Properties

Label 1480.2.dr
Level $1480$
Weight $2$
Character orbit 1480.dr
Rep. character $\chi_{1480}(21,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $912$
Sturm bound $456$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1480 = 2^{3} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1480.dr (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 296 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(456\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1480, [\chi])\).

Total New Old
Modular forms 1392 912 480
Cusp forms 1344 912 432
Eisenstein series 48 0 48

Trace form

\( 912 q - 6 q^{2} - 6 q^{4} + 18 q^{8} - 30 q^{12} - 30 q^{16} - 30 q^{18} - 30 q^{22} - 30 q^{24} - 30 q^{28} - 24 q^{30} - 96 q^{32} + 30 q^{34} + 42 q^{44} + 60 q^{46} + 120 q^{47} + 48 q^{49} + 6 q^{50}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1480, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1480, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1480, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(296, [\chi])\)\(^{\oplus 2}\)