Newspace parameters
| Level: | \( N \) | = | \( 148 = 2^{2} \cdot 37 \) |
| Weight: | \( k \) | = | \( 1 \) |
| Character orbit: | \([\chi]\) | = | 148.f (of order \(4\) and degree \(2\)) |
Newform invariants
| Self dual: | No |
| Analytic conductor: | \(0.0738616218697\) |
| Analytic rank: | \(0\) |
| Dimension: | \(2\) |
| Coefficient field: | \(\Q(i)\) |
| Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
| Coefficient ring index: | \( 1 \) |
| Projective image | \(S_{4}\) |
| Projective field | Galois closure of 4.0.202612.1 |
$q$-expansion
The \(q\)-expansion and trace form are shown below.
Character Values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/148\mathbb{Z}\right)^\times\).
| \(n\) | \(75\) | \(113\) |
| \(\chi(n)\) | \(1\) | \(-i\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 105.1 |
|
0 | − | 1.00000i | 0 | 0 | 0 | −1.00000 | 0 | 0 | 0 | |||||||||||||||||||||||
| 117.1 | 0 | 1.00000i | 0 | 0 | 0 | −1.00000 | 0 | 0 | 0 | |||||||||||||||||||||||||
Inner twists
| Char. orbit | Parity | Mult. | Self Twist | Proved |
|---|---|---|---|---|
| 1.a | Even | 1 | trivial | yes |
| 37.d | Odd | 1 | yes |
Hecke kernels
There are no other newforms in \(S_{1}^{\mathrm{new}}(148, [\chi])\).