Properties

Label 1476.1.o.b.655.1
Level $1476$
Weight $1$
Character 1476.655
Analytic conductor $0.737$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -164
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1476 = 2^{2} \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1476.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.736619958646\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.13284.1
Artin image: $C_3\times S_3$
Artin field: Galois closure of 6.0.357286464.1

Embedding invariants

Embedding label 655.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1476.655
Dual form 1476.1.o.b.1147.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +1.00000 q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.500000 + 0.866025i) q^{5} +(-0.500000 + 0.866025i) q^{6} +(0.500000 - 0.866025i) q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +1.00000 q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.500000 + 0.866025i) q^{5} +(-0.500000 + 0.866025i) q^{6} +(0.500000 - 0.866025i) q^{7} +1.00000 q^{8} +1.00000 q^{9} -1.00000 q^{10} +(-1.00000 + 1.73205i) q^{11} +(-0.500000 - 0.866025i) q^{12} +(0.500000 + 0.866025i) q^{14} +(0.500000 + 0.866025i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-0.500000 + 0.866025i) q^{18} -1.00000 q^{19} +(0.500000 - 0.866025i) q^{20} +(0.500000 - 0.866025i) q^{21} +(-1.00000 - 1.73205i) q^{22} +1.00000 q^{24} +1.00000 q^{27} -1.00000 q^{28} -1.00000 q^{30} +(-0.500000 - 0.866025i) q^{32} +(-1.00000 + 1.73205i) q^{33} +1.00000 q^{35} +(-0.500000 - 0.866025i) q^{36} +2.00000 q^{37} +(0.500000 - 0.866025i) q^{38} +(0.500000 + 0.866025i) q^{40} +(-0.500000 - 0.866025i) q^{41} +(0.500000 + 0.866025i) q^{42} +2.00000 q^{44} +(0.500000 + 0.866025i) q^{45} +(0.500000 - 0.866025i) q^{47} +(-0.500000 + 0.866025i) q^{48} +(-0.500000 + 0.866025i) q^{54} -2.00000 q^{55} +(0.500000 - 0.866025i) q^{56} -1.00000 q^{57} +(0.500000 - 0.866025i) q^{60} +(-1.00000 + 1.73205i) q^{61} +(0.500000 - 0.866025i) q^{63} +1.00000 q^{64} +(-1.00000 - 1.73205i) q^{66} +(-1.00000 - 1.73205i) q^{67} +(-0.500000 + 0.866025i) q^{70} -1.00000 q^{71} +1.00000 q^{72} -1.00000 q^{73} +(-1.00000 + 1.73205i) q^{74} +(0.500000 + 0.866025i) q^{76} +(1.00000 + 1.73205i) q^{77} +(0.500000 - 0.866025i) q^{79} -1.00000 q^{80} +1.00000 q^{81} +1.00000 q^{82} -1.00000 q^{84} +(-1.00000 + 1.73205i) q^{88} -1.00000 q^{90} +(0.500000 + 0.866025i) q^{94} +(-0.500000 - 0.866025i) q^{95} +(-0.500000 - 0.866025i) q^{96} +(-1.00000 + 1.73205i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 2 q^{3} - q^{4} + q^{5} - q^{6} + q^{7} + 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} + 2 q^{3} - q^{4} + q^{5} - q^{6} + q^{7} + 2 q^{8} + 2 q^{9} - 2 q^{10} - 2 q^{11} - q^{12} + q^{14} + q^{15} - q^{16} - q^{18} - 2 q^{19} + q^{20} + q^{21} - 2 q^{22} + 2 q^{24} + 2 q^{27} - 2 q^{28} - 2 q^{30} - q^{32} - 2 q^{33} + 2 q^{35} - q^{36} + 4 q^{37} + q^{38} + q^{40} - q^{41} + q^{42} + 4 q^{44} + q^{45} + q^{47} - q^{48} - q^{54} - 4 q^{55} + q^{56} - 2 q^{57} + q^{60} - 2 q^{61} + q^{63} + 2 q^{64} - 2 q^{66} - 2 q^{67} - q^{70} - 2 q^{71} + 2 q^{72} - 2 q^{73} - 2 q^{74} + q^{76} + 2 q^{77} + q^{79} - 2 q^{80} + 2 q^{81} + 2 q^{82} - 2 q^{84} - 2 q^{88} - 2 q^{90} + q^{94} - q^{95} - q^{96} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1476\mathbb{Z}\right)^\times\).

\(n\) \(739\) \(821\) \(1441\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(3\) 1.00000 1.00000
\(4\) −0.500000 0.866025i −0.500000 0.866025i
\(5\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(6\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(7\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(8\) 1.00000 1.00000
\(9\) 1.00000 1.00000
\(10\) −1.00000 −1.00000
\(11\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) −0.500000 0.866025i −0.500000 0.866025i
\(13\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(14\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(15\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(16\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(19\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) 0.500000 0.866025i 0.500000 0.866025i
\(21\) 0.500000 0.866025i 0.500000 0.866025i
\(22\) −1.00000 1.73205i −1.00000 1.73205i
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) 1.00000 1.00000
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000 1.00000
\(28\) −1.00000 −1.00000
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) −1.00000 −1.00000
\(31\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(32\) −0.500000 0.866025i −0.500000 0.866025i
\(33\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(34\) 0 0
\(35\) 1.00000 1.00000
\(36\) −0.500000 0.866025i −0.500000 0.866025i
\(37\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(38\) 0.500000 0.866025i 0.500000 0.866025i
\(39\) 0 0
\(40\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(41\) −0.500000 0.866025i −0.500000 0.866025i
\(42\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(43\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(44\) 2.00000 2.00000
\(45\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(46\) 0 0
\(47\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(48\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(55\) −2.00000 −2.00000
\(56\) 0.500000 0.866025i 0.500000 0.866025i
\(57\) −1.00000 −1.00000
\(58\) 0 0
\(59\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(60\) 0.500000 0.866025i 0.500000 0.866025i
\(61\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) 0 0
\(63\) 0.500000 0.866025i 0.500000 0.866025i
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) −1.00000 1.73205i −1.00000 1.73205i
\(67\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(71\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(72\) 1.00000 1.00000
\(73\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(74\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(75\) 0 0
\(76\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(77\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(78\) 0 0
\(79\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(80\) −1.00000 −1.00000
\(81\) 1.00000 1.00000
\(82\) 1.00000 1.00000
\(83\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(84\) −1.00000 −1.00000
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) −1.00000 −1.00000
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(95\) −0.500000 0.866025i −0.500000 0.866025i
\(96\) −0.500000 0.866025i −0.500000 0.866025i
\(97\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(98\) 0 0
\(99\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(100\) 0 0
\(101\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(104\) 0 0
\(105\) 1.00000 1.00000
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) −0.500000 0.866025i −0.500000 0.866025i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 1.00000 1.73205i 1.00000 1.73205i
\(111\) 2.00000 2.00000
\(112\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(113\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(114\) 0.500000 0.866025i 0.500000 0.866025i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(121\) −1.50000 2.59808i −1.50000 2.59808i
\(122\) −1.00000 1.73205i −1.00000 1.73205i
\(123\) −0.500000 0.866025i −0.500000 0.866025i
\(124\) 0 0
\(125\) 1.00000 1.00000
\(126\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) 2.00000 2.00000
\(133\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(134\) 2.00000 2.00000
\(135\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(136\) 0 0
\(137\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 0 0
\(139\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(140\) −0.500000 0.866025i −0.500000 0.866025i
\(141\) 0.500000 0.866025i 0.500000 0.866025i
\(142\) 0.500000 0.866025i 0.500000 0.866025i
\(143\) 0 0
\(144\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(145\) 0 0
\(146\) 0.500000 0.866025i 0.500000 0.866025i
\(147\) 0 0
\(148\) −1.00000 1.73205i −1.00000 1.73205i
\(149\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) 0 0
\(151\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) −1.00000 −1.00000
\(153\) 0 0
\(154\) −2.00000 −2.00000
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(159\) 0 0
\(160\) 0.500000 0.866025i 0.500000 0.866025i
\(161\) 0 0
\(162\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(165\) −2.00000 −2.00000
\(166\) 0 0
\(167\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(168\) 0.500000 0.866025i 0.500000 0.866025i
\(169\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(170\) 0 0
\(171\) −1.00000 −1.00000
\(172\) 0 0
\(173\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.00000 1.73205i −1.00000 1.73205i
\(177\) 0 0
\(178\) 0 0
\(179\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 0.500000 0.866025i 0.500000 0.866025i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(184\) 0 0
\(185\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(186\) 0 0
\(187\) 0 0
\(188\) −1.00000 −1.00000
\(189\) 0.500000 0.866025i 0.500000 0.866025i
\(190\) 1.00000 1.00000
\(191\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(192\) 1.00000 1.00000
\(193\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(198\) −1.00000 1.73205i −1.00000 1.73205i
\(199\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(200\) 0 0
\(201\) −1.00000 1.73205i −1.00000 1.73205i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0.500000 0.866025i 0.500000 0.866025i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.00000 1.73205i 1.00000 1.73205i
\(210\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(211\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(212\) 0 0
\(213\) −1.00000 −1.00000
\(214\) 0 0
\(215\) 0 0
\(216\) 1.00000 1.00000
\(217\) 0 0
\(218\) 0 0
\(219\) −1.00000 −1.00000
\(220\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(221\) 0 0
\(222\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(223\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(224\) −1.00000 −1.00000
\(225\) 0 0
\(226\) 2.00000 2.00000
\(227\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(229\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(230\) 0 0
\(231\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 1.00000 1.00000
\(236\) 0 0
\(237\) 0.500000 0.866025i 0.500000 0.866025i
\(238\) 0 0
\(239\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(240\) −1.00000 −1.00000
\(241\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(242\) 3.00000 3.00000
\(243\) 1.00000 1.00000
\(244\) 2.00000 2.00000
\(245\) 0 0
\(246\) 1.00000 1.00000
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −1.00000 −1.00000
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.500000 0.866025i
\(257\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(258\) 0 0
\(259\) 1.00000 1.73205i 1.00000 1.73205i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(264\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(265\) 0 0
\(266\) −0.500000 0.866025i −0.500000 0.866025i
\(267\) 0 0
\(268\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(269\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(270\) −1.00000 −1.00000
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(278\) 0 0
\(279\) 0 0
\(280\) 1.00000 1.00000
\(281\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(282\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(283\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(284\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(285\) −0.500000 0.866025i −0.500000 0.866025i
\(286\) 0 0
\(287\) −1.00000 −1.00000
\(288\) −0.500000 0.866025i −0.500000 0.866025i
\(289\) 1.00000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(293\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 2.00000 2.00000
\(297\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −1.00000 1.73205i −1.00000 1.73205i
\(303\) 0 0
\(304\) 0.500000 0.866025i 0.500000 0.866025i
\(305\) −2.00000 −2.00000
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 1.00000 1.73205i 1.00000 1.73205i
\(309\) 0 0
\(310\) 0 0
\(311\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(312\) 0 0
\(313\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 0 0
\(315\) 1.00000 1.00000
\(316\) −1.00000 −1.00000
\(317\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.500000 0.866025i −0.500000 0.866025i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) −0.500000 0.866025i −0.500000 0.866025i
\(329\) −0.500000 0.866025i −0.500000 0.866025i
\(330\) 1.00000 1.73205i 1.00000 1.73205i
\(331\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(332\) 0 0
\(333\) 2.00000 2.00000
\(334\) −1.00000 −1.00000
\(335\) 1.00000 1.73205i 1.00000 1.73205i
\(336\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(337\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(338\) −0.500000 0.866025i −0.500000 0.866025i
\(339\) −1.00000 1.73205i −1.00000 1.73205i
\(340\) 0 0
\(341\) 0 0
\(342\) 0.500000 0.866025i 0.500000 0.866025i
\(343\) 1.00000 1.00000
\(344\) 0 0
\(345\) 0 0
\(346\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(347\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(348\) 0 0
\(349\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.00000 2.00000
\(353\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(354\) 0 0
\(355\) −0.500000 0.866025i −0.500000 0.866025i
\(356\) 0 0
\(357\) 0 0
\(358\) 0.500000 0.866025i 0.500000 0.866025i
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(361\) 0 0
\(362\) 0 0
\(363\) −1.50000 2.59808i −1.50000 2.59808i
\(364\) 0 0
\(365\) −0.500000 0.866025i −0.500000 0.866025i
\(366\) −1.00000 1.73205i −1.00000 1.73205i
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 0 0
\(369\) −0.500000 0.866025i −0.500000 0.866025i
\(370\) −2.00000 −2.00000
\(371\) 0 0
\(372\) 0 0
\(373\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) 1.00000 1.00000
\(376\) 0.500000 0.866025i 0.500000 0.866025i
\(377\) 0 0
\(378\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(381\) 0 0
\(382\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(383\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(384\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(385\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0.500000 0.866025i 0.500000 0.866025i
\(395\) 1.00000 1.00000
\(396\) 2.00000 2.00000
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(399\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(400\) 0 0
\(401\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(402\) 2.00000 2.00000
\(403\) 0 0
\(404\) 0 0
\(405\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(406\) 0 0
\(407\) −2.00000 + 3.46410i −2.00000 + 3.46410i
\(408\) 0 0
\(409\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(410\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(419\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(420\) −0.500000 0.866025i −0.500000 0.866025i
\(421\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) 2.00000 2.00000
\(423\) 0.500000 0.866025i 0.500000 0.866025i
\(424\) 0 0
\(425\) 0 0
\(426\) 0.500000 0.866025i 0.500000 0.866025i
\(427\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(433\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0.500000 0.866025i 0.500000 0.866025i
\(439\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) −2.00000 −2.00000
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(444\) −1.00000 1.73205i −1.00000 1.73205i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0.500000 0.866025i 0.500000 0.866025i
\(449\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(450\) 0 0
\(451\) 2.00000 2.00000
\(452\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(453\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(454\) −1.00000 1.73205i −1.00000 1.73205i
\(455\) 0 0
\(456\) −1.00000 −1.00000
\(457\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(462\) −2.00000 −2.00000
\(463\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) −2.00000 −2.00000
\(470\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −1.00000 −1.00000
\(479\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(480\) 0.500000 0.866025i 0.500000 0.866025i
\(481\) 0 0
\(482\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(483\) 0 0
\(484\) −1.50000 + 2.59808i −1.50000 + 2.59808i
\(485\) 0 0
\(486\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(492\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(493\) 0 0
\(494\) 0 0
\(495\) −2.00000 −2.00000
\(496\) 0 0
\(497\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(498\) 0 0
\(499\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) −0.500000 0.866025i −0.500000 0.866025i
\(501\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(502\) 0 0
\(503\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(504\) 0.500000 0.866025i 0.500000 0.866025i
\(505\) 0 0
\(506\) 0 0
\(507\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(508\) 0 0
\(509\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(510\) 0 0
\(511\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(512\) 1.00000 1.00000
\(513\) −1.00000 −1.00000
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(518\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(519\) 0.500000 0.866025i 0.500000 0.866025i
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(527\) 0 0
\(528\) −1.00000 1.73205i −1.00000 1.73205i
\(529\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 1.00000 1.00000
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −1.00000 1.73205i −1.00000 1.73205i
\(537\) −1.00000 −1.00000
\(538\) 0.500000 0.866025i 0.500000 0.866025i
\(539\) 0 0
\(540\) 0.500000 0.866025i 0.500000 0.866025i
\(541\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(548\) 0 0
\(549\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −0.500000 0.866025i −0.500000 0.866025i
\(554\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(555\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(561\) 0 0
\(562\) 0 0
\(563\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) −1.00000 −1.00000
\(565\) 1.00000 1.73205i 1.00000 1.73205i
\(566\) 0 0
\(567\) 0.500000 0.866025i 0.500000 0.866025i
\(568\) −1.00000 −1.00000
\(569\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(570\) 1.00000 1.00000
\(571\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(572\) 0 0
\(573\) 0.500000 0.866025i 0.500000 0.866025i
\(574\) 0.500000 0.866025i 0.500000 0.866025i
\(575\) 0 0
\(576\) 1.00000 1.00000
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −1.00000 −1.00000
\(585\) 0 0
\(586\) 0 0
\(587\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −1.00000 −1.00000
\(592\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) −1.00000 1.73205i −1.00000 1.73205i
\(595\) 0 0
\(596\) 0 0
\(597\) 2.00000 2.00000
\(598\) 0 0
\(599\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) 0 0
\(601\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) −1.00000 1.73205i −1.00000 1.73205i
\(604\) 2.00000 2.00000
\(605\) 1.50000 2.59808i 1.50000 2.59808i
\(606\) 0 0
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(609\) 0 0
\(610\) 1.00000 1.73205i 1.00000 1.73205i
\(611\) 0 0
\(612\) 0 0
\(613\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(614\) 0 0
\(615\) 0.500000 0.866025i 0.500000 0.866025i
\(616\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(617\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(618\) 0 0
\(619\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 2.00000 2.00000
\(623\) 0 0
\(624\) 0 0
\(625\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(626\) 0 0
\(627\) 1.00000 1.73205i 1.00000 1.73205i
\(628\) 0 0
\(629\) 0 0
\(630\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0.500000 0.866025i 0.500000 0.866025i
\(633\) −1.00000 1.73205i −1.00000 1.73205i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.00000 −1.00000
\(640\) −1.00000 −1.00000
\(641\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) 0 0
\(643\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 1.00000 1.00000
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.00000 1.00000
\(657\) −1.00000 −1.00000
\(658\) 1.00000 1.00000
\(659\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(660\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(661\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(662\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(663\) 0 0
\(664\) 0 0
\(665\) −1.00000 −1.00000
\(666\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(667\) 0 0
\(668\) 0.500000 0.866025i 0.500000 0.866025i
\(669\) 0 0
\(670\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(671\) −2.00000 3.46410i −2.00000 3.46410i
\(672\) −1.00000 −1.00000
\(673\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(674\) −1.00000 −1.00000
\(675\) 0 0
\(676\) 1.00000 1.00000
\(677\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(678\) 2.00000 2.00000
\(679\) 0 0
\(680\) 0 0
\(681\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(682\) 0 0
\(683\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(685\) 0 0
\(686\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) −1.00000 −1.00000
\(693\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(694\) −1.00000 −1.00000
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(699\) 0 0
\(700\) 0 0
\(701\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(702\) 0 0
\(703\) −2.00000 −2.00000
\(704\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(705\) 1.00000 1.00000
\(706\) −1.00000 1.73205i −1.00000 1.73205i
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 1.00000 1.00000
\(711\) 0.500000 0.866025i 0.500000 0.866025i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(717\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(718\) 0 0
\(719\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(720\) −1.00000 −1.00000
\(721\) 0 0
\(722\) 0 0
\(723\) 0.500000 0.866025i 0.500000 0.866025i
\(724\) 0 0
\(725\) 0 0
\(726\) 3.00000 3.00000
\(727\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 1.00000 1.00000
\(731\) 0 0
\(732\) 2.00000 2.00000
\(733\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.00000 4.00000
\(738\) 1.00000 1.00000
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 1.00000 1.73205i 1.00000 1.73205i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −1.00000 −1.00000
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(751\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(752\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(753\) 0 0
\(754\) 0 0
\(755\) −2.00000 −2.00000
\(756\) −1.00000 −1.00000
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −0.500000 0.866025i −0.500000 0.866025i
\(761\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −1.00000 −1.00000
\(765\) 0 0
\(766\) −1.00000 −1.00000
\(767\) 0 0
\(768\) −0.500000 0.866025i −0.500000 0.866025i
\(769\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(770\) −1.00000 1.73205i −1.00000 1.73205i
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1.00000 1.73205i 1.00000 1.73205i
\(778\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(779\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(780\) 0 0
\(781\) 1.00000 1.73205i 1.00000 1.73205i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(788\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(789\) 0.500000 0.866025i 0.500000 0.866025i
\(790\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(791\) −2.00000 −2.00000
\(792\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −1.00000 1.73205i −1.00000 1.73205i
\(797\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)