) 0 0
\(643\) −25.1997 −0.993779 −0.496889 0.867814i \(-0.665525\pi\)
−0.496889 + 0.867814i \(0.665525\pi\)
\(644\) 0 0
\(645\) −1.99843 3.46138i −0.0786881 0.136292i
\(646\) 0 0
\(647\) 5.18443 8.97970i 0.203821 0.353028i −0.745935 0.666018i \(-0.767997\pi\)
0.949756 + 0.312990i \(0.101331\pi\)
\(648\) 0 0
\(649\) 7.01722 + 12.1542i 0.275450 + 0.477093i
\(650\) 0 0
\(651\) −2.78184 4.81829i −0.109029 0.188844i
\(652\) 0 0
\(653\) −9.07725 + 15.7222i −0.355220 + 0.615259i −0.987156 0.159762i \(-0.948927\pi\)
0.631936 + 0.775021i \(0.282261\pi\)
\(654\) 0 0
\(655\) −4.11192 −0.160666
\(656\) 0 0
\(657\) 6.86514 + 11.8908i 0.267835 + 0.463903i
\(658\) 0 0
\(659\) 21.0929 36.5339i 0.821661 1.42316i −0.0827834 0.996568i \(-0.526381\pi\)
0.904445 0.426591i \(-0.140286\pi\)
\(660\) 0 0
\(661\) −15.5426 + 26.9205i −0.604536 + 1.04709i 0.387589 + 0.921832i \(0.373308\pi\)
−0.992125 + 0.125255i \(0.960025\pi\)
\(662\) 0 0
\(663\) −11.0983 + 19.2229i −0.431023 + 0.746554i
\(664\) 0 0
\(665\) −6.81557 −0.264297
\(666\) 0 0
\(667\) −0.939593 −0.0363812
\(668\) 0 0
\(669\) 2.90073 5.02422i 0.112149 0.194247i
\(670\) 0 0
\(671\) 4.64610 8.04727i 0.179361 0.310662i
\(672\) 0 0
\(673\) −14.3198 + 24.8026i −0.551987 + 0.956070i 0.446144 + 0.894961i \(0.352797\pi\)
−0.998131 + 0.0611085i \(0.980536\pi\)
\(674\) 0 0
\(675\) 1.72263 + 2.98369i 0.0663041 + 0.114842i
\(676\) 0 0
\(677\) 4.45376 0.171172 0.0855860 0.996331i \(-0.472724\pi\)
0.0855860 + 0.996331i \(0.472724\pi\)
\(678\) 0 0
\(679\) −11.2653 + 19.5121i −0.432323 + 0.748805i
\(680\) 0 0
\(681\) 7.50089 + 12.9919i 0.287435 + 0.497851i
\(682\) 0 0
\(683\) −12.8708 22.2928i −0.492487 0.853012i 0.507476 0.861666i \(-0.330579\pi\)
−0.999963 + 0.00865405i \(0.997245\pi\)
\(684\) 0 0
\(685\) 8.18216 14.1719i 0.312624 0.541481i
\(686\) 0 0
\(687\) −3.11144 5.38918i −0.118709 0.205610i
\(688\) 0 0
\(689\) 83.5248 3.18204
\(690\) 0 0
\(691\) 24.8233 + 42.9951i 0.944321 + 1.63561i 0.757105 + 0.653293i \(0.226613\pi\)
0.187216 + 0.982319i \(0.440054\pi\)
\(692\) 0 0
\(693\) 9.72054 0.369253
\(694\) 0 0
\(695\) 19.8734 0.753839
\(696\) 0 0
\(697\) −14.0638 −0.532704
\(698\) 0 0
\(699\) −3.74688 + 6.48979i −0.141720 + 0.245466i
\(700\) 0 0
\(701\) 13.3414 + 23.1079i 0.503897 + 0.872775i 0.999990 + 0.00450565i \(0.00143420\pi\)
−0.496093 + 0.868269i \(0.665232\pi\)
\(702\) 0 0
\(703\) 3.93565 30.3113i 0.148436 1.14321i
\(704\) 0 0
\(705\) 4.06810 + 7.04616i 0.153214 + 0.265374i
\(706\) 0 0
\(707\) −1.07741 + 1.86613i −0.0405203 + 0.0701832i
\(708\) 0 0
\(709\) −12.8591 −0.482934 −0.241467 0.970409i \(-0.577629\pi\)
−0.241467 + 0.970409i \(0.577629\pi\)
\(710\) 0 0
\(711\) −13.0685 −0.490106
\(712\) 0 0
\(713\) −3.44717 −0.129098
\(714\) 0 0
\(715\) 8.48992 + 14.7050i 0.317505 + 0.549935i
\(716\) 0 0
\(717\) 9.07140 0.338778
\(718\) 0 0
\(719\) −4.28143 7.41566i −0.159670 0.276557i 0.775079 0.631864i \(-0.217710\pi\)
−0.934750 + 0.355307i \(0.884376\pi\)
\(720\) 0 0
\(721\) 1.84742 3.19983i 0.0688016 0.119168i
\(722\) 0 0
\(723\) 0.564093 + 0.977037i 0.0209788 + 0.0363364i
\(724\) 0 0
\(725\) −0.912701 1.58084i −0.0338969 0.0587111i
\(726\) 0 0
\(727\) −0.194055 + 0.336112i −0.00719709 + 0.0124657i −0.869602 0.493754i \(-0.835624\pi\)
0.862404 + 0.506220i \(0.168958\pi\)
\(728\) 0 0
\(729\) −8.79939 −0.325903
\(730\) 0 0
\(731\) −19.0124 32.9305i −0.703200 1.21798i
\(732\) 0 0
\(733\) 0.330452 0.572360i 0.0122055 0.0211406i −0.859858 0.510533i \(-0.829448\pi\)
0.872064 + 0.489392i \(0.162781\pi\)
\(734\) 0 0
\(735\) −1.58038 + 2.73730i −0.0582932 + 0.100967i
\(736\) 0 0
\(737\) 19.2547 33.3501i 0.709256 1.22847i
\(738\) 0 0
\(739\) −25.3973 −0.934256 −0.467128 0.884190i \(-0.654711\pi\)
−0.467128 + 0.884190i \(0.654711\pi\)
\(740\) 0 0
\(741\) −19.1408 −0.703155
\(742\) 0 0
\(743\) 10.2557 17.7633i 0.376243 0.651673i −0.614269 0.789097i \(-0.710549\pi\)
0.990512 + 0.137424i \(0.0438823\pi\)
\(744\) 0 0
\(745\) −8.46197 + 14.6566i −0.310022 + 0.536975i
\(746\) 0 0
\(747\) −10.3189 + 17.8729i −0.377550 + 0.653936i
\(748\) 0 0
\(749\) 7.44282 + 12.8913i 0.271955 + 0.471040i
\(750\) 0 0
\(751\) 37.8461 1.38102 0.690512 0.723321i \(-0.257385\pi\)
0.690512 + 0.723321i \(0.257385\pi\)
\(752\) 0 0
\(753\) −0.275478 + 0.477141i −0.0100390 + 0.0173880i
\(754\) 0 0
\(755\) 1.57163 + 2.72215i 0.0571976 + 0.0990691i
\(756\) 0 0
\(757\) −7.48595 12.9660i −0.272081 0.471259i 0.697313 0.716766i \(-0.254379\pi\)
−0.969395 + 0.245508i \(0.921045\pi\)
\(758\) 0 0
\(759\) −0.430413 + 0.745497i −0.0156230 + 0.0270598i
\(760\) 0 0
\(761\) −2.17862 3.77348i −0.0789749 0.136789i 0.823833 0.566833i \(-0.191831\pi\)
−0.902808 + 0.430044i \(0.858498\pi\)
\(762\) 0 0
\(763\) 17.8080 0.644693
\(764\) 0 0
\(765\) 7.64774 + 13.2463i 0.276505 + 0.478920i
\(766\) 0 0
\(767\) −31.9659 −1.15422
\(768\) 0 0
\(769\) −41.7694 −1.50624 −0.753121 0.657882i \(-0.771453\pi\)
−0.753121 + 0.657882i \(0.771453\pi\)
\(770\) 0 0
\(771\) 16.3340 0.588255
\(772\) 0 0
\(773\) −5.35537 + 9.27577i −0.192619 + 0.333626i −0.946117 0.323824i \(-0.895032\pi\)
0.753498 + 0.657450i \(0.228365\pi\)
\(774\) 0 0
\(775\) −3.34851 5.79979i −0.120282 0.208335i
\(776\) 0 0
\(777\) 4.01459 + 3.06916i 0.144022 + 0.110105i
\(778\) 0 0
\(779\) −6.06380 10.5028i −0.217258 0.376302i
\(780\) 0 0
\(781\) 1.92781 3.33907i 0.0689826 0.119481i
\(782\) 0 0
\(783\) −6.28899 −0.224750
\(784\) 0 0
\(785\) 15.2327 0.543677
\(786\) 0 0
\(787\) −21.4240 −0.763682 −0.381841 0.924228i \(-0.624710\pi\)
−0.381841 + 0.924228i \(0.624710\pi\)
\(788\) 0 0
\(789\) 9.16710 + 15.8779i 0.326358 + 0.565268i
\(790\) 0 0
\(791\) −16.4080 −0.583402
\(792\) 0 0
\(793\) 10.5823 + 18.3291i 0.375788 + 0.650884i
\(794\) 0 0
\(795\) −4.11325 + 7.12437i −0.145882 + 0.252675i
\(796\) 0 0
\(797\) 25.8006 + 44.6879i 0.913903 + 1.58293i 0.808500 + 0.588496i \(0.200280\pi\)
0.105403 + 0.994430i \(0.466387\pi\)
\(798\) 0 0
\(799\) 38.7027 + 67.0350i 1.36920 + 2.37153i
\(800\) 0 0
\(801\) 18.0953 31.3419i 0.639364 1.10741i
\(802\) 0 0
\(803\) −14.2823 −0.504012
\(804\) 0 0
\(805\) −0.349075 0.604616i −0.0123033 0.0213099i
\(806\) 0 0
\(807\) −1.36839 + 2.37013i −0.0481698 + 0.0834325i
\(808\) 0 0
\(809\) −14.7928 + 25.6219i −0.520088 + 0.900819i 0.479639 + 0.877466i \(0.340768\pi\)
−0.999727 + 0.0233533i \(0.992566\pi\)
\(810\) 0 0
\(811\) 12.0977 20.9539i 0.424808 0.735790i −0.571594 0.820537i \(-0.693675\pi\)
0.996403 + 0.0847468i \(0.0270081\pi\)
\(812\) 0 0
\(813\) 3.20764 0.112497
\(814\) 0 0
\(815\) −0.658138 −0.0230536
\(816\) 0 0
\(817\) 16.3950 28.3969i 0.573587 0.993482i
\(818\) 0 0
\(819\) −11.0701 + 19.1740i −0.386821 + 0.669994i
\(820\) 0 0
\(821\) 8.61632 14.9239i 0.300712 0.520848i −0.675586 0.737282i \(-0.736109\pi\)
0.976297 + 0.216434i \(0.0694425\pi\)
\(822\) 0 0
\(823\) 18.5884 + 32.1960i 0.647950 + 1.12228i 0.983612 + 0.180300i \(0.0577067\pi\)
−0.335662 + 0.941983i \(0.608960\pi\)
\(824\) 0 0
\(825\) −1.67238 −0.0582247
\(826\) 0 0
\(827\) −15.8955 + 27.5319i −0.552742 + 0.957376i 0.445334 + 0.895365i \(0.353085\pi\)
−0.998075 + 0.0620119i \(0.980248\pi\)
\(828\) 0 0
\(829\) −10.5312 18.2405i −0.365763 0.633520i 0.623136 0.782114i \(-0.285858\pi\)
−0.988898 + 0.148594i \(0.952525\pi\)
\(830\) 0 0
\(831\) 4.34572 + 7.52701i 0.150751 + 0.261109i
\(832\) 0 0
\(833\) −15.0352 + 26.0418i −0.520940 + 0.902295i
\(834\) 0 0
\(835\) 7.13516 + 12.3585i 0.246923 + 0.427682i
\(836\) 0 0
\(837\) −23.0730 −0.797520
\(838\) 0 0
\(839\) 19.9494 + 34.5533i 0.688729 + 1.19291i 0.972249 + 0.233947i \(0.0751643\pi\)
−0.283520 + 0.958966i \(0.591502\pi\)
\(840\) 0 0
\(841\) −25.6679 −0.885100
\(842\) 0 0
\(843\) 13.9959 0.482044
\(844\) 0 0
\(845\) −25.6746 −0.883232
\(846\) 0 0
\(847\) 2.40417 4.16415i 0.0826084 0.143082i
\(848\) 0 0
\(849\) 7.25103 + 12.5591i 0.248855 + 0.431029i
\(850\) 0 0
\(851\) 2.89052 1.20333i 0.0990858 0.0412496i
\(852\) 0 0
\(853\) −7.33687 12.7078i −0.251210 0.435108i 0.712649 0.701520i \(-0.247495\pi\)
−0.963859 + 0.266412i \(0.914162\pi\)
\(854\) 0 0
\(855\) −6.59487 + 11.4226i −0.225540 + 0.390646i
\(856\) 0 0
\(857\) −16.2439 −0.554880 −0.277440 0.960743i \(-0.589486\pi\)
−0.277440 + 0.960743i \(0.589486\pi\)
\(858\) 0 0
\(859\) 0.608441 0.0207597 0.0103799 0.999946i \(-0.496696\pi\)
0.0103799 + 0.999946i \(0.496696\pi\)
\(860\) 0 0
\(861\) 2.00503 0.0683313
\(862\) 0 0
\(863\) 7.09010 + 12.2804i 0.241350 + 0.418030i 0.961099 0.276204i \(-0.0890766\pi\)
−0.719749 + 0.694234i \(0.755743\pi\)
\(864\) 0 0
\(865\) −23.2767 −0.791433
\(866\) 0 0
\(867\) −5.19302 8.99458i −0.176364 0.305472i
\(868\) 0 0
\(869\) 6.79696 11.7727i 0.230571 0.399361i
\(870\) 0 0
\(871\) 43.8559 + 75.9607i 1.48600 + 2.57383i
\(872\) 0 0
\(873\) 21.8010 + 37.7605i 0.737852 + 1.27800i
\(874\) 0 0
\(875\) 0.678169 1.17462i 0.0229263 0.0397095i
\(876\) 0 0
\(877\) 28.5790 0.965044 0.482522 0.875884i \(-0.339721\pi\)
0.482522 + 0.875884i \(0.339721\pi\)
\(878\) 0 0
\(879\) 5.04959 + 8.74614i 0.170318 + 0.295000i
\(880\) 0 0
\(881\) −2.54077 + 4.40074i −0.0856006 + 0.148265i −0.905647 0.424033i \(-0.860614\pi\)
0.820046 + 0.572297i \(0.193948\pi\)
\(882\) 0 0
\(883\) 24.2768 42.0487i 0.816980 1.41505i −0.0909177 0.995858i \(-0.528980\pi\)
0.907898 0.419192i \(-0.137687\pi\)
\(884\) 0 0
\(885\) 1.57419 2.72657i 0.0529158 0.0916528i
\(886\) 0 0
\(887\) 8.99351 0.301973 0.150986 0.988536i \(-0.451755\pi\)
0.150986 + 0.988536i \(0.451755\pi\)
\(888\) 0 0
\(889\) −19.0461 −0.638785
\(890\) 0 0
\(891\) 7.86925 13.6299i 0.263630 0.456620i
\(892\) 0 0
\(893\) −33.3744 + 57.8062i −1.11683 + 1.93441i
\(894\) 0 0
\(895\) −3.76632 + 6.52346i −0.125894 + 0.218055i
\(896\) 0 0
\(897\) −0.980340 1.69800i −0.0327326 0.0566945i
\(898\) 0 0
\(899\) 12.2248 0.407718
\(900\) 0 0
\(901\) −39.1322 + 67.7790i −1.30368 + 2.25805i
\(902\) 0 0
\(903\) 2.71055 + 4.69480i 0.0902013 + 0.156233i
\(904\) 0 0
\(905\) −1.96924 3.41082i −0.0654597 0.113380i
\(906\) 0 0
\(907\) 13.0674 22.6334i 0.433896 0.751529i −0.563309 0.826246i \(-0.690472\pi\)
0.997205 + 0.0747170i \(0.0238053\pi\)
\(908\) 0 0
\(909\) 2.08505 + 3.61141i 0.0691567 + 0.119783i
\(910\) 0 0
\(911\) −36.3860 −1.20552 −0.602760 0.797922i \(-0.705933\pi\)
−0.602760 + 0.797922i \(0.705933\pi\)
\(912\) 0 0
\(913\) −10.7338 18.5915i −0.355238 0.615290i
\(914\) 0 0
\(915\) −2.08454 −0.0689127
\(916\) 0 0
\(917\) 5.57716 0.184174
\(918\) 0 0
\(919\) 53.2591 1.75686 0.878429 0.477874i \(-0.158592\pi\)
0.878429 + 0.477874i \(0.158592\pi\)
\(920\) 0 0
\(921\) 3.70576 6.41856i 0.122109 0.211499i
\(922\) 0 0
\(923\) 4.39093 + 7.60531i 0.144529 + 0.250332i
\(924\) 0 0
\(925\) 4.83237 + 3.69435i 0.158887 + 0.121469i
\(926\) 0 0
\(927\) −3.57519 6.19242i −0.117425 0.203386i
\(928\) 0 0
\(929\) 9.31870 16.1405i 0.305736 0.529551i −0.671689 0.740834i \(-0.734431\pi\)
0.977425 + 0.211283i \(0.0677640\pi\)
\(930\) 0 0
\(931\) −25.9306 −0.849843
\(932\) 0 0
\(933\) 18.1562 0.594407
\(934\) 0 0
\(935\) −15.9105 −0.520328
\(936\) 0 0
\(937\) −4.14033 7.17126i −0.135259 0.234275i 0.790438 0.612543i \(-0.209853\pi\)
−0.925696 + 0.378268i \(0.876520\pi\)
\(938\) 0 0
\(939\) −1.70683 −0.0557002
\(940\) 0 0
\(941\) −16.8458 29.1778i −0.549157 0.951168i −0.998333 0.0577242i \(-0.981616\pi\)
0.449176 0.893443i \(-0.351718\pi\)
\(942\) 0 0
\(943\) 0.621143 1.07585i 0.0202272 0.0350345i
\(944\) 0 0
\(945\) −2.33647 4.04689i −0.0760054 0.131645i
\(946\) 0 0
\(947\) −17.1443 29.6948i −0.557115 0.964951i −0.997736 0.0672579i \(-0.978575\pi\)
0.440621 0.897693i \(-0.354758\pi\)
\(948\) 0 0
\(949\) 16.2652 28.1722i 0.527992 0.914509i
\(950\) 0 0
\(951\) −11.1632 −0.361991
\(952\) 0 0
\(953\) −20.5729 35.6333i −0.666422 1.15428i −0.978898 0.204351i \(-0.934492\pi\)
0.312476 0.949926i \(-0.398842\pi\)
\(954\) 0 0
\(955\) −0.259008 + 0.448615i −0.00838130 + 0.0145168i
\(956\) 0 0
\(957\) 1.52638 2.64377i 0.0493408 0.0854608i
\(958\) 0 0
\(959\) −11.0978 + 19.2219i −0.358366 + 0.620708i
\(960\) 0 0
\(961\) 13.8501 0.446777
\(962\) 0 0
\(963\) 28.8072 0.928299
\(964\) 0 0
\(965\) −7.38834 + 12.7970i −0.237839 + 0.411950i
\(966\) 0 0
\(967\) 6.83966 11.8466i 0.219949 0.380962i −0.734843 0.678237i \(-0.762744\pi\)
0.954792 + 0.297275i \(0.0960777\pi\)
\(968\) 0 0
\(969\) 8.96766 15.5324i 0.288083 0.498974i
\(970\) 0 0
\(971\) 10.6780 + 18.4949i 0.342674 + 0.593529i 0.984928 0.172963i \(-0.0553341\pi\)
−0.642254 + 0.766491i \(0.722001\pi\)
\(972\) 0 0
\(973\) −26.9550 −0.864137
\(974\) 0 0
\(975\) 1.90456 3.29880i 0.0609949 0.105646i
\(976\) 0 0
\(977\) −23.5224 40.7419i −0.752547 1.30345i −0.946585 0.322455i \(-0.895492\pi\)
0.194038 0.980994i \(-0.437842\pi\)
\(978\) 0 0
\(979\) 18.8228 + 32.6020i 0.601579 + 1.04197i
\(980\) 0 0
\(981\) 17.2313 29.8455i 0.550154 0.952895i
\(982\) 0 0
\(983\) −3.44977 5.97518i −0.110031 0.190579i 0.805752 0.592253i \(-0.201762\pi\)
−0.915782 + 0.401675i \(0.868428\pi\)
\(984\) 0 0
\(985\) −10.7475 −0.342443
\(986\) 0 0
\(987\) −5.51772 9.55698i −0.175631 0.304202i
\(988\) 0 0
\(989\) 3.35883 0.106804
\(990\) 0 0
\(991\) −44.9203 −1.42694 −0.713470 0.700686i \(-0.752877\pi\)
−0.713470 + 0.700686i \(0.752877\pi\)
\(992\) 0 0
\(993\) 20.1006 0.637873
\(994\) 0 0
\(995\) 0.198509 0.343828i 0.00629316 0.0109001i
\(996\) 0 0
\(997\) −1.80908 3.13341i −0.0572941 0.0992362i 0.835956 0.548797i \(-0.184914\pi\)
−0.893250 + 0.449561i \(0.851581\pi\)
\(998\) 0 0
\(999\) 19.3472 8.05426i 0.612117 0.254825i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1480.2.q.b.1321.4 yes 18
37.10 even 3 inner 1480.2.q.b.121.4 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1480.2.q.b.121.4 18 37.10 even 3 inner
1480.2.q.b.1321.4 yes 18 1.1 even 1 trivial