Properties

Label 1472.4.a.w.1.2
Level $1472$
Weight $4$
Character 1472.1
Self dual yes
Analytic conductor $86.851$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1472,4,Mod(1,1472)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1472.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1472, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,4,0,10,0,-46] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 7x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 92)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.75153\) of defining polynomial
Character \(\chi\) \(=\) 1472.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.18060 q^{3} +8.78065 q^{5} +9.15411 q^{7} -25.6062 q^{9} +44.5989 q^{11} +68.6307 q^{13} +10.3665 q^{15} +134.544 q^{17} +148.629 q^{19} +10.8074 q^{21} -23.0000 q^{23} -47.9002 q^{25} -62.1070 q^{27} -98.5939 q^{29} -15.7647 q^{31} +52.6537 q^{33} +80.3791 q^{35} -333.418 q^{37} +81.0256 q^{39} +337.315 q^{41} -148.160 q^{43} -224.839 q^{45} -375.729 q^{47} -259.202 q^{49} +158.843 q^{51} +207.052 q^{53} +391.608 q^{55} +175.472 q^{57} -511.174 q^{59} +435.177 q^{61} -234.402 q^{63} +602.622 q^{65} +914.462 q^{67} -27.1539 q^{69} -162.191 q^{71} +370.418 q^{73} -56.5511 q^{75} +408.264 q^{77} -935.424 q^{79} +618.043 q^{81} +923.690 q^{83} +1181.39 q^{85} -116.400 q^{87} +61.8242 q^{89} +628.253 q^{91} -18.6119 q^{93} +1305.06 q^{95} +103.550 q^{97} -1142.01 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 4 q^{3} + 10 q^{5} - 46 q^{7} - 31 q^{9} + 64 q^{11} + 44 q^{13} - 134 q^{15} - 88 q^{17} + 94 q^{19} + 6 q^{21} - 69 q^{23} + 181 q^{25} - 20 q^{27} - 308 q^{29} - 140 q^{31} + 510 q^{33} - 192 q^{35}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.18060 0.227207 0.113604 0.993526i \(-0.463761\pi\)
0.113604 + 0.993526i \(0.463761\pi\)
\(4\) 0 0
\(5\) 8.78065 0.785365 0.392683 0.919674i \(-0.371547\pi\)
0.392683 + 0.919674i \(0.371547\pi\)
\(6\) 0 0
\(7\) 9.15411 0.494276 0.247138 0.968980i \(-0.420510\pi\)
0.247138 + 0.968980i \(0.420510\pi\)
\(8\) 0 0
\(9\) −25.6062 −0.948377
\(10\) 0 0
\(11\) 44.5989 1.22246 0.611231 0.791452i \(-0.290675\pi\)
0.611231 + 0.791452i \(0.290675\pi\)
\(12\) 0 0
\(13\) 68.6307 1.46421 0.732105 0.681192i \(-0.238538\pi\)
0.732105 + 0.681192i \(0.238538\pi\)
\(14\) 0 0
\(15\) 10.3665 0.178441
\(16\) 0 0
\(17\) 134.544 1.91952 0.959758 0.280829i \(-0.0906093\pi\)
0.959758 + 0.280829i \(0.0906093\pi\)
\(18\) 0 0
\(19\) 148.629 1.79462 0.897310 0.441402i \(-0.145519\pi\)
0.897310 + 0.441402i \(0.145519\pi\)
\(20\) 0 0
\(21\) 10.8074 0.112303
\(22\) 0 0
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) −47.9002 −0.383201
\(26\) 0 0
\(27\) −62.1070 −0.442685
\(28\) 0 0
\(29\) −98.5939 −0.631325 −0.315663 0.948871i \(-0.602227\pi\)
−0.315663 + 0.948871i \(0.602227\pi\)
\(30\) 0 0
\(31\) −15.7647 −0.0913363 −0.0456682 0.998957i \(-0.514542\pi\)
−0.0456682 + 0.998957i \(0.514542\pi\)
\(32\) 0 0
\(33\) 52.6537 0.277752
\(34\) 0 0
\(35\) 80.3791 0.388187
\(36\) 0 0
\(37\) −333.418 −1.48145 −0.740724 0.671809i \(-0.765518\pi\)
−0.740724 + 0.671809i \(0.765518\pi\)
\(38\) 0 0
\(39\) 81.0256 0.332679
\(40\) 0 0
\(41\) 337.315 1.28487 0.642436 0.766339i \(-0.277924\pi\)
0.642436 + 0.766339i \(0.277924\pi\)
\(42\) 0 0
\(43\) −148.160 −0.525446 −0.262723 0.964871i \(-0.584620\pi\)
−0.262723 + 0.964871i \(0.584620\pi\)
\(44\) 0 0
\(45\) −224.839 −0.744822
\(46\) 0 0
\(47\) −375.729 −1.16608 −0.583039 0.812444i \(-0.698137\pi\)
−0.583039 + 0.812444i \(0.698137\pi\)
\(48\) 0 0
\(49\) −259.202 −0.755692
\(50\) 0 0
\(51\) 158.843 0.436128
\(52\) 0 0
\(53\) 207.052 0.536619 0.268309 0.963333i \(-0.413535\pi\)
0.268309 + 0.963333i \(0.413535\pi\)
\(54\) 0 0
\(55\) 391.608 0.960080
\(56\) 0 0
\(57\) 175.472 0.407750
\(58\) 0 0
\(59\) −511.174 −1.12795 −0.563976 0.825791i \(-0.690729\pi\)
−0.563976 + 0.825791i \(0.690729\pi\)
\(60\) 0 0
\(61\) 435.177 0.913420 0.456710 0.889616i \(-0.349028\pi\)
0.456710 + 0.889616i \(0.349028\pi\)
\(62\) 0 0
\(63\) −234.402 −0.468760
\(64\) 0 0
\(65\) 602.622 1.14994
\(66\) 0 0
\(67\) 914.462 1.66745 0.833727 0.552178i \(-0.186203\pi\)
0.833727 + 0.552178i \(0.186203\pi\)
\(68\) 0 0
\(69\) −27.1539 −0.0473760
\(70\) 0 0
\(71\) −162.191 −0.271106 −0.135553 0.990770i \(-0.543281\pi\)
−0.135553 + 0.990770i \(0.543281\pi\)
\(72\) 0 0
\(73\) 370.418 0.593892 0.296946 0.954894i \(-0.404032\pi\)
0.296946 + 0.954894i \(0.404032\pi\)
\(74\) 0 0
\(75\) −56.5511 −0.0870661
\(76\) 0 0
\(77\) 408.264 0.604233
\(78\) 0 0
\(79\) −935.424 −1.33219 −0.666097 0.745865i \(-0.732036\pi\)
−0.666097 + 0.745865i \(0.732036\pi\)
\(80\) 0 0
\(81\) 618.043 0.847796
\(82\) 0 0
\(83\) 923.690 1.22154 0.610772 0.791806i \(-0.290859\pi\)
0.610772 + 0.791806i \(0.290859\pi\)
\(84\) 0 0
\(85\) 1181.39 1.50752
\(86\) 0 0
\(87\) −116.400 −0.143442
\(88\) 0 0
\(89\) 61.8242 0.0736332 0.0368166 0.999322i \(-0.488278\pi\)
0.0368166 + 0.999322i \(0.488278\pi\)
\(90\) 0 0
\(91\) 628.253 0.723723
\(92\) 0 0
\(93\) −18.6119 −0.0207523
\(94\) 0 0
\(95\) 1305.06 1.40943
\(96\) 0 0
\(97\) 103.550 0.108391 0.0541955 0.998530i \(-0.482741\pi\)
0.0541955 + 0.998530i \(0.482741\pi\)
\(98\) 0 0
\(99\) −1142.01 −1.15936
\(100\) 0 0
\(101\) 1662.94 1.63830 0.819151 0.573577i \(-0.194445\pi\)
0.819151 + 0.573577i \(0.194445\pi\)
\(102\) 0 0
\(103\) −649.982 −0.621793 −0.310896 0.950444i \(-0.600629\pi\)
−0.310896 + 0.950444i \(0.600629\pi\)
\(104\) 0 0
\(105\) 94.8958 0.0881989
\(106\) 0 0
\(107\) −596.248 −0.538705 −0.269353 0.963042i \(-0.586810\pi\)
−0.269353 + 0.963042i \(0.586810\pi\)
\(108\) 0 0
\(109\) −1273.48 −1.11906 −0.559529 0.828811i \(-0.689018\pi\)
−0.559529 + 0.828811i \(0.689018\pi\)
\(110\) 0 0
\(111\) −393.635 −0.336596
\(112\) 0 0
\(113\) −581.544 −0.484133 −0.242067 0.970260i \(-0.577825\pi\)
−0.242067 + 0.970260i \(0.577825\pi\)
\(114\) 0 0
\(115\) −201.955 −0.163760
\(116\) 0 0
\(117\) −1757.37 −1.38862
\(118\) 0 0
\(119\) 1231.63 0.948770
\(120\) 0 0
\(121\) 658.066 0.494414
\(122\) 0 0
\(123\) 398.235 0.291932
\(124\) 0 0
\(125\) −1518.18 −1.08632
\(126\) 0 0
\(127\) −1198.55 −0.837436 −0.418718 0.908116i \(-0.637520\pi\)
−0.418718 + 0.908116i \(0.637520\pi\)
\(128\) 0 0
\(129\) −174.918 −0.119385
\(130\) 0 0
\(131\) −1944.94 −1.29718 −0.648590 0.761138i \(-0.724641\pi\)
−0.648590 + 0.761138i \(0.724641\pi\)
\(132\) 0 0
\(133\) 1360.56 0.887037
\(134\) 0 0
\(135\) −545.340 −0.347670
\(136\) 0 0
\(137\) 1141.23 0.711691 0.355846 0.934545i \(-0.384193\pi\)
0.355846 + 0.934545i \(0.384193\pi\)
\(138\) 0 0
\(139\) 1210.30 0.738534 0.369267 0.929323i \(-0.379609\pi\)
0.369267 + 0.929323i \(0.379609\pi\)
\(140\) 0 0
\(141\) −443.587 −0.264941
\(142\) 0 0
\(143\) 3060.86 1.78994
\(144\) 0 0
\(145\) −865.719 −0.495821
\(146\) 0 0
\(147\) −306.015 −0.171699
\(148\) 0 0
\(149\) 332.410 0.182766 0.0913829 0.995816i \(-0.470871\pi\)
0.0913829 + 0.995816i \(0.470871\pi\)
\(150\) 0 0
\(151\) 2661.90 1.43459 0.717293 0.696772i \(-0.245381\pi\)
0.717293 + 0.696772i \(0.245381\pi\)
\(152\) 0 0
\(153\) −3445.16 −1.82042
\(154\) 0 0
\(155\) −138.424 −0.0717324
\(156\) 0 0
\(157\) 2310.24 1.17438 0.587190 0.809449i \(-0.300234\pi\)
0.587190 + 0.809449i \(0.300234\pi\)
\(158\) 0 0
\(159\) 244.446 0.121924
\(160\) 0 0
\(161\) −210.545 −0.103064
\(162\) 0 0
\(163\) 242.541 0.116548 0.0582738 0.998301i \(-0.481440\pi\)
0.0582738 + 0.998301i \(0.481440\pi\)
\(164\) 0 0
\(165\) 462.333 0.218137
\(166\) 0 0
\(167\) 1188.59 0.550753 0.275376 0.961336i \(-0.411198\pi\)
0.275376 + 0.961336i \(0.411198\pi\)
\(168\) 0 0
\(169\) 2513.17 1.14391
\(170\) 0 0
\(171\) −3805.81 −1.70198
\(172\) 0 0
\(173\) 2409.12 1.05874 0.529371 0.848391i \(-0.322428\pi\)
0.529371 + 0.848391i \(0.322428\pi\)
\(174\) 0 0
\(175\) −438.484 −0.189407
\(176\) 0 0
\(177\) −603.494 −0.256279
\(178\) 0 0
\(179\) −773.725 −0.323078 −0.161539 0.986866i \(-0.551646\pi\)
−0.161539 + 0.986866i \(0.551646\pi\)
\(180\) 0 0
\(181\) 3145.60 1.29177 0.645886 0.763434i \(-0.276488\pi\)
0.645886 + 0.763434i \(0.276488\pi\)
\(182\) 0 0
\(183\) 513.771 0.207536
\(184\) 0 0
\(185\) −2927.63 −1.16348
\(186\) 0 0
\(187\) 6000.53 2.34654
\(188\) 0 0
\(189\) −568.535 −0.218809
\(190\) 0 0
\(191\) −4839.43 −1.83335 −0.916673 0.399638i \(-0.869136\pi\)
−0.916673 + 0.399638i \(0.869136\pi\)
\(192\) 0 0
\(193\) 2184.38 0.814688 0.407344 0.913275i \(-0.366455\pi\)
0.407344 + 0.913275i \(0.366455\pi\)
\(194\) 0 0
\(195\) 711.458 0.261275
\(196\) 0 0
\(197\) 465.129 0.168219 0.0841094 0.996457i \(-0.473195\pi\)
0.0841094 + 0.996457i \(0.473195\pi\)
\(198\) 0 0
\(199\) −742.721 −0.264573 −0.132287 0.991211i \(-0.542232\pi\)
−0.132287 + 0.991211i \(0.542232\pi\)
\(200\) 0 0
\(201\) 1079.62 0.378857
\(202\) 0 0
\(203\) −902.540 −0.312049
\(204\) 0 0
\(205\) 2961.85 1.00909
\(206\) 0 0
\(207\) 588.942 0.197750
\(208\) 0 0
\(209\) 6628.68 2.19385
\(210\) 0 0
\(211\) −4943.94 −1.61306 −0.806529 0.591195i \(-0.798656\pi\)
−0.806529 + 0.591195i \(0.798656\pi\)
\(212\) 0 0
\(213\) −191.483 −0.0615973
\(214\) 0 0
\(215\) −1300.94 −0.412667
\(216\) 0 0
\(217\) −144.312 −0.0451453
\(218\) 0 0
\(219\) 437.317 0.134937
\(220\) 0 0
\(221\) 9233.86 2.81057
\(222\) 0 0
\(223\) −6004.69 −1.80316 −0.901578 0.432617i \(-0.857590\pi\)
−0.901578 + 0.432617i \(0.857590\pi\)
\(224\) 0 0
\(225\) 1226.54 0.363419
\(226\) 0 0
\(227\) −1222.31 −0.357391 −0.178696 0.983904i \(-0.557188\pi\)
−0.178696 + 0.983904i \(0.557188\pi\)
\(228\) 0 0
\(229\) 9.58750 0.00276664 0.00138332 0.999999i \(-0.499560\pi\)
0.00138332 + 0.999999i \(0.499560\pi\)
\(230\) 0 0
\(231\) 481.998 0.137286
\(232\) 0 0
\(233\) 3060.45 0.860501 0.430250 0.902710i \(-0.358425\pi\)
0.430250 + 0.902710i \(0.358425\pi\)
\(234\) 0 0
\(235\) −3299.14 −0.915797
\(236\) 0 0
\(237\) −1104.36 −0.302684
\(238\) 0 0
\(239\) 799.347 0.216341 0.108170 0.994132i \(-0.465501\pi\)
0.108170 + 0.994132i \(0.465501\pi\)
\(240\) 0 0
\(241\) −125.753 −0.0336120 −0.0168060 0.999859i \(-0.505350\pi\)
−0.0168060 + 0.999859i \(0.505350\pi\)
\(242\) 0 0
\(243\) 2406.55 0.635311
\(244\) 0 0
\(245\) −2275.96 −0.593494
\(246\) 0 0
\(247\) 10200.5 2.62770
\(248\) 0 0
\(249\) 1090.51 0.277544
\(250\) 0 0
\(251\) 6311.94 1.58727 0.793637 0.608391i \(-0.208185\pi\)
0.793637 + 0.608391i \(0.208185\pi\)
\(252\) 0 0
\(253\) −1025.78 −0.254901
\(254\) 0 0
\(255\) 1394.75 0.342520
\(256\) 0 0
\(257\) 2510.97 0.609456 0.304728 0.952439i \(-0.401434\pi\)
0.304728 + 0.952439i \(0.401434\pi\)
\(258\) 0 0
\(259\) −3052.15 −0.732244
\(260\) 0 0
\(261\) 2524.61 0.598734
\(262\) 0 0
\(263\) −1038.03 −0.243375 −0.121687 0.992568i \(-0.538831\pi\)
−0.121687 + 0.992568i \(0.538831\pi\)
\(264\) 0 0
\(265\) 1818.05 0.421442
\(266\) 0 0
\(267\) 72.9899 0.0167300
\(268\) 0 0
\(269\) 643.196 0.145786 0.0728929 0.997340i \(-0.476777\pi\)
0.0728929 + 0.997340i \(0.476777\pi\)
\(270\) 0 0
\(271\) −3765.24 −0.843992 −0.421996 0.906598i \(-0.638670\pi\)
−0.421996 + 0.906598i \(0.638670\pi\)
\(272\) 0 0
\(273\) 741.718 0.164435
\(274\) 0 0
\(275\) −2136.30 −0.468449
\(276\) 0 0
\(277\) −907.271 −0.196796 −0.0983982 0.995147i \(-0.531372\pi\)
−0.0983982 + 0.995147i \(0.531372\pi\)
\(278\) 0 0
\(279\) 403.674 0.0866213
\(280\) 0 0
\(281\) 1902.40 0.403871 0.201935 0.979399i \(-0.435277\pi\)
0.201935 + 0.979399i \(0.435277\pi\)
\(282\) 0 0
\(283\) 884.273 0.185741 0.0928703 0.995678i \(-0.470396\pi\)
0.0928703 + 0.995678i \(0.470396\pi\)
\(284\) 0 0
\(285\) 1540.75 0.320233
\(286\) 0 0
\(287\) 3087.82 0.635081
\(288\) 0 0
\(289\) 13189.1 2.68454
\(290\) 0 0
\(291\) 122.252 0.0246272
\(292\) 0 0
\(293\) −3099.02 −0.617908 −0.308954 0.951077i \(-0.599979\pi\)
−0.308954 + 0.951077i \(0.599979\pi\)
\(294\) 0 0
\(295\) −4488.44 −0.885855
\(296\) 0 0
\(297\) −2769.91 −0.541166
\(298\) 0 0
\(299\) −1578.51 −0.305309
\(300\) 0 0
\(301\) −1356.27 −0.259715
\(302\) 0 0
\(303\) 1963.27 0.372234
\(304\) 0 0
\(305\) 3821.13 0.717369
\(306\) 0 0
\(307\) 4078.41 0.758200 0.379100 0.925356i \(-0.376234\pi\)
0.379100 + 0.925356i \(0.376234\pi\)
\(308\) 0 0
\(309\) −767.371 −0.141276
\(310\) 0 0
\(311\) −2215.72 −0.403994 −0.201997 0.979386i \(-0.564743\pi\)
−0.201997 + 0.979386i \(0.564743\pi\)
\(312\) 0 0
\(313\) −1103.21 −0.199223 −0.0996116 0.995026i \(-0.531760\pi\)
−0.0996116 + 0.995026i \(0.531760\pi\)
\(314\) 0 0
\(315\) −2058.20 −0.368148
\(316\) 0 0
\(317\) 3876.78 0.686883 0.343441 0.939174i \(-0.388407\pi\)
0.343441 + 0.939174i \(0.388407\pi\)
\(318\) 0 0
\(319\) −4397.18 −0.771771
\(320\) 0 0
\(321\) −703.932 −0.122398
\(322\) 0 0
\(323\) 19997.1 3.44480
\(324\) 0 0
\(325\) −3287.42 −0.561087
\(326\) 0 0
\(327\) −1503.47 −0.254258
\(328\) 0 0
\(329\) −3439.46 −0.576364
\(330\) 0 0
\(331\) −1973.89 −0.327779 −0.163890 0.986479i \(-0.552404\pi\)
−0.163890 + 0.986479i \(0.552404\pi\)
\(332\) 0 0
\(333\) 8537.56 1.40497
\(334\) 0 0
\(335\) 8029.57 1.30956
\(336\) 0 0
\(337\) −10237.2 −1.65477 −0.827385 0.561635i \(-0.810173\pi\)
−0.827385 + 0.561635i \(0.810173\pi\)
\(338\) 0 0
\(339\) −686.573 −0.109999
\(340\) 0 0
\(341\) −703.090 −0.111655
\(342\) 0 0
\(343\) −5512.63 −0.867796
\(344\) 0 0
\(345\) −238.429 −0.0372074
\(346\) 0 0
\(347\) −8093.36 −1.25209 −0.626043 0.779788i \(-0.715327\pi\)
−0.626043 + 0.779788i \(0.715327\pi\)
\(348\) 0 0
\(349\) −7313.87 −1.12178 −0.560892 0.827889i \(-0.689542\pi\)
−0.560892 + 0.827889i \(0.689542\pi\)
\(350\) 0 0
\(351\) −4262.45 −0.648184
\(352\) 0 0
\(353\) −3652.16 −0.550665 −0.275333 0.961349i \(-0.588788\pi\)
−0.275333 + 0.961349i \(0.588788\pi\)
\(354\) 0 0
\(355\) −1424.14 −0.212917
\(356\) 0 0
\(357\) 1454.07 0.215567
\(358\) 0 0
\(359\) 4165.92 0.612448 0.306224 0.951960i \(-0.400934\pi\)
0.306224 + 0.951960i \(0.400934\pi\)
\(360\) 0 0
\(361\) 15231.5 2.22066
\(362\) 0 0
\(363\) 776.914 0.112335
\(364\) 0 0
\(365\) 3252.51 0.466422
\(366\) 0 0
\(367\) −6904.48 −0.982047 −0.491023 0.871146i \(-0.663377\pi\)
−0.491023 + 0.871146i \(0.663377\pi\)
\(368\) 0 0
\(369\) −8637.35 −1.21854
\(370\) 0 0
\(371\) 1895.38 0.265238
\(372\) 0 0
\(373\) −7825.16 −1.08625 −0.543125 0.839652i \(-0.682759\pi\)
−0.543125 + 0.839652i \(0.682759\pi\)
\(374\) 0 0
\(375\) −1792.36 −0.246819
\(376\) 0 0
\(377\) −6766.57 −0.924393
\(378\) 0 0
\(379\) −1265.52 −0.171518 −0.0857588 0.996316i \(-0.527331\pi\)
−0.0857588 + 0.996316i \(0.527331\pi\)
\(380\) 0 0
\(381\) −1415.02 −0.190272
\(382\) 0 0
\(383\) −12077.3 −1.61129 −0.805644 0.592399i \(-0.798181\pi\)
−0.805644 + 0.592399i \(0.798181\pi\)
\(384\) 0 0
\(385\) 3584.82 0.474544
\(386\) 0 0
\(387\) 3793.81 0.498320
\(388\) 0 0
\(389\) 95.9629 0.0125077 0.00625387 0.999980i \(-0.498009\pi\)
0.00625387 + 0.999980i \(0.498009\pi\)
\(390\) 0 0
\(391\) −3094.52 −0.400247
\(392\) 0 0
\(393\) −2296.21 −0.294729
\(394\) 0 0
\(395\) −8213.63 −1.04626
\(396\) 0 0
\(397\) −12331.2 −1.55890 −0.779449 0.626465i \(-0.784501\pi\)
−0.779449 + 0.626465i \(0.784501\pi\)
\(398\) 0 0
\(399\) 1606.29 0.201541
\(400\) 0 0
\(401\) −3418.48 −0.425712 −0.212856 0.977084i \(-0.568277\pi\)
−0.212856 + 0.977084i \(0.568277\pi\)
\(402\) 0 0
\(403\) −1081.94 −0.133736
\(404\) 0 0
\(405\) 5426.82 0.665829
\(406\) 0 0
\(407\) −14870.1 −1.81102
\(408\) 0 0
\(409\) 13426.3 1.62320 0.811600 0.584214i \(-0.198597\pi\)
0.811600 + 0.584214i \(0.198597\pi\)
\(410\) 0 0
\(411\) 1347.34 0.161701
\(412\) 0 0
\(413\) −4679.35 −0.557520
\(414\) 0 0
\(415\) 8110.60 0.959359
\(416\) 0 0
\(417\) 1428.88 0.167800
\(418\) 0 0
\(419\) 2513.46 0.293057 0.146528 0.989206i \(-0.453190\pi\)
0.146528 + 0.989206i \(0.453190\pi\)
\(420\) 0 0
\(421\) 7188.87 0.832218 0.416109 0.909315i \(-0.363393\pi\)
0.416109 + 0.909315i \(0.363393\pi\)
\(422\) 0 0
\(423\) 9620.98 1.10588
\(424\) 0 0
\(425\) −6444.69 −0.735561
\(426\) 0 0
\(427\) 3983.66 0.451482
\(428\) 0 0
\(429\) 3613.66 0.406688
\(430\) 0 0
\(431\) 11651.2 1.30214 0.651068 0.759019i \(-0.274321\pi\)
0.651068 + 0.759019i \(0.274321\pi\)
\(432\) 0 0
\(433\) −2335.44 −0.259201 −0.129600 0.991566i \(-0.541369\pi\)
−0.129600 + 0.991566i \(0.541369\pi\)
\(434\) 0 0
\(435\) −1022.07 −0.112654
\(436\) 0 0
\(437\) −3418.46 −0.374204
\(438\) 0 0
\(439\) 17600.4 1.91348 0.956742 0.290939i \(-0.0939676\pi\)
0.956742 + 0.290939i \(0.0939676\pi\)
\(440\) 0 0
\(441\) 6637.18 0.716680
\(442\) 0 0
\(443\) −5825.93 −0.624827 −0.312413 0.949946i \(-0.601137\pi\)
−0.312413 + 0.949946i \(0.601137\pi\)
\(444\) 0 0
\(445\) 542.857 0.0578290
\(446\) 0 0
\(447\) 392.444 0.0415257
\(448\) 0 0
\(449\) 7964.71 0.837145 0.418572 0.908183i \(-0.362531\pi\)
0.418572 + 0.908183i \(0.362531\pi\)
\(450\) 0 0
\(451\) 15043.9 1.57071
\(452\) 0 0
\(453\) 3142.65 0.325948
\(454\) 0 0
\(455\) 5516.47 0.568387
\(456\) 0 0
\(457\) −8398.37 −0.859648 −0.429824 0.902913i \(-0.641424\pi\)
−0.429824 + 0.902913i \(0.641424\pi\)
\(458\) 0 0
\(459\) −8356.14 −0.849741
\(460\) 0 0
\(461\) −7147.43 −0.722102 −0.361051 0.932546i \(-0.617582\pi\)
−0.361051 + 0.932546i \(0.617582\pi\)
\(462\) 0 0
\(463\) 11250.0 1.12922 0.564611 0.825357i \(-0.309026\pi\)
0.564611 + 0.825357i \(0.309026\pi\)
\(464\) 0 0
\(465\) −163.424 −0.0162981
\(466\) 0 0
\(467\) −15341.7 −1.52019 −0.760097 0.649810i \(-0.774849\pi\)
−0.760097 + 0.649810i \(0.774849\pi\)
\(468\) 0 0
\(469\) 8371.09 0.824182
\(470\) 0 0
\(471\) 2727.48 0.266827
\(472\) 0 0
\(473\) −6607.77 −0.642337
\(474\) 0 0
\(475\) −7119.34 −0.687701
\(476\) 0 0
\(477\) −5301.81 −0.508917
\(478\) 0 0
\(479\) −299.049 −0.0285259 −0.0142630 0.999898i \(-0.504540\pi\)
−0.0142630 + 0.999898i \(0.504540\pi\)
\(480\) 0 0
\(481\) −22882.7 −2.16915
\(482\) 0 0
\(483\) −248.570 −0.0234168
\(484\) 0 0
\(485\) 909.238 0.0851265
\(486\) 0 0
\(487\) 4670.42 0.434573 0.217286 0.976108i \(-0.430279\pi\)
0.217286 + 0.976108i \(0.430279\pi\)
\(488\) 0 0
\(489\) 286.344 0.0264804
\(490\) 0 0
\(491\) 11483.1 1.05545 0.527726 0.849414i \(-0.323045\pi\)
0.527726 + 0.849414i \(0.323045\pi\)
\(492\) 0 0
\(493\) −13265.2 −1.21184
\(494\) 0 0
\(495\) −10027.6 −0.910517
\(496\) 0 0
\(497\) −1484.72 −0.134001
\(498\) 0 0
\(499\) 1200.58 0.107706 0.0538531 0.998549i \(-0.482850\pi\)
0.0538531 + 0.998549i \(0.482850\pi\)
\(500\) 0 0
\(501\) 1403.25 0.125135
\(502\) 0 0
\(503\) 2684.90 0.238000 0.119000 0.992894i \(-0.462031\pi\)
0.119000 + 0.992894i \(0.462031\pi\)
\(504\) 0 0
\(505\) 14601.7 1.28667
\(506\) 0 0
\(507\) 2967.06 0.259905
\(508\) 0 0
\(509\) 19320.1 1.68241 0.841206 0.540715i \(-0.181846\pi\)
0.841206 + 0.540715i \(0.181846\pi\)
\(510\) 0 0
\(511\) 3390.85 0.293547
\(512\) 0 0
\(513\) −9230.89 −0.794452
\(514\) 0 0
\(515\) −5707.27 −0.488335
\(516\) 0 0
\(517\) −16757.1 −1.42549
\(518\) 0 0
\(519\) 2844.22 0.240554
\(520\) 0 0
\(521\) 6212.53 0.522411 0.261205 0.965283i \(-0.415880\pi\)
0.261205 + 0.965283i \(0.415880\pi\)
\(522\) 0 0
\(523\) 10728.4 0.896983 0.448492 0.893787i \(-0.351961\pi\)
0.448492 + 0.893787i \(0.351961\pi\)
\(524\) 0 0
\(525\) −517.675 −0.0430347
\(526\) 0 0
\(527\) −2121.05 −0.175322
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 13089.2 1.06972
\(532\) 0 0
\(533\) 23150.2 1.88132
\(534\) 0 0
\(535\) −5235.44 −0.423080
\(536\) 0 0
\(537\) −913.462 −0.0734056
\(538\) 0 0
\(539\) −11560.1 −0.923804
\(540\) 0 0
\(541\) 9857.53 0.783379 0.391690 0.920097i \(-0.371891\pi\)
0.391690 + 0.920097i \(0.371891\pi\)
\(542\) 0 0
\(543\) 3713.71 0.293500
\(544\) 0 0
\(545\) −11182.0 −0.878869
\(546\) 0 0
\(547\) 13709.3 1.07160 0.535802 0.844343i \(-0.320009\pi\)
0.535802 + 0.844343i \(0.320009\pi\)
\(548\) 0 0
\(549\) −11143.2 −0.866267
\(550\) 0 0
\(551\) −14653.9 −1.13299
\(552\) 0 0
\(553\) −8562.97 −0.658471
\(554\) 0 0
\(555\) −3456.37 −0.264351
\(556\) 0 0
\(557\) −2471.87 −0.188037 −0.0940185 0.995570i \(-0.529971\pi\)
−0.0940185 + 0.995570i \(0.529971\pi\)
\(558\) 0 0
\(559\) −10168.3 −0.769363
\(560\) 0 0
\(561\) 7084.25 0.533150
\(562\) 0 0
\(563\) 4911.12 0.367636 0.183818 0.982960i \(-0.441154\pi\)
0.183818 + 0.982960i \(0.441154\pi\)
\(564\) 0 0
\(565\) −5106.34 −0.380221
\(566\) 0 0
\(567\) 5657.64 0.419045
\(568\) 0 0
\(569\) −6667.28 −0.491225 −0.245612 0.969368i \(-0.578989\pi\)
−0.245612 + 0.969368i \(0.578989\pi\)
\(570\) 0 0
\(571\) −14658.5 −1.07433 −0.537163 0.843478i \(-0.680504\pi\)
−0.537163 + 0.843478i \(0.680504\pi\)
\(572\) 0 0
\(573\) −5713.45 −0.416550
\(574\) 0 0
\(575\) 1101.70 0.0799030
\(576\) 0 0
\(577\) 4593.54 0.331424 0.165712 0.986174i \(-0.447008\pi\)
0.165712 + 0.986174i \(0.447008\pi\)
\(578\) 0 0
\(579\) 2578.88 0.185103
\(580\) 0 0
\(581\) 8455.57 0.603780
\(582\) 0 0
\(583\) 9234.31 0.655996
\(584\) 0 0
\(585\) −15430.8 −1.09058
\(586\) 0 0
\(587\) −9227.49 −0.648823 −0.324412 0.945916i \(-0.605166\pi\)
−0.324412 + 0.945916i \(0.605166\pi\)
\(588\) 0 0
\(589\) −2343.09 −0.163914
\(590\) 0 0
\(591\) 549.133 0.0382205
\(592\) 0 0
\(593\) −16921.2 −1.17179 −0.585895 0.810387i \(-0.699257\pi\)
−0.585895 + 0.810387i \(0.699257\pi\)
\(594\) 0 0
\(595\) 10814.5 0.745131
\(596\) 0 0
\(597\) −876.859 −0.0601130
\(598\) 0 0
\(599\) −6264.86 −0.427337 −0.213669 0.976906i \(-0.568541\pi\)
−0.213669 + 0.976906i \(0.568541\pi\)
\(600\) 0 0
\(601\) −16317.7 −1.10751 −0.553756 0.832679i \(-0.686806\pi\)
−0.553756 + 0.832679i \(0.686806\pi\)
\(602\) 0 0
\(603\) −23415.9 −1.58137
\(604\) 0 0
\(605\) 5778.24 0.388296
\(606\) 0 0
\(607\) −27547.7 −1.84205 −0.921027 0.389499i \(-0.872648\pi\)
−0.921027 + 0.389499i \(0.872648\pi\)
\(608\) 0 0
\(609\) −1065.54 −0.0708997
\(610\) 0 0
\(611\) −25786.5 −1.70738
\(612\) 0 0
\(613\) 5537.21 0.364838 0.182419 0.983221i \(-0.441607\pi\)
0.182419 + 0.983221i \(0.441607\pi\)
\(614\) 0 0
\(615\) 3496.77 0.229273
\(616\) 0 0
\(617\) −17182.6 −1.12115 −0.560573 0.828105i \(-0.689419\pi\)
−0.560573 + 0.828105i \(0.689419\pi\)
\(618\) 0 0
\(619\) −14375.4 −0.933434 −0.466717 0.884407i \(-0.654563\pi\)
−0.466717 + 0.884407i \(0.654563\pi\)
\(620\) 0 0
\(621\) 1428.46 0.0923063
\(622\) 0 0
\(623\) 565.946 0.0363951
\(624\) 0 0
\(625\) −7343.05 −0.469955
\(626\) 0 0
\(627\) 7825.85 0.498460
\(628\) 0 0
\(629\) −44859.5 −2.84366
\(630\) 0 0
\(631\) 9337.75 0.589112 0.294556 0.955634i \(-0.404828\pi\)
0.294556 + 0.955634i \(0.404828\pi\)
\(632\) 0 0
\(633\) −5836.84 −0.366498
\(634\) 0 0
\(635\) −10524.1 −0.657693
\(636\) 0 0
\(637\) −17789.2 −1.10649
\(638\) 0 0
\(639\) 4153.09 0.257111
\(640\) 0 0
\(641\) 27089.9 1.66924 0.834622 0.550823i \(-0.185686\pi\)
0.834622 + 0.550823i \(0.185686\pi\)
\(642\) 0 0
\(643\) 30809.4 1.88959 0.944794 0.327663i \(-0.106261\pi\)
0.944794 + 0.327663i \(0.106261\pi\)
\(644\) 0 0
\(645\) −1535.89 −0.0937609
\(646\) 0 0
\(647\) 13252.1 0.805246 0.402623 0.915366i \(-0.368098\pi\)
0.402623 + 0.915366i \(0.368098\pi\)
\(648\) 0 0
\(649\) −22797.8 −1.37888
\(650\) 0 0
\(651\) −170.375 −0.0102573
\(652\) 0 0
\(653\) −19773.8 −1.18501 −0.592503 0.805568i \(-0.701860\pi\)
−0.592503 + 0.805568i \(0.701860\pi\)
\(654\) 0 0
\(655\) −17077.9 −1.01876
\(656\) 0 0
\(657\) −9484.99 −0.563234
\(658\) 0 0
\(659\) −11796.1 −0.697286 −0.348643 0.937256i \(-0.613358\pi\)
−0.348643 + 0.937256i \(0.613358\pi\)
\(660\) 0 0
\(661\) −1378.16 −0.0810955 −0.0405477 0.999178i \(-0.512910\pi\)
−0.0405477 + 0.999178i \(0.512910\pi\)
\(662\) 0 0
\(663\) 10901.5 0.638583
\(664\) 0 0
\(665\) 11946.6 0.696648
\(666\) 0 0
\(667\) 2267.66 0.131640
\(668\) 0 0
\(669\) −7089.15 −0.409690
\(670\) 0 0
\(671\) 19408.4 1.11662
\(672\) 0 0
\(673\) 7023.66 0.402291 0.201146 0.979561i \(-0.435534\pi\)
0.201146 + 0.979561i \(0.435534\pi\)
\(674\) 0 0
\(675\) 2974.94 0.169638
\(676\) 0 0
\(677\) 8986.94 0.510186 0.255093 0.966916i \(-0.417894\pi\)
0.255093 + 0.966916i \(0.417894\pi\)
\(678\) 0 0
\(679\) 947.910 0.0535750
\(680\) 0 0
\(681\) −1443.07 −0.0812019
\(682\) 0 0
\(683\) −5617.70 −0.314722 −0.157361 0.987541i \(-0.550299\pi\)
−0.157361 + 0.987541i \(0.550299\pi\)
\(684\) 0 0
\(685\) 10020.7 0.558938
\(686\) 0 0
\(687\) 11.3190 0.000628600 0
\(688\) 0 0
\(689\) 14210.1 0.785723
\(690\) 0 0
\(691\) −17838.7 −0.982080 −0.491040 0.871137i \(-0.663383\pi\)
−0.491040 + 0.871137i \(0.663383\pi\)
\(692\) 0 0
\(693\) −10454.1 −0.573041
\(694\) 0 0
\(695\) 10627.2 0.580019
\(696\) 0 0
\(697\) 45383.8 2.46633
\(698\) 0 0
\(699\) 3613.18 0.195512
\(700\) 0 0
\(701\) 23519.6 1.26722 0.633611 0.773652i \(-0.281572\pi\)
0.633611 + 0.773652i \(0.281572\pi\)
\(702\) 0 0
\(703\) −49555.5 −2.65864
\(704\) 0 0
\(705\) −3894.98 −0.208076
\(706\) 0 0
\(707\) 15222.7 0.809773
\(708\) 0 0
\(709\) −11200.6 −0.593297 −0.296648 0.954987i \(-0.595869\pi\)
−0.296648 + 0.954987i \(0.595869\pi\)
\(710\) 0 0
\(711\) 23952.6 1.26342
\(712\) 0 0
\(713\) 362.588 0.0190449
\(714\) 0 0
\(715\) 26876.3 1.40576
\(716\) 0 0
\(717\) 943.711 0.0491542
\(718\) 0 0
\(719\) −26086.3 −1.35307 −0.676533 0.736412i \(-0.736518\pi\)
−0.676533 + 0.736412i \(0.736518\pi\)
\(720\) 0 0
\(721\) −5950.01 −0.307337
\(722\) 0 0
\(723\) −148.465 −0.00763689
\(724\) 0 0
\(725\) 4722.67 0.241925
\(726\) 0 0
\(727\) −3684.94 −0.187987 −0.0939937 0.995573i \(-0.529963\pi\)
−0.0939937 + 0.995573i \(0.529963\pi\)
\(728\) 0 0
\(729\) −13846.0 −0.703448
\(730\) 0 0
\(731\) −19934.0 −1.00860
\(732\) 0 0
\(733\) −6626.75 −0.333922 −0.166961 0.985964i \(-0.553395\pi\)
−0.166961 + 0.985964i \(0.553395\pi\)
\(734\) 0 0
\(735\) −2687.01 −0.134846
\(736\) 0 0
\(737\) 40784.1 2.03840
\(738\) 0 0
\(739\) 16061.3 0.799494 0.399747 0.916626i \(-0.369098\pi\)
0.399747 + 0.916626i \(0.369098\pi\)
\(740\) 0 0
\(741\) 12042.7 0.597032
\(742\) 0 0
\(743\) 10457.5 0.516351 0.258176 0.966098i \(-0.416879\pi\)
0.258176 + 0.966098i \(0.416879\pi\)
\(744\) 0 0
\(745\) 2918.78 0.143538
\(746\) 0 0
\(747\) −23652.2 −1.15848
\(748\) 0 0
\(749\) −5458.12 −0.266269
\(750\) 0 0
\(751\) 14075.4 0.683912 0.341956 0.939716i \(-0.388911\pi\)
0.341956 + 0.939716i \(0.388911\pi\)
\(752\) 0 0
\(753\) 7451.89 0.360640
\(754\) 0 0
\(755\) 23373.2 1.12667
\(756\) 0 0
\(757\) −15015.4 −0.720932 −0.360466 0.932772i \(-0.617382\pi\)
−0.360466 + 0.932772i \(0.617382\pi\)
\(758\) 0 0
\(759\) −1211.03 −0.0579154
\(760\) 0 0
\(761\) −26658.3 −1.26986 −0.634930 0.772570i \(-0.718971\pi\)
−0.634930 + 0.772570i \(0.718971\pi\)
\(762\) 0 0
\(763\) −11657.6 −0.553123
\(764\) 0 0
\(765\) −30250.8 −1.42970
\(766\) 0 0
\(767\) −35082.2 −1.65156
\(768\) 0 0
\(769\) −31732.7 −1.48805 −0.744025 0.668151i \(-0.767086\pi\)
−0.744025 + 0.668151i \(0.767086\pi\)
\(770\) 0 0
\(771\) 2964.46 0.138473
\(772\) 0 0
\(773\) −13523.8 −0.629261 −0.314631 0.949214i \(-0.601881\pi\)
−0.314631 + 0.949214i \(0.601881\pi\)
\(774\) 0 0
\(775\) 755.133 0.0350002
\(776\) 0 0
\(777\) −3603.38 −0.166371
\(778\) 0 0
\(779\) 50134.7 2.30586
\(780\) 0 0
\(781\) −7233.55 −0.331417
\(782\) 0 0
\(783\) 6123.38 0.279478
\(784\) 0 0
\(785\) 20285.4 0.922317
\(786\) 0 0
\(787\) 19946.5 0.903452 0.451726 0.892157i \(-0.350809\pi\)
0.451726 + 0.892157i \(0.350809\pi\)
\(788\) 0 0
\(789\) −1225.50 −0.0552965
\(790\) 0 0
\(791\) −5323.52 −0.239295
\(792\) 0 0
\(793\) 29866.5 1.33744
\(794\) 0 0
\(795\) 2146.40 0.0957546
\(796\) 0 0
\(797\) −1025.98 −0.0455988 −0.0227994 0.999740i \(-0.507258\pi\)
−0.0227994 + 0.999740i \(0.507258\pi\)
\(798\) 0 0
\(799\) −50552.1 −2.23831
\(800\) 0 0
\(801\) −1583.08 −0.0698320
\(802\) 0 0
\(803\) 16520.2 0.726011
\(804\) 0 0
\(805\) −1848.72 −0.0809426
\(806\) 0 0
\(807\) 759.360 0.0331236
\(808\) 0 0
\(809\) −33646.9 −1.46225 −0.731126 0.682243i \(-0.761005\pi\)
−0.731126 + 0.682243i \(0.761005\pi\)
\(810\) 0 0
\(811\) 11264.7 0.487740 0.243870 0.969808i \(-0.421583\pi\)
0.243870 + 0.969808i \(0.421583\pi\)
\(812\) 0 0
\(813\) −4445.25 −0.191761
\(814\) 0 0
\(815\) 2129.66 0.0915324
\(816\) 0 0
\(817\) −22020.8 −0.942975
\(818\) 0 0
\(819\) −16087.2 −0.686362
\(820\) 0 0
\(821\) −13577.3 −0.577163 −0.288582 0.957455i \(-0.593184\pi\)
−0.288582 + 0.957455i \(0.593184\pi\)
\(822\) 0 0
\(823\) 17638.0 0.747051 0.373525 0.927620i \(-0.378149\pi\)
0.373525 + 0.927620i \(0.378149\pi\)
\(824\) 0 0
\(825\) −2522.12 −0.106435
\(826\) 0 0
\(827\) −35211.1 −1.48054 −0.740272 0.672307i \(-0.765303\pi\)
−0.740272 + 0.672307i \(0.765303\pi\)
\(828\) 0 0
\(829\) 7480.76 0.313411 0.156705 0.987645i \(-0.449913\pi\)
0.156705 + 0.987645i \(0.449913\pi\)
\(830\) 0 0
\(831\) −1071.13 −0.0447136
\(832\) 0 0
\(833\) −34874.2 −1.45056
\(834\) 0 0
\(835\) 10436.6 0.432542
\(836\) 0 0
\(837\) 979.100 0.0404333
\(838\) 0 0
\(839\) 1772.03 0.0729167 0.0364584 0.999335i \(-0.488392\pi\)
0.0364584 + 0.999335i \(0.488392\pi\)
\(840\) 0 0
\(841\) −14668.2 −0.601428
\(842\) 0 0
\(843\) 2245.98 0.0917623
\(844\) 0 0
\(845\) 22067.3 0.898388
\(846\) 0 0
\(847\) 6024.01 0.244377
\(848\) 0 0
\(849\) 1043.98 0.0422016
\(850\) 0 0
\(851\) 7668.62 0.308903
\(852\) 0 0
\(853\) 29288.4 1.17564 0.587818 0.808993i \(-0.299987\pi\)
0.587818 + 0.808993i \(0.299987\pi\)
\(854\) 0 0
\(855\) −33417.5 −1.33667
\(856\) 0 0
\(857\) −19474.1 −0.776224 −0.388112 0.921612i \(-0.626873\pi\)
−0.388112 + 0.921612i \(0.626873\pi\)
\(858\) 0 0
\(859\) 12695.9 0.504282 0.252141 0.967691i \(-0.418865\pi\)
0.252141 + 0.967691i \(0.418865\pi\)
\(860\) 0 0
\(861\) 3645.49 0.144295
\(862\) 0 0
\(863\) 42212.9 1.66506 0.832529 0.553982i \(-0.186892\pi\)
0.832529 + 0.553982i \(0.186892\pi\)
\(864\) 0 0
\(865\) 21153.7 0.831499
\(866\) 0 0
\(867\) 15571.2 0.609947
\(868\) 0 0
\(869\) −41718.9 −1.62856
\(870\) 0 0
\(871\) 62760.2 2.44150
\(872\) 0 0
\(873\) −2651.52 −0.102796
\(874\) 0 0
\(875\) −13897.6 −0.536941
\(876\) 0 0
\(877\) 17818.7 0.686083 0.343041 0.939320i \(-0.388543\pi\)
0.343041 + 0.939320i \(0.388543\pi\)
\(878\) 0 0
\(879\) −3658.72 −0.140393
\(880\) 0 0
\(881\) −20699.6 −0.791584 −0.395792 0.918340i \(-0.629530\pi\)
−0.395792 + 0.918340i \(0.629530\pi\)
\(882\) 0 0
\(883\) −31592.7 −1.20405 −0.602027 0.798476i \(-0.705640\pi\)
−0.602027 + 0.798476i \(0.705640\pi\)
\(884\) 0 0
\(885\) −5299.07 −0.201273
\(886\) 0 0
\(887\) −22226.5 −0.841366 −0.420683 0.907208i \(-0.638210\pi\)
−0.420683 + 0.907208i \(0.638210\pi\)
\(888\) 0 0
\(889\) −10971.7 −0.413924
\(890\) 0 0
\(891\) 27564.1 1.03640
\(892\) 0 0
\(893\) −55844.1 −2.09267
\(894\) 0 0
\(895\) −6793.81 −0.253734
\(896\) 0 0
\(897\) −1863.59 −0.0693684
\(898\) 0 0
\(899\) 1554.31 0.0576629
\(900\) 0 0
\(901\) 27857.7 1.03005
\(902\) 0 0
\(903\) −1601.22 −0.0590091
\(904\) 0 0
\(905\) 27620.4 1.01451
\(906\) 0 0
\(907\) −8906.15 −0.326046 −0.163023 0.986622i \(-0.552124\pi\)
−0.163023 + 0.986622i \(0.552124\pi\)
\(908\) 0 0
\(909\) −42581.5 −1.55373
\(910\) 0 0
\(911\) 23772.4 0.864561 0.432280 0.901739i \(-0.357709\pi\)
0.432280 + 0.901739i \(0.357709\pi\)
\(912\) 0 0
\(913\) 41195.6 1.49329
\(914\) 0 0
\(915\) 4511.24 0.162991
\(916\) 0 0
\(917\) −17804.2 −0.641165
\(918\) 0 0
\(919\) −52391.7 −1.88057 −0.940285 0.340389i \(-0.889441\pi\)
−0.940285 + 0.340389i \(0.889441\pi\)
\(920\) 0 0
\(921\) 4814.99 0.172269
\(922\) 0 0
\(923\) −11131.3 −0.396956
\(924\) 0 0
\(925\) 15970.8 0.567693
\(926\) 0 0
\(927\) 16643.6 0.589694
\(928\) 0 0
\(929\) −34847.2 −1.23068 −0.615338 0.788263i \(-0.710981\pi\)
−0.615338 + 0.788263i \(0.710981\pi\)
\(930\) 0 0
\(931\) −38524.9 −1.35618
\(932\) 0 0
\(933\) −2615.89 −0.0917903
\(934\) 0 0
\(935\) 52688.6 1.84289
\(936\) 0 0
\(937\) 40160.9 1.40021 0.700106 0.714039i \(-0.253136\pi\)
0.700106 + 0.714039i \(0.253136\pi\)
\(938\) 0 0
\(939\) −1302.45 −0.0452649
\(940\) 0 0
\(941\) −48726.3 −1.68803 −0.844014 0.536322i \(-0.819813\pi\)
−0.844014 + 0.536322i \(0.819813\pi\)
\(942\) 0 0
\(943\) −7758.25 −0.267914
\(944\) 0 0
\(945\) −4992.11 −0.171845
\(946\) 0 0
\(947\) 47185.8 1.61915 0.809574 0.587018i \(-0.199698\pi\)
0.809574 + 0.587018i \(0.199698\pi\)
\(948\) 0 0
\(949\) 25422.0 0.869583
\(950\) 0 0
\(951\) 4576.94 0.156065
\(952\) 0 0
\(953\) −15122.7 −0.514030 −0.257015 0.966407i \(-0.582739\pi\)
−0.257015 + 0.966407i \(0.582739\pi\)
\(954\) 0 0
\(955\) −42493.4 −1.43985
\(956\) 0 0
\(957\) −5191.33 −0.175352
\(958\) 0 0
\(959\) 10446.9 0.351772
\(960\) 0 0
\(961\) −29542.5 −0.991658
\(962\) 0 0
\(963\) 15267.6 0.510896
\(964\) 0 0
\(965\) 19180.2 0.639828
\(966\) 0 0
\(967\) −21384.5 −0.711148 −0.355574 0.934648i \(-0.615715\pi\)
−0.355574 + 0.934648i \(0.615715\pi\)
\(968\) 0 0
\(969\) 23608.7 0.782683
\(970\) 0 0
\(971\) 14788.3 0.488752 0.244376 0.969681i \(-0.421417\pi\)
0.244376 + 0.969681i \(0.421417\pi\)
\(972\) 0 0
\(973\) 11079.2 0.365039
\(974\) 0 0
\(975\) −3881.14 −0.127483
\(976\) 0 0
\(977\) −46409.7 −1.51973 −0.759867 0.650079i \(-0.774736\pi\)
−0.759867 + 0.650079i \(0.774736\pi\)
\(978\) 0 0
\(979\) 2757.29 0.0900138
\(980\) 0 0
\(981\) 32609.0 1.06129
\(982\) 0 0
\(983\) −15076.8 −0.489190 −0.244595 0.969625i \(-0.578655\pi\)
−0.244595 + 0.969625i \(0.578655\pi\)
\(984\) 0 0
\(985\) 4084.14 0.132113
\(986\) 0 0
\(987\) −4060.64 −0.130954
\(988\) 0 0
\(989\) 3407.68 0.109563
\(990\) 0 0
\(991\) 30525.4 0.978476 0.489238 0.872150i \(-0.337275\pi\)
0.489238 + 0.872150i \(0.337275\pi\)
\(992\) 0 0
\(993\) −2330.38 −0.0744738
\(994\) 0 0
\(995\) −6521.58 −0.207787
\(996\) 0 0
\(997\) −6084.40 −0.193275 −0.0966374 0.995320i \(-0.530809\pi\)
−0.0966374 + 0.995320i \(0.530809\pi\)
\(998\) 0 0
\(999\) 20707.6 0.655816
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.4.a.w.1.2 3
4.3 odd 2 1472.4.a.p.1.2 3
8.3 odd 2 368.4.a.k.1.2 3
8.5 even 2 92.4.a.a.1.2 3
24.5 odd 2 828.4.a.f.1.2 3
40.13 odd 4 2300.4.c.b.1749.3 6
40.29 even 2 2300.4.a.b.1.2 3
40.37 odd 4 2300.4.c.b.1749.4 6
184.45 odd 2 2116.4.a.a.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.4.a.a.1.2 3 8.5 even 2
368.4.a.k.1.2 3 8.3 odd 2
828.4.a.f.1.2 3 24.5 odd 2
1472.4.a.p.1.2 3 4.3 odd 2
1472.4.a.w.1.2 3 1.1 even 1 trivial
2116.4.a.a.1.2 3 184.45 odd 2
2300.4.a.b.1.2 3 40.29 even 2
2300.4.c.b.1749.3 6 40.13 odd 4
2300.4.c.b.1749.4 6 40.37 odd 4